... | ... |
@@ -2,7 +2,7 @@ Package: epistasisGA |
2 | 2 |
Type: Package |
3 | 3 |
Title: An R package to identify multi-snp effects in nuclear family studies |
4 | 4 |
using the GADGETS method |
5 |
-Version: 1.1.2 |
|
5 |
+Version: 1.1.3 |
|
6 | 6 |
Authors@R: c(person("Michael", "Nodzenski", |
7 | 7 |
email = "[email protected]",role = c("aut", "cre")), |
8 | 8 |
person("Juno", "Krahn", role = "ctb")) |
... | ... |
@@ -1173,7 +1173,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1173 | 1173 |
if (!E_pd){ |
1174 | 1174 |
|
1175 | 1175 |
arma::vec sum_dif_vecs(chrom_size, fill::ones); |
1176 |
- arma::vec beta_exposure_prob_disease(x_orig.n_cols, fill::zeros); |
|
1176 |
+ arma::vec beta_prob_disease(x_orig.n_cols, fill::zeros); |
|
1177 | 1177 |
|
1178 | 1178 |
List res; |
1179 | 1179 |
res = List::create(Named("fitness_score") = pow(10, -10), |
... | ... |
@@ -1182,7 +1182,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1182 | 1182 |
Named("wald_stat") = pow(10, -10), |
1183 | 1183 |
Named("risk_set_alleles") = sum_diffs, |
1184 | 1184 |
Named("beta_exposure_prob_disease") = |
1185 |
- beta_exposure_prob_disease.t()); |
|
1185 |
+ beta_prob_disease.t()); |
|
1186 | 1186 |
return(res); |
1187 | 1187 |
|
1188 | 1188 |
} else { |
... | ... |
@@ -1193,7 +1193,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1193 | 1193 |
arma::vec prob_disease(mom_target.n_rows); |
1194 | 1194 |
|
1195 | 1195 |
//nominate risk alleles |
1196 |
- arma::mat pred_means = x_orig*beta_full; |
|
1196 |
+ //arma::mat pred_means = x_orig*beta_full; |
|
1197 | 1197 |
for (unsigned int i = 0; i < mom_target.n_rows; i++){ |
1198 | 1198 |
|
1199 | 1199 |
arma::vec risk_geno_probs(mom_target.n_cols); |
... | ... |
@@ -1208,11 +1208,11 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1208 | 1208 |
|
1209 | 1209 |
// zero out predicted mean difference vector for inconsistencies |
1210 | 1210 |
// with nominated risk alleles |
1211 |
- if (pred_means(i, j) <= 0){ |
|
1212 |
- |
|
1213 |
- pred_means(i, j) = 0.0; |
|
1214 |
- |
|
1215 |
- } |
|
1211 |
+ // if (pred_means(i, j) <= 0){ |
|
1212 |
+ // |
|
1213 |
+ // pred_means(i, j) = 0.0; |
|
1214 |
+ // |
|
1215 |
+ // } |
|
1216 | 1216 |
|
1217 | 1217 |
if (mom_geno == 2.0 | dad_geno == 2.0){ |
1218 | 1218 |
|
... | ... |
@@ -1236,11 +1236,11 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1236 | 1236 |
|
1237 | 1237 |
// zero out predicted mean difference vector for inconsistencies |
1238 | 1238 |
// with nominated risk alleles |
1239 |
- if (pred_means(i, j) > 0){ |
|
1240 |
- |
|
1241 |
- pred_means(i, j) = 0.0; |
|
1242 |
- |
|
1243 |
- } |
|
1239 |
+ // if (pred_means(i, j) > 0){ |
|
1240 |
+ // |
|
1241 |
+ // pred_means(i, j) = 0.0; |
|
1242 |
+ // |
|
1243 |
+ // } |
|
1244 | 1244 |
|
1245 | 1245 |
if (mom_geno == 0.0 | dad_geno == 0.0){ |
1246 | 1246 |
|
... | ... |
@@ -1270,53 +1270,53 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1270 | 1270 |
} |
1271 | 1271 |
|
1272 | 1272 |
// get the lengths of the predicted mean vecs |
1273 |
- arma::vec mean_vec_lengths = arma::sqrt(arma::sum(arma::square(pred_means), 1)); |
|
1273 |
+ // arma::vec mean_vec_lengths = arma::sqrt(arma::sum(arma::square(pred_means), 1)); |
|
1274 | 1274 |
|
1275 | 1275 |
// make sure we have unique values (possible for all to be zero) |
1276 |
- arma::vec unique_vec_lengths = arma::unique(mean_vec_lengths); |
|
1277 |
- |
|
1278 |
- // return small value if only one predicted mean |
|
1279 |
- if (unique_vec_lengths.n_elem == 1){ |
|
1280 |
- |
|
1281 |
- arma::vec sum_dif_vecs(chrom_size, fill::ones); |
|
1282 |
- arma::vec beta_exposure_prob_disease(x_orig.n_cols, fill::zeros); |
|
1283 |
- List res = List::create(Named("fitness_score") = pow(10, -10), |
|
1284 |
- Named("sum_dif_vecs") = sum_dif_vecs.t(), |
|
1285 |
- Named("ht_trace") = pow(10, -10), |
|
1286 |
- Named("wald_stat") = pow(10, -10), |
|
1287 |
- Named("risk_set_alleles") = sum_diffs, |
|
1288 |
- Named("beta_exposure_prob_disease") = |
|
1289 |
- beta_exposure_prob_disease.t()); |
|
1290 |
- return(res); |
|
1291 |
- |
|
1292 |
- |
|
1293 |
- } |
|
1276 |
+ // arma::vec unique_vec_lengths = arma::unique(mean_vec_lengths); |
|
1277 |
+ // |
|
1278 |
+ // // return small value if only one predicted mean |
|
1279 |
+ // if (unique_vec_lengths.n_elem == 1){ |
|
1280 |
+ // |
|
1281 |
+ // arma::vec sum_dif_vecs(chrom_size, fill::ones); |
|
1282 |
+ // arma::vec beta_exposure_prob_disease(x_orig.n_cols, fill::zeros); |
|
1283 |
+ // List res = List::create(Named("fitness_score") = pow(10, -10), |
|
1284 |
+ // Named("sum_dif_vecs") = sum_dif_vecs.t(), |
|
1285 |
+ // Named("ht_trace") = pow(10, -10), |
|
1286 |
+ // Named("wald_stat") = pow(10, -10), |
|
1287 |
+ // Named("risk_set_alleles") = sum_diffs, |
|
1288 |
+ // Named("beta_exposure_prob_disease") = |
|
1289 |
+ // beta_exposure_prob_disease.t()); |
|
1290 |
+ // return(res); |
|
1291 |
+ // |
|
1292 |
+ // |
|
1293 |
+ // } |
|
1294 | 1294 |
|
1295 |
- arma::mat x_vec_lengths = join_rows(x0_orig, mean_vec_lengths); |
|
1296 |
- arma::vec beta_prob_disease = solve(x_vec_lengths, prob_disease, solve_opts::fast); |
|
1297 |
- arma::vec beta_exposure_prob_disease = solve(x_orig, prob_disease, solve_opts::fast); |
|
1295 |
+ // arma::mat x_vec_lengths = join_rows(x0_orig, mean_vec_lengths); |
|
1296 |
+ // arma::vec beta_prob_disease = solve(x_vec_lengths, prob_disease, solve_opts::fast); |
|
1297 |
+ arma::vec beta_prob_disease = solve(x_orig, prob_disease, solve_opts::fast); |
|
1298 | 1298 |
|
1299 | 1299 |
// make sure association is positive |
1300 |
- bool pos_assoc = beta_prob_disease(1) > 0; |
|
1301 |
- if (! pos_assoc){ |
|
1302 |
- |
|
1303 |
- arma::vec sum_dif_vecs(chrom_size, fill::ones); |
|
1304 |
- List res = List::create(Named("fitness_score") = pow(10, -10), |
|
1305 |
- Named("sum_dif_vecs") = sum_dif_vecs.t(), |
|
1306 |
- Named("ht_trace") = pow(10, -10), |
|
1307 |
- Named("wald_stat") = pow(10, -10), |
|
1308 |
- Named("risk_set_alleles") = sum_diffs, |
|
1309 |
- Named("beta_exposure_prob_disease") = |
|
1310 |
- beta_exposure_prob_disease.t()); |
|
1311 |
- |
|
1312 |
- return(res); |
|
1313 |
- |
|
1314 |
- } |
|
1300 |
+ // bool pos_assoc = beta_prob_disease(1) > 0; |
|
1301 |
+ // if (! pos_assoc){ |
|
1302 |
+ // |
|
1303 |
+ // arma::vec sum_dif_vecs(chrom_size, fill::ones); |
|
1304 |
+ // List res = List::create(Named("fitness_score") = pow(10, -10), |
|
1305 |
+ // Named("sum_dif_vecs") = sum_dif_vecs.t(), |
|
1306 |
+ // Named("ht_trace") = pow(10, -10), |
|
1307 |
+ // Named("wald_stat") = pow(10, -10), |
|
1308 |
+ // Named("risk_set_alleles") = sum_diffs, |
|
1309 |
+ // Named("beta_exposure_prob_disease") = |
|
1310 |
+ // beta_exposure_prob_disease.t()); |
|
1311 |
+ // |
|
1312 |
+ // return(res); |
|
1313 |
+ // |
|
1314 |
+ // } |
|
1315 | 1315 |
|
1316 |
- arma::colvec resid_prob_disease = prob_disease - x_vec_lengths*beta_prob_disease; |
|
1316 |
+ arma::colvec resid_prob_disease = prob_disease - x_orig*beta_prob_disease; |
|
1317 | 1317 |
double sig2 = arma::as_scalar(arma::trans(resid_prob_disease)*resid_prob_disease/ |
1318 |
- (x_vec_lengths.n_rows - x_vec_lengths.n_cols)); |
|
1319 |
- arma::mat vcov_beta_prob_disease = sig2 * arma::pinv(arma::trans(x_vec_lengths)*x_vec_lengths); |
|
1318 |
+ (x_orig.n_rows - x_orig.n_cols)); |
|
1319 |
+ arma::mat vcov_beta_prob_disease = sig2 * arma::pinv(arma::trans(x_orig)*x_orig); |
|
1320 | 1320 |
|
1321 | 1321 |
// make sure cov is positive definite and return small score if not |
1322 | 1322 |
bool vcov_beta_prob_disease_pd = vcov_beta_prob_disease.is_sympd(); |
... | ... |
@@ -1331,7 +1331,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1331 | 1331 |
Named("wald_stat") = pow(10, -10), |
1332 | 1332 |
Named("risk_set_alleles") = sum_diffs, |
1333 | 1333 |
Named("beta_exposure_prob_disease") = |
1334 |
- beta_exposure_prob_disease.t()); |
|
1334 |
+ beta_prob_disease.t()); |
|
1335 | 1335 |
|
1336 | 1336 |
return(res); |
1337 | 1337 |
|
... | ... |
@@ -1364,7 +1364,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1364 | 1364 |
Named("wald_stat") = wald_test, |
1365 | 1365 |
Named("risk_set_alleles") = sum_diffs, |
1366 | 1366 |
Named("beta_exposure_prob_disease") = |
1367 |
- beta_exposure_prob_disease.t()); |
|
1367 |
+ beta_prob_disease.t()); |
|
1368 | 1368 |
return(res); |
1369 | 1369 |
|
1370 | 1370 |
} else { |
... | ... |
@@ -1391,7 +1391,7 @@ List GxE_fitness_score_mvlm(NumericMatrix case_genetic_data_, |
1391 | 1391 |
Named("wald_stat") = wald_test, |
1392 | 1392 |
Named("risk_set_alleles") = sum_diffs, |
1393 | 1393 |
Named("beta_exposure_prob_disease") = |
1394 |
- beta_exposure_prob_disease.t()); |
|
1394 |
+ beta_prob_disease.t()); |
|
1395 | 1395 |
return(res); |
1396 | 1396 |
|
1397 | 1397 |
} |