...
|
...
|
@@ -78,27 +78,83 @@
|
78
|
78
|
|
79
|
79
|
preprocess.genetic.data <- function(case.genetic.data, complement.genetic.data = NULL, father.genetic.data = NULL,
|
80
|
80
|
mother.genetic.data = NULL, ld.block.vec = NULL, bp.param = bpparam(), snp.sampling.probs = NULL,
|
81
|
|
- categorical.exposures = NULL, categorical.exposures.risk.ranks = NULL) {
|
|
81
|
+ categorical.exposures = NULL, categorical.exposures.risk.ranks = NULL, parents.only = FALSE) {
|
82
|
82
|
|
83
|
83
|
#make sure the ld.block.vec is correctly specified
|
84
|
|
- if (is.null(ld.block.vec)){
|
|
84
|
+ if (!parents.only){
|
85
|
85
|
|
86
|
|
- ld.block.vec <- ncol(case.genetic.data)
|
|
86
|
+ if (is.null(ld.block.vec)){
|
|
87
|
+
|
|
88
|
+ ld.block.vec <- ncol(case.genetic.data)
|
|
89
|
+
|
|
90
|
+ } else {
|
|
91
|
+
|
|
92
|
+ if (sum(ld.block.vec) != ncol(case.genetic.data)){
|
|
93
|
+
|
|
94
|
+ stop("sum(ld.block.vec) must be equal to ncol(case.genetic.data)")
|
|
95
|
+
|
|
96
|
+ }
|
|
97
|
+
|
|
98
|
+ }
|
|
99
|
+
|
|
100
|
+ # make sure the appropriate genetic data is included
|
|
101
|
+ if (is.null(complement.genetic.data) & (is.null(father.genetic.data) | is.null(mother.genetic.data))) {
|
|
102
|
+
|
|
103
|
+ stop("Must include complement.genetic.data or both father.genetic.data and mother.genetic.data")
|
|
104
|
+
|
|
105
|
+ }
|
87
|
106
|
|
88
|
107
|
} else {
|
89
|
108
|
|
90
|
|
- if (sum(ld.block.vec) != ncol(case.genetic.data)){
|
|
109
|
+ if ((!is.null(father.genetic.data) | is.null(mother.genetic.data)) |
|
|
110
|
+ (is.null(father.genetic.data) | !is.null(mother.genetic.data))) {
|
91
|
111
|
|
92
|
|
- stop("sum(ld.block.vec) must be equal to ncol(case.genetic.data)")
|
|
112
|
+ stop("Must include both father.genetic.data and mother.genetic.data")
|
93
|
113
|
|
94
|
114
|
}
|
95
|
115
|
|
96
|
|
- }
|
|
116
|
+ if (!is.null(case.genetic.data) & is.null(complement.genetic.data)) {
|
|
117
|
+
|
|
118
|
+ stop("If case.genetic.data is specified, must also include sibling data in argument complement.genetic.data")
|
|
119
|
+
|
|
120
|
+ }
|
|
121
|
+ if (is.null(categorical.exposures)){
|
|
122
|
+
|
|
123
|
+ stop("categorical.exposures must be specific for parents.only = TRUE")
|
|
124
|
+
|
|
125
|
+ }
|
|
126
|
+
|
|
127
|
+ if (!is.null(father.genetic.data) & !is.null(case.genetic.data)){
|
|
128
|
+
|
|
129
|
+ study.type <- "mix"
|
|
130
|
+ n.total <- nrow(father.genetic.data) + nrow(case.genetic.data)
|
|
131
|
+ if (length(exposure) != n.total){
|
|
132
|
+
|
|
133
|
+ stop("length(exposure) must be equal to nrow(father.genetic.data) + nrow(case.genetic.data)")
|
|
134
|
+
|
|
135
|
+ }
|
|
136
|
+
|
|
137
|
+ } else if (!is.null(father.genetic.data) & is.null(case.genetic.data)){
|
|
138
|
+
|
|
139
|
+ study.type <- "triad"
|
|
140
|
+ n.total <- nrow(father.genetic.data)
|
|
141
|
+ if (length(exposure) != n.total){
|
|
142
|
+
|
|
143
|
+ stop("length(exposure) must be equal to nrow(father.genetic.data)")
|
|
144
|
+
|
|
145
|
+ }
|
|
146
|
+
|
|
147
|
+ } else if (is.null(father.genetic.data) & !is.null(case.genetic.data)) {
|
97
|
148
|
|
98
|
|
- # make sure the appropriate genetic data is included
|
99
|
|
- if (is.null(complement.genetic.data) & (is.null(father.genetic.data) | is.null(mother.genetic.data))) {
|
|
149
|
+ study.type <- "sibling"
|
|
150
|
+ n.total <- nrow(case.genetic.data)
|
|
151
|
+ if (length(exposure) != n.total){
|
100
|
152
|
|
101
|
|
- stop("Must include complement.genetic.data or both father.genetic.data and mother.genetic.data")
|
|
153
|
+ stop("length(exposure) must be equal to nrow(case.genetic.data)")
|
|
154
|
+
|
|
155
|
+ }
|
|
156
|
+
|
|
157
|
+ }
|
102
|
158
|
|
103
|
159
|
}
|
104
|
160
|
|
...
|
...
|
@@ -167,298 +223,534 @@ preprocess.genetic.data <- function(case.genetic.data, complement.genetic.data =
|
167
|
223
|
|
168
|
224
|
}
|
169
|
225
|
|
170
|
|
- # check formatting of input data and, if necessary, create memory mapped files
|
171
|
|
- if (!any(class(case.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
226
|
+ if (!parents.only){
|
172
|
227
|
|
173
|
|
- stop("case.genetic.data must be of class matrix or big.matrix")
|
|
228
|
+ # check formatting of input data and, if necessary, create memory mapped files
|
|
229
|
+ if (!any(class(case.genetic.data) %in% c("matrix", "big.matrix"))){
|
174
|
230
|
|
175
|
|
- }
|
|
231
|
+ stop("case.genetic.data must be of class matrix or big.matrix")
|
176
|
232
|
|
177
|
|
- if (any(class(case.genetic.data) == "matrix")){
|
|
233
|
+ }
|
178
|
234
|
|
179
|
|
- if (!all(round(case.genetic.data) == case.genetic.data, na.rm = TRUE)){
|
|
235
|
+ if (any(class(case.genetic.data) == "matrix")){
|
180
|
236
|
|
181
|
|
- stop("case.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
237
|
+ if (!all(round(case.genetic.data) == case.genetic.data, na.rm = TRUE)){
|
182
|
238
|
|
183
|
|
- }
|
|
239
|
+ stop("case.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
240
|
+
|
|
241
|
+ }
|
|
242
|
+
|
|
243
|
+ storage.mode(case.genetic.data) <- "integer"
|
|
244
|
+
|
|
245
|
+ # convert to big.matrix
|
|
246
|
+ dimnames(case.genetic.data) <- NULL
|
|
247
|
+ case.bm <- as.big.matrix(case.genetic.data, type = "integer")
|
|
248
|
+ rm(case.genetic.data)
|
|
249
|
+
|
|
250
|
+ } else if (class(case.genetic.data) == "big.matrix"){
|
184
|
251
|
|
185
|
|
- storage.mode(case.genetic.data) <- "integer"
|
|
252
|
+ if (! describe(case.genetic.data)@description$type %in% c("integer")){
|
186
|
253
|
|
187
|
|
- # convert to big.matrix
|
188
|
|
- dimnames(case.genetic.data) <- NULL
|
189
|
|
- case.bm <- as.big.matrix(case.genetic.data, type = "integer")
|
190
|
|
- rm(case.genetic.data)
|
|
254
|
+ stop("case.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
191
|
255
|
|
192
|
|
- } else if (class(case.genetic.data) == "big.matrix"){
|
|
256
|
+ }
|
|
257
|
+
|
|
258
|
+ if (describe(case.genetic.data)@description$sharedType != "FileBacked"){
|
|
259
|
+
|
|
260
|
+ stop("case.genetic.data must be a file backed big.matrix (case.genetic.data@description$sharedType == 'FileBacked')")
|
193
|
261
|
|
194
|
|
- if (! describe(case.genetic.data)@description$type %in% c("integer")){
|
|
262
|
+ }
|
195
|
263
|
|
196
|
|
- stop("case.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
264
|
+ case.bm <- case.genetic.data
|
197
|
265
|
|
198
|
266
|
}
|
199
|
267
|
|
200
|
|
- if (describe(case.genetic.data)@description$sharedType != "FileBacked"){
|
|
268
|
+ if (!is.null(complement.genetic.data) & !any(class(complement.genetic.data) %in% c("matrix", "big.matrix"))){
|
201
|
269
|
|
202
|
|
- stop("case.genetic.data must be a file backed big.matrix (case.genetic.data@description$sharedType == 'FileBacked')")
|
|
270
|
+ stop("complement.genetic.data must be of class matrix or big.matrix")
|
203
|
271
|
|
204
|
272
|
}
|
205
|
273
|
|
206
|
|
- case.bm <- case.genetic.data
|
|
274
|
+ if (!is.null(complement.genetic.data) & any(class(complement.genetic.data) == "matrix")){
|
207
|
275
|
|
208
|
|
- }
|
|
276
|
+ if (!all(round(complement.genetic.data) == complement.genetic.data, na.rm = TRUE)){
|
209
|
277
|
|
210
|
|
- if (!is.null(complement.genetic.data) & !any(class(complement.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
278
|
+ stop("complement.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
211
|
279
|
|
212
|
|
- stop("complement.genetic.data must be of class matrix or big.matrix")
|
|
280
|
+ }
|
213
|
281
|
|
214
|
|
- }
|
|
282
|
+ storage.mode(complement.genetic.data) <- "integer"
|
215
|
283
|
|
216
|
|
- if (!is.null(complement.genetic.data) & any(class(complement.genetic.data) == "matrix")){
|
|
284
|
+ # convert to big.matrix
|
|
285
|
+ dimnames(complement.genetic.data) <- NULL
|
|
286
|
+ comp.bm <- as.big.matrix(complement.genetic.data, type = "integer")
|
|
287
|
+ rm(complement.genetic.data)
|
217
|
288
|
|
218
|
|
- if (!all(round(complement.genetic.data) == complement.genetic.data, na.rm = TRUE)){
|
|
289
|
+ } else if (!is.null(complement.genetic.data) & class(complement.genetic.data) == "big.matrix"){
|
219
|
290
|
|
220
|
|
- stop("complement.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
291
|
+ if (! describe(complement.genetic.data)@description$type %in% c("integer")){
|
221
|
292
|
|
222
|
|
- }
|
|
293
|
+ stop("complement.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
223
|
294
|
|
224
|
|
- storage.mode(complement.genetic.data) <- "integer"
|
|
295
|
+ }
|
225
|
296
|
|
226
|
|
- # convert to big.matrix
|
227
|
|
- dimnames(complement.genetic.data) <- NULL
|
228
|
|
- comp.bm <- as.big.matrix(complement.genetic.data, type = "integer")
|
229
|
|
- rm(complement.genetic.data)
|
|
297
|
+ if (describe(complement.genetic.data)@description$sharedType != "FileBacked"){
|
230
|
298
|
|
231
|
|
- } else if (!is.null(complement.genetic.data) & class(complement.genetic.data) == "big.matrix"){
|
|
299
|
+ stop("complement.genetic.data must be a file backed big.matrix (complement.genetic.data@description$sharedType == 'FileBacked')")
|
232
|
300
|
|
233
|
|
- if (! describe(complement.genetic.data)@description$type %in% c("integer")){
|
|
301
|
+ }
|
234
|
302
|
|
235
|
|
- stop("complement.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
303
|
+ comp.bm <- complement.genetic.data
|
236
|
304
|
|
237
|
305
|
}
|
238
|
306
|
|
239
|
|
- if (describe(complement.genetic.data)@description$sharedType != "FileBacked"){
|
|
307
|
+ if (!is.null(mother.genetic.data) & !any(class(mother.genetic.data) %in% c("matrix", "big.matrix"))){
|
240
|
308
|
|
241
|
|
- stop("complement.genetic.data must be a file backed big.matrix (complement.genetic.data@description$sharedType == 'FileBacked')")
|
|
309
|
+ stop("mother.genetic.data must be of class matrix or big.matrix")
|
242
|
310
|
|
243
|
311
|
}
|
244
|
312
|
|
245
|
|
- comp.bm <- complement.genetic.data
|
|
313
|
+ if (!is.null(mother.genetic.data) & any(class(mother.genetic.data) == "matrix")){
|
246
|
314
|
|
247
|
|
- }
|
|
315
|
+ if (!all(round(mother.genetic.data) == mother.genetic.data, na.rm = TRUE)){
|
248
|
316
|
|
249
|
|
- if (!is.null(mother.genetic.data) & !any(class(mother.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
317
|
+ stop("mother.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
250
|
318
|
|
251
|
|
- stop("mother.genetic.data must be of class matrix or big.matrix")
|
|
319
|
+ }
|
252
|
320
|
|
253
|
|
- }
|
|
321
|
+ storage.mode(mother.genetic.data) <- "integer"
|
254
|
322
|
|
255
|
|
- if (!is.null(mother.genetic.data) & any(class(mother.genetic.data) == "matrix")){
|
|
323
|
+ # convert to big.matrix
|
|
324
|
+ dimnames(mother.genetic.data) <- NULL
|
|
325
|
+ mother.bm <- as.big.matrix(mother.genetic.data, type = "integer")
|
|
326
|
+ rm(mother.genetic.data)
|
256
|
327
|
|
257
|
|
- if (!all(round(mother.genetic.data) == mother.genetic.data, na.rm = TRUE)){
|
|
328
|
+ } else if (!is.null(mother.genetic.data) & class(mother.genetic.data) == "big.matrix"){
|
258
|
329
|
|
259
|
|
- stop("mother.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
330
|
+ if (! describe(mother.genetic.data)@description$type %in% c("integer")){
|
|
331
|
+
|
|
332
|
+ stop("mother.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
333
|
+
|
|
334
|
+ }
|
|
335
|
+
|
|
336
|
+ if (describe(mother.genetic.data)@description$sharedType != "FileBacked"){
|
|
337
|
+
|
|
338
|
+ stop("mother.genetic.data must be a file backed big.matrix (mother.genetic.data@description$sharedType == 'FileBacked')")
|
|
339
|
+
|
|
340
|
+ }
|
|
341
|
+
|
|
342
|
+ mother.bm <- mother.genetic.data
|
|
343
|
+
|
|
344
|
+ }
|
|
345
|
+
|
|
346
|
+ if (!is.null(father.genetic.data) & !any(class(father.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
347
|
+
|
|
348
|
+ stop("father.genetic.data must be of class matrix or big.matrix")
|
260
|
349
|
|
261
|
350
|
}
|
262
|
351
|
|
263
|
|
- storage.mode(mother.genetic.data) <- "integer"
|
|
352
|
+ if (!is.null(father.genetic.data) & any(class(father.genetic.data) == "matrix")){
|
264
|
353
|
|
265
|
|
- # convert to big.matrix
|
266
|
|
- dimnames(mother.genetic.data) <- NULL
|
267
|
|
- mother.bm <- as.big.matrix(mother.genetic.data, type = "integer")
|
268
|
|
- rm(mother.genetic.data)
|
|
354
|
+ if (!all(round(father.genetic.data) == father.genetic.data, na.rm = TRUE)){
|
269
|
355
|
|
270
|
|
- } else if (!is.null(mother.genetic.data) & class(mother.genetic.data) == "big.matrix"){
|
|
356
|
+ stop("father.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
271
|
357
|
|
272
|
|
- if (! describe(mother.genetic.data)@description$type %in% c("integer")){
|
|
358
|
+ }
|
|
359
|
+ storage.mode(father.genetic.data) <- "integer"
|
|
360
|
+
|
|
361
|
+ # convert to big.matrix
|
|
362
|
+ dimnames(father.genetic.data) <- NULL
|
|
363
|
+ father.bm <- as.big.matrix(father.genetic.data, type = "integer")
|
|
364
|
+ rm(father.genetic.data)
|
|
365
|
+
|
|
366
|
+ } else if (!is.null(father.genetic.data) & class(father.genetic.data) == "big.matrix"){
|
273
|
367
|
|
274
|
|
- stop("mother.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
368
|
+ if (! describe(father.genetic.data)@description$type %in% c("integer")){
|
|
369
|
+
|
|
370
|
+ stop("father.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
371
|
+
|
|
372
|
+ }
|
|
373
|
+
|
|
374
|
+ if (describe(father.genetic.data)@description$sharedType != "FileBacked"){
|
|
375
|
+
|
|
376
|
+ stop("father.genetic.data must be a file backed big.matrix (father.genetic.data@description$sharedType == 'FileBacked')")
|
|
377
|
+
|
|
378
|
+ }
|
|
379
|
+
|
|
380
|
+ father.bm <- father.genetic.data
|
275
|
381
|
|
276
|
382
|
}
|
277
|
383
|
|
278
|
|
- if (describe(mother.genetic.data)@description$sharedType != "FileBacked"){
|
|
384
|
+ # make a list of big matrix objects
|
|
385
|
+ if (exists("comp.bm")){
|
|
386
|
+
|
|
387
|
+ bm.list <- list(case = case.bm, complement = comp.bm)
|
279
|
388
|
|
280
|
|
- stop("mother.genetic.data must be a file backed big.matrix (mother.genetic.data@description$sharedType == 'FileBacked')")
|
|
389
|
+ } else {
|
|
390
|
+
|
|
391
|
+ bm.list <- list(case = case.bm, mother = mother.bm, father = father.bm)
|
281
|
392
|
|
282
|
393
|
}
|
283
|
394
|
|
284
|
|
- mother.bm <- mother.genetic.data
|
|
395
|
+ # if needed compute sampling probs
|
|
396
|
+ if (is.null(snp.sampling.probs)){
|
285
|
397
|
|
286
|
|
- }
|
|
398
|
+ ### use conditional logistic regression to estimate univariate association ###
|
|
399
|
+ n.fam <- nrow(case.bm)
|
|
400
|
+ n.candidate.snps <- ncol(case.bm)
|
|
401
|
+ case.status <- c(rep(1, n.fam), rep(0, n.fam))
|
|
402
|
+ ids <- rep(seq_len(n.fam), 2)
|
287
|
403
|
|
288
|
|
- if (!is.null(father.genetic.data) & !any(class(father.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
404
|
+ if (is.null(categorical.exposures)){
|
289
|
405
|
|
290
|
|
- stop("father.genetic.data must be of class matrix or big.matrix")
|
|
406
|
+ res.list <- bplapply(seq_len(n.candidate.snps), function(snp, bm.list) {
|
291
|
407
|
|
292
|
|
- }
|
|
408
|
+ case.snp <- bm.list$case[ , snp]
|
|
409
|
+ if (length(bm.list) == 3){
|
|
410
|
+
|
|
411
|
+ mom.snp <- bm.list$mother[ , snp]
|
|
412
|
+ dad.snp <- bm.list$father[ , snp]
|
|
413
|
+ comp.snp <- mom.snp + dad.snp - case.snp
|
|
414
|
+
|
|
415
|
+ } else {
|
|
416
|
+
|
|
417
|
+ comp.snp <- bm.list$complement[ , snp]
|
|
418
|
+
|
|
419
|
+ }
|
|
420
|
+
|
|
421
|
+ # get p-value of association from conditional logistic regression
|
|
422
|
+ case.comp.geno <- c(case.snp, comp.snp)
|
|
423
|
+ clogit.res <- clogit(case.status ~ case.comp.geno + strata(ids), method = "approximate")
|
|
424
|
+ clogit.chisq <- summary(clogit.res)$logtest[1]
|
|
425
|
+
|
|
426
|
+ return(list(case.snp = case.snp, comp.snp = comp.snp, chisq = clogit.chisq))
|
|
427
|
+
|
|
428
|
+ }, bm.list = bm.list, BPPARAM = bp.param)
|
|
429
|
+ chisq.stats <- do.call("c", lapply(res.list, function(x) x$chisq))
|
|
430
|
+
|
|
431
|
+ } else {
|
|
432
|
+
|
|
433
|
+ exposure.var <- factor(rep(exposure, 2))
|
|
434
|
+ res.list <- bplapply(seq_len(n.candidate.snps), function(snp, bm.list, exposure.var) {
|
|
435
|
+
|
|
436
|
+ case.snp <- bm.list$case[ , snp]
|
|
437
|
+ if (length(bm.list) == 3){
|
|
438
|
+
|
|
439
|
+ mom.snp <- bm.list$mother[ , snp]
|
|
440
|
+ dad.snp <- bm.list$father[ , snp]
|
|
441
|
+ comp.snp <- mom.snp + dad.snp - case.snp
|
|
442
|
+
|
|
443
|
+ } else {
|
|
444
|
+
|
|
445
|
+ comp.snp <- bm.list$complement[ , snp]
|
|
446
|
+
|
|
447
|
+ }
|
293
|
448
|
|
294
|
|
- if (!is.null(father.genetic.data) & any(class(father.genetic.data) == "matrix")){
|
|
449
|
+ # get p-value of snp-exposure association from conditional logistic regression
|
|
450
|
+ case.comp.geno <- c(case.snp, comp.snp)
|
|
451
|
+ df <- data.table(case.status = case.status, case.comp.geno = case.comp.geno, exposure = exposure.var, ids = ids)
|
|
452
|
+ full.model <- clogit(case.status ~ case.comp.geno + case.comp.geno:exposure + strata(ids), method = "approximate", data = df)
|
|
453
|
+ full.model.ll <- full.model$loglik[2]
|
|
454
|
+ reduced.model <- clogit(case.status ~ case.comp.geno + strata(ids), method = "approximate", data = df)
|
|
455
|
+ reduced.model.ll <- reduced.model$loglik[2]
|
|
456
|
+ clogit.chisq <- 2*(full.model.ll - reduced.model.ll)
|
295
|
457
|
|
296
|
|
- if (!all(round(father.genetic.data) == father.genetic.data, na.rm = TRUE)){
|
|
458
|
+ return(list(case.snp = case.snp, comp.snp = comp.snp, chisq = clogit.chisq))
|
297
|
459
|
|
298
|
|
- stop("father.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
460
|
+ }, bm.list = bm.list, exposure.var = exposure.var, BPPARAM = bp.param)
|
|
461
|
+ chisq.stats <- do.call("c", lapply(res.list, function(x) x$chisq))
|
|
462
|
+
|
|
463
|
+ }
|
299
|
464
|
|
300
|
465
|
}
|
301
|
|
- storage.mode(father.genetic.data) <- "integer"
|
302
|
466
|
|
303
|
|
- # convert to big.matrix
|
304
|
|
- dimnames(father.genetic.data) <- NULL
|
305
|
|
- father.bm <- as.big.matrix(father.genetic.data, type = "integer")
|
306
|
|
- rm(father.genetic.data)
|
|
467
|
+ # take cumulative sum of ld.block.vec for output
|
|
468
|
+ out.ld.vec <- cumsum(ld.block.vec)
|
|
469
|
+ storage.mode(out.ld.vec) <- "integer"
|
|
470
|
+
|
|
471
|
+ #### clean up chisq stats for models that did not converge ###
|
|
472
|
+ chisq.stats[chisq.stats <= 0] <- 10^-10
|
|
473
|
+ chisq.stats[is.infinite(chisq.stats)] <- max(chisq.stats[is.finite(chisq.stats)])
|
|
474
|
+
|
|
475
|
+ ### if running GxE create required inputs ###
|
|
476
|
+ if (!is.null(exposure)){
|
307
|
477
|
|
308
|
|
- } else if (!is.null(father.genetic.data) & class(father.genetic.data) == "big.matrix"){
|
|
478
|
+ if (is.null(exposure.risk.levels)){
|
309
|
479
|
|
310
|
|
- if (! describe(father.genetic.data)@description$type %in% c("integer")){
|
|
480
|
+ exposure.risk.levels <- rep(1, length(unique(exposure)))
|
311
|
481
|
|
312
|
|
- stop("father.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
482
|
+ } else {
|
|
483
|
+
|
|
484
|
+ exposure.risk.levels <- unlist(exposure.risk.levels[as.character(unique(exposure))])
|
|
485
|
+
|
|
486
|
+ }
|
|
487
|
+
|
|
488
|
+ exposure.levels <- unique(exposure)
|
|
489
|
+ storage.mode(exposure.levels) <- "integer"
|
|
490
|
+ storage.mode(exposure.risk.levels) <- "integer"
|
|
491
|
+
|
|
492
|
+ } else {
|
|
493
|
+
|
|
494
|
+ exposure.levels <- NULL
|
|
495
|
+ exposure.risk.levels <- NULL
|
313
|
496
|
|
314
|
497
|
}
|
315
|
498
|
|
316
|
|
- if (describe(father.genetic.data)@description$sharedType != "FileBacked"){
|
|
499
|
+ if (!"complement" %in% names(bm.list)){
|
|
500
|
+
|
|
501
|
+ comp.data <- mother.bm[] + father.bm[] - case.bm[]
|
317
|
502
|
|
318
|
|
- stop("father.genetic.data must be a file backed big.matrix (father.genetic.data@description$sharedType == 'FileBacked')")
|
|
503
|
+ } else {
|
|
504
|
+
|
|
505
|
+ comp.data <- comp.bm[]
|
319
|
506
|
|
320
|
507
|
}
|
321
|
508
|
|
322
|
|
- father.bm <- father.genetic.data
|
|
509
|
+ case.data <- case.bm[]
|
323
|
510
|
|
324
|
|
- }
|
|
511
|
+ # set missing to -9
|
|
512
|
+ if (any(is.na(case.data)) | any(is.na(comp.data))){
|
|
513
|
+
|
|
514
|
+ case.data[is.na(case.data) | is.na(comp.data)] <- -9
|
|
515
|
+ comp.data[is.na(case.data) | is.na(comp.data)] <- -9
|
325
|
516
|
|
326
|
|
- # make a list of big matrix objects
|
327
|
|
- if (exists("comp.bm")){
|
|
517
|
+ }
|
328
|
518
|
|
329
|
|
- bm.list <- list(case = case.bm, complement = comp.bm)
|
|
519
|
+ return(list(case.genetic.data = case.data, complement.genetic.data = comp.data, chisq.stats = chisq.stats, ld.block.vec = out.ld.vec,
|
|
520
|
+ exposure = exposure, exposure.levels = exposure.levels, exposure.risk.levels = exposure.risk.levels))
|
330
|
521
|
|
331
|
522
|
} else {
|
332
|
523
|
|
333
|
|
- bm.list <- list(case = case.bm, mother = mother.bm, father = father.bm)
|
|
524
|
+ # check formatting of input data and, if necessary, create memory mapped files
|
|
525
|
+ if (study.type %in% c("triad", "mix")){
|
334
|
526
|
|
335
|
|
- }
|
|
527
|
+ #first check father
|
|
528
|
+ if (!any(class(father.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
529
|
+
|
|
530
|
+ stop("father.genetic.data must be of class matrix or big.matrix")
|
336
|
531
|
|
337
|
|
- # if needed compute sampling probs
|
338
|
|
- if (is.null(snp.sampling.probs)){
|
|
532
|
+ }
|
339
|
533
|
|
340
|
|
- ### use conditional logistic regression to estimate univariate association ###
|
341
|
|
- n.fam <- nrow(case.bm)
|
342
|
|
- n.candidate.snps <- ncol(case.bm)
|
343
|
|
- case.status <- c(rep(1, n.fam), rep(0, n.fam))
|
344
|
|
- ids <- rep(seq_len(n.fam), 2)
|
|
534
|
+ if (any(class(father.genetic.data) == "matrix")){
|
345
|
535
|
|
346
|
|
- if (is.null(categorical.exposures)){
|
|
536
|
+ if (!all(round(father.genetic.data) == father.genetic.data, na.rm = TRUE)){
|
|
537
|
+
|
|
538
|
+ stop("father.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
539
|
+
|
|
540
|
+ }
|
|
541
|
+
|
|
542
|
+ storage.mode(father.genetic.data) <- "integer"
|
347
|
543
|
|
348
|
|
- res.list <- bplapply(seq_len(n.candidate.snps), function(snp, bm.list) {
|
|
544
|
+ # convert to big.matrix
|
|
545
|
+ dimnames(father.genetic.data) <- NULL
|
349
|
546
|
|
350
|
|
- case.snp <- bm.list$case[ , snp]
|
351
|
|
- if (length(bm.list) == 3){
|
|
547
|
+ } else if (class(father.genetic.data) == "big.matrix"){
|
352
|
548
|
|
353
|
|
- mom.snp <- bm.list$mother[ , snp]
|
354
|
|
- dad.snp <- bm.list$father[ , snp]
|
355
|
|
- comp.snp <- mom.snp + dad.snp - case.snp
|
|
549
|
+ if (! describe(father.genetic.data)@description$type %in% c("integer")){
|
356
|
550
|
|
357
|
|
- } else {
|
|
551
|
+ stop("father.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
358
|
552
|
|
359
|
|
- comp.snp <- bm.list$complement[ , snp]
|
|
553
|
+ }
|
|
554
|
+
|
|
555
|
+ if (describe(father.genetic.data)@description$sharedType != "FileBacked"){
|
|
556
|
+
|
|
557
|
+ stop("father.genetic.data must be a file backed big.matrix (father.genetic.data@description$sharedType == 'FileBacked')")
|
360
|
558
|
|
361
|
559
|
}
|
362
|
560
|
|
363
|
|
- # get p-value of association from conditional logistic regression
|
364
|
|
- case.comp.geno <- c(case.snp, comp.snp)
|
365
|
|
- clogit.res <- clogit(case.status ~ case.comp.geno + strata(ids), method = "approximate")
|
366
|
|
- clogit.chisq <- summary(clogit.res)$logtest[1]
|
|
561
|
+ # convert to regular matrix
|
|
562
|
+ father.genetic.data <- father.genetic.data[]
|
367
|
563
|
|
368
|
|
- return(list(case.snp = case.snp, comp.snp = comp.snp, chisq = clogit.chisq))
|
|
564
|
+ }
|
369
|
565
|
|
370
|
|
- }, bm.list = bm.list, BPPARAM = bp.param)
|
371
|
|
- chisq.stats <- do.call("c", lapply(res.list, function(x) x$chisq))
|
|
566
|
+ # then mother
|
|
567
|
+ if (!any(class(mother.genetic.data) %in% c("matrix", "big.matrix"))){
|
372
|
568
|
|
373
|
|
- } else {
|
|
569
|
+ stop("mother.genetic.data must be of class matrix or big.matrix")
|
374
|
570
|
|
375
|
|
- exposure.var <- factor(rep(exposure, 2))
|
376
|
|
- res.list <- bplapply(seq_len(n.candidate.snps), function(snp, bm.list, exposure.var) {
|
|
571
|
+ }
|
377
|
572
|
|
378
|
|
- case.snp <- bm.list$case[ , snp]
|
379
|
|
- if (length(bm.list) == 3){
|
|
573
|
+ if (any(class(mother.genetic.data) == "matrix")){
|
380
|
574
|
|
381
|
|
- mom.snp <- bm.list$mother[ , snp]
|
382
|
|
- dad.snp <- bm.list$father[ , snp]
|
383
|
|
- comp.snp <- mom.snp + dad.snp - case.snp
|
|
575
|
+ if (!all(round(mother.genetic.data) == mother.genetic.data, na.rm = TRUE)){
|
384
|
576
|
|
385
|
|
- } else {
|
|
577
|
+ stop("mother.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
386
|
578
|
|
387
|
|
- comp.snp <- bm.list$complement[ , snp]
|
|
579
|
+ }
|
|
580
|
+
|
|
581
|
+ storage.mode(mother.genetic.data) <- "integer"
|
|
582
|
+
|
|
583
|
+ # convert to big.matrix
|
|
584
|
+ dimnames(mother.genetic.data) <- NULL
|
|
585
|
+
|
|
586
|
+ } else if (class(mother.genetic.data) == "big.matrix"){
|
|
587
|
+
|
|
588
|
+ if (! describe(mother.genetic.data)@description$type %in% c("integer")){
|
|
589
|
+
|
|
590
|
+ stop("mother.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
388
|
591
|
|
389
|
592
|
}
|
390
|
593
|
|
391
|
|
- # get p-value of snp-exposure association from conditional logistic regression
|
392
|
|
- case.comp.geno <- c(case.snp, comp.snp)
|
393
|
|
- df <- data.table(case.status = case.status, case.comp.geno = case.comp.geno, exposure = exposure.var, ids = ids)
|
394
|
|
- full.model <- clogit(case.status ~ case.comp.geno + case.comp.geno:exposure + strata(ids), method = "approximate", data = df)
|
395
|
|
- full.model.ll <- full.model$loglik[2]
|
396
|
|
- reduced.model <- clogit(case.status ~ case.comp.geno + strata(ids), method = "approximate", data = df)
|
397
|
|
- reduced.model.ll <- reduced.model$loglik[2]
|
398
|
|
- clogit.chisq <- 2*(full.model.ll - reduced.model.ll)
|
|
594
|
+ if (describe(mother.genetic.data)@description$sharedType != "FileBacked"){
|
399
|
595
|
|
400
|
|
- return(list(case.snp = case.snp, comp.snp = comp.snp, chisq = clogit.chisq))
|
|
596
|
+ stop("mother.genetic.data must be a file backed big.matrix (mother.genetic.data@description$sharedType == 'FileBacked')")
|
401
|
597
|
|
402
|
|
- }, bm.list = bm.list, exposure.var = exposure.var, BPPARAM = bp.param)
|
403
|
|
- chisq.stats <- do.call("c", lapply(res.list, function(x) x$chisq))
|
|
598
|
+ }
|
|
599
|
+
|
|
600
|
+ # convert to regular matrix
|
|
601
|
+ mother.genetic.data <- mother.genetic.data[]
|
|
602
|
+ }
|
|
603
|
+
|
|
604
|
+ # make informativeness matrix
|
|
605
|
+ mom.dad.info.mat <- (mother.genetic.data == 1) + (father.genetic.data == 1)
|
|
606
|
+ rm(mother.genetic.data)
|
|
607
|
+ rm(father.genetic.data)
|
404
|
608
|
|
405
|
609
|
}
|
406
|
610
|
|
407
|
|
- }
|
|
611
|
+ # check formatting of input data and, if necessary, create memory mapped files
|
|
612
|
+ if (study.type %in% c("sibling", "mix")){
|
|
613
|
+
|
|
614
|
+ #first check case
|
|
615
|
+ if (!any(class(case.genetic.data) %in% c("matrix", "big.matrix"))){
|
408
|
616
|
|
409
|
|
- # take cumulative sum of ld.block.vec for output
|
410
|
|
- out.ld.vec <- cumsum(ld.block.vec)
|
411
|
|
- storage.mode(out.ld.vec) <- "integer"
|
|
617
|
+ stop("case.genetic.data must be of class matrix or big.matrix")
|
412
|
618
|
|
413
|
|
- #### clean up chisq stats for models that did not converge ###
|
414
|
|
- chisq.stats[chisq.stats <= 0] <- 10^-10
|
415
|
|
- chisq.stats[is.infinite(chisq.stats)] <- max(chisq.stats[is.finite(chisq.stats)])
|
|
619
|
+ }
|
416
|
620
|
|
417
|
|
- ### if running GxE create required inputs ###
|
418
|
|
- if (!is.null(exposure)){
|
|
621
|
+ if (any(class(case.genetic.data) == "matrix")){
|
419
|
622
|
|
420
|
|
- if (is.null(exposure.risk.levels)){
|
|
623
|
+ if (!all(round(case.genetic.data) == case.genetic.data, na.rm = TRUE)){
|
421
|
624
|
|
422
|
|
- exposure.risk.levels <- rep(1, length(unique(exposure)))
|
|
625
|
+ stop("case.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
423
|
626
|
|
424
|
|
- } else {
|
|
627
|
+ }
|
|
628
|
+
|
|
629
|
+ storage.mode(father.genetic.data) <- "integer"
|
|
630
|
+ dimnames(father.genetic.data) <- NULL
|
|
631
|
+
|
|
632
|
+ } else if (class(case.genetic.data) == "big.matrix"){
|
|
633
|
+
|
|
634
|
+ if (! describe(father.genetic.data)@description$type %in% c("integer")){
|
425
|
635
|
|
426
|
|
- exposure.risk.levels <- unlist(exposure.risk.levels[as.character(unique(exposure))])
|
|
636
|
+ stop("case.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
637
|
+
|
|
638
|
+ }
|
|
639
|
+
|
|
640
|
+ if (describe(case.genetic.data)@description$sharedType != "FileBacked"){
|
|
641
|
+
|
|
642
|
+ stop("case.genetic.data must be a file backed big.matrix (case.genetic.data@description$sharedType == 'FileBacked')")
|
|
643
|
+
|
|
644
|
+ }
|
|
645
|
+
|
|
646
|
+ # convert to regular matrix
|
|
647
|
+ case.genetic.data <- case.genetic.data[]
|
|
648
|
+
|
|
649
|
+ }
|
|
650
|
+
|
|
651
|
+ # then complement
|
|
652
|
+ if (!any(class(complement.genetic.data) %in% c("matrix", "big.matrix"))){
|
|
653
|
+
|
|
654
|
+ stop("complement.genetic.data must be of class matrix or big.matrix")
|
|
655
|
+
|
|
656
|
+ }
|
|
657
|
+
|
|
658
|
+ if (any(class(complement.genetic.data) == "matrix")){
|
|
659
|
+
|
|
660
|
+ if (!all(round(complement.genetic.data) = complement.genetic.data, na.rm = TRUE)){
|
|
661
|
+
|
|
662
|
+ stop("complement.genetic.data genotypes must be integers, not dosages imputed with uncertainty")
|
|
663
|
+
|
|
664
|
+ }
|
|
665
|
+
|
|
666
|
+ storage.mode(complement.genetic.data) <- "integer"
|
|
667
|
+
|
|
668
|
+ # convert to big.matrix
|
|
669
|
+ dimnames(complement.genetic.data) <- NULL
|
|
670
|
+
|
|
671
|
+ } else if (class(complement.genetic.data) == "big.matrix"){
|
|
672
|
+
|
|
673
|
+ if (! describe(complement.genetic.data)@description$type %in% c("integer")){
|
|
674
|
+
|
|
675
|
+ stop("complement.genetic.data must be a big.matrix of type integer. To convert, see function deepcopy from package bigmemory.")
|
|
676
|
+
|
|
677
|
+ }
|
|
678
|
+
|
|
679
|
+ if (describe(complement.genetic.data)@description$sharedType != "FileBacked"){
|
|
680
|
+
|
|
681
|
+ stop("complement.genetic.data must be a file backed big.matrix (complement.genetic.data@description$sharedType == 'FileBacked')")
|
|
682
|
+
|
|
683
|
+ }
|
|
684
|
+
|
|
685
|
+ # convert to regular matrix
|
|
686
|
+ complement.genetic.data <- complement.genetic.data[]
|
|
687
|
+
|
|
688
|
+ }
|
|
689
|
+
|
|
690
|
+ case.minus.comp <- abs(case.genetic.data - complement.genetic.data
|
|
691
|
+ case.comp.info.mat <- 2*(case.minus.comp == 2) + (case.minus.comp == 1)
|
|
692
|
+ rm(case.minus.comp)
|
|
693
|
+ rm(case.genetic.data)
|
|
694
|
+ rm(complement.genetic.data)
|
427
|
695
|
|
428
|
696
|
}
|
429
|
697
|
|
430
|
|
- exposure.levels <- unique(exposure)
|
431
|
|
- storage.mode(exposure.levels) <- "integer"
|
432
|
|
- storage.mode(exposure.risk.levels) <- "integer"
|
|
698
|
+ if (study.type == "mix"){
|
433
|
699
|
|
434
|
|
- } else {
|
|
700
|
+ info.mat <- rbind(mom.dad.info.mat, case.comp.info.mat)
|
|
701
|
+ rm(mom.dad.info.mat)
|
|
702
|
+ rm(case.comp.info.mat)
|
435
|
703
|
|
436
|
|
- exposure.levels <- NULL
|
437
|
|
- exposure.risk.levels <- NULL
|
|
704
|
+ } else if (study.type == "triad"){
|
438
|
705
|
|
439
|
|
- }
|
|
706
|
+ info.mat <- mom.dad.info.mat
|
|
707
|
+ rm(mom.dad.info.mat)
|
440
|
708
|
|
441
|
|
- if (!"complement" %in% names(bm.list)){
|
|
709
|
+ } else if (study.type == "sibling"){
|
442
|
710
|
|
443
|
|
- comp.data <- mother.bm[] + father.bm[] - case.bm[]
|
|
711
|
+ info.mat <- case.comp.info.mat
|
|
712
|
+ rm(case.comp.info.mat)
|
444
|
713
|
|
445
|
|
- } else {
|
|
714
|
+ }
|
446
|
715
|
|
447
|
|
- comp.data <- comp.bm[]
|
|
716
|
+ #convert to big matrix
|
|
717
|
+ info.bm <- as.big.matrix(info.mat, type = "integer")
|
|
718
|
+ rm(info.mat)
|
448
|
719
|
|
449
|
|
- }
|
|
720
|
+ # look at informatiness/exposure association
|
|
721
|
+ if (is.null(snp.sampling.probs)){
|
450
|
722
|
|
451
|
|
- case.data <- case.bm[]
|
|
723
|
+ n.candidate.snps <- ncol(info.bm)
|
452
|
724
|
|
453
|
|
- # set missing to -9
|
454
|
|
- if (any(is.na(case.data)) | any(is.na(comp.data))){
|
|
725
|
+ exposure.var <- factor(exposure)
|
|
726
|
+ fstats <- unlist(bplapply(seq_len(n.candidate.snps), function(snp, info.bm, exposure.var) {
|
455
|
727
|
|
456
|
|
- case.data[is.na(case.data) | is.na(comp.data)] <- -9
|
457
|
|
- comp.data[is.na(case.data) | is.na(comp.data)] <- -9
|
|
728
|
+ informativeness <- info.bm[ , snp]
|
458
|
729
|
|
459
|
|
- }
|
|
730
|
+ # get p-value of snp-exposure association from conditional logistic regression
|
|
731
|
+ res <- lm(snp ~ exposure.var)
|
|
732
|
+ fstat <- summary(res)$fstatistic[1]
|
|
733
|
+ return(fstat)
|
|
734
|
+
|
|
735
|
+ }, info.bm = info.bm, exposure.var = exposure.var, BPPARAM = bp.param)
|
|
736
|
+
|
|
737
|
+ }
|
460
|
738
|
|
461
|
|
- return(list(case.genetic.data = case.data, complement.genetic.data = comp.data, chisq.stats = chisq.stats, ld.block.vec = out.ld.vec,
|
462
|
|
- exposure = exposure, exposure.levels = exposure.levels, exposure.risk.levels = exposure.risk.levels))
|
|
739
|
+ #### clean up fstats for models that did not converge ###
|
|
740
|
+ fstats[fstats <= 0] <- 10^-10
|
|
741
|
+ fstats[is.infinite(fstats)] <- max(fstats[is.finite(fstats)])
|
|
742
|
+ info.mat <- info.bm[]
|
|
743
|
+
|
|
744
|
+ # set missing to zero (not informative)
|
|
745
|
+ if (any(is.na(info.mat))){
|
|
746
|
+
|
|
747
|
+ info.mat[is.na(info.mat)] <- 0
|
|
748
|
+ }
|
|
749
|
+
|
|
750
|
+ return(list(case.genetic.data = NULL, complement.genetic.data = NULL, chisq.stats = fstats, ld.block.vec = NULL,
|
|
751
|
+ exposure = exposure, exposure.levels = exposure.levels, exposure.risk.levels = exposure.risk.levels,
|
|
752
|
+ info.mat = info.mat))
|
|
753
|
+
|
|
754
|
+ }
|
463
|
755
|
|
464
|
756
|
}
|