1 | 1 |
new file mode 100755 |
... | ... |
@@ -0,0 +1,56 @@ |
1 |
+library(evaluomeR) |
|
2 |
+ |
|
3 |
+ |
|
4 |
+evaluomeRSupportedCBI() |
|
5 |
+ |
|
6 |
+dataFrame <- stability(data=ontMetrics, cbi="kmeans", k=3, all_metrics=FALSE, bs=100, L1=10) |
|
7 |
+assay(dataFrame) |
|
8 |
+ |
|
9 |
+dataFrame <- stabilityRange(data=ontMetrics, cbi="rskc", k.range=c(3,4), all_metrics=TRUE, bs=100, L1=10) |
|
10 |
+assay(dataFrame) |
|
11 |
+ |
|
12 |
+dataFrame <- stabilitySet(data=ontMetrics, k.set=c(3,4), bs=100, cbi="rskc", all_metrics=TRUE, L1=10) |
|
13 |
+assay(dataFrame) |
|
14 |
+ |
|
15 |
+dataFrame <- quality(data=ontMetrics, cbi="rskc", k=3, all_metrics=TRUE, L1=10) |
|
16 |
+assay(dataFrame) |
|
17 |
+ |
|
18 |
+dataFrame <- qualityRange(data=ontMetrics, cbi="rskc", k.range=c(3,4), all_metrics=TRUE, L1=10) |
|
19 |
+assay(dataFrame$k_3) |
|
20 |
+ |
|
21 |
+dataFrame <- qualitySet(data=ontMetrics, cbi="rskc", k.set=c(3,5), all_metrics=TRUE, L1=10) |
|
22 |
+assay(dataFrame$k_3) |
|
23 |
+ |
|
24 |
+ |
|
25 |
+# RSKC will not work with a dataframe of 1 column |
|
26 |
+ |
|
27 |
+sim <- |
|
28 |
+ function(mu,f){ |
|
29 |
+ D<-matrix(rnorm(60*f),60,f) |
|
30 |
+ D[1:20,1:50]<-D[1:20,1:50]+mu |
|
31 |
+ D[21:40,1:50]<-D[21:40,1:50]-mu |
|
32 |
+ return(D) |
|
33 |
+ } |
|
34 |
+sim |
|
35 |
+d0<-sim(1,500)# generate a dataset |
|
36 |
+true<-rep(1:3,each=20) # vector of true cluster labels |
|
37 |
+d<-d0 |
|
38 |
+ncl<-3 |
|
39 |
+for ( i in 1 : 10){ |
|
40 |
+ d[sample(1:60,1),sample(1:500,1)]<-rnorm(1,mean=0,sd=15) |
|
41 |
+} |
|
42 |
+ |
|
43 |
+# The generated dataset looks like this... |
|
44 |
+pairs( |
|
45 |
+ d[,c(1,2,3,200)],col=true, |
|
46 |
+ labels=c("clustering feature 1", |
|
47 |
+ "clustering feature 2","clustering feature 3", |
|
48 |
+ "noise feature1"), |
|
49 |
+ main="The sampling distribution of 60 cases colored by true cluster labels", |
|
50 |
+ lower.panel=NULL) |
|
51 |
+ |
|
52 |
+d |
|
53 |
+ |
|
54 |
+# RSKC works when more than 2 columns are provided |
|
55 |
+ |
|
56 |
+r3<-RSKC(d[,1:5],ncl,alpha=10/60,L1=6,nstart=200) |
0 | 57 |
new file mode 100755 |
... | ... |
@@ -0,0 +1,36 @@ |
1 |
+library(evaluomeR) |
|
2 |
+ |
|
3 |
+individuals_per_cluster = function(qualityResult) { |
|
4 |
+ qual_df = as.data.frame(assay(qualityResult)) |
|
5 |
+ |
|
6 |
+ |
|
7 |
+ cluster_pos_str = as.character(unlist(qual_df["Cluster_position"])) |
|
8 |
+ cluster_labels_str = as.character(unlist(qual_df["Cluster_labels"])) |
|
9 |
+ |
|
10 |
+ cluster_pos = as.list(strsplit(cluster_pos_str, ",")[[1]]) |
|
11 |
+ cluster_labels = as.list(strsplit(cluster_labels_str, ",")[[1]]) |
|
12 |
+ |
|
13 |
+ individuals_in_cluster = as.data.frame(cbind(cluster_labels, cluster_pos)) |
|
14 |
+ colnames(individuals_in_cluster) = c("Individual", "InCluster") |
|
15 |
+ |
|
16 |
+ return(individuals_in_cluster) |
|
17 |
+} |
|
18 |
+ |
|
19 |
+data("ontMetrics") |
|
20 |
+metricsRelevancy = getMetricsRelevancy(ontMetrics, k=3, alpha=0.1, seed=100) |
|
21 |
+# RSKC output object |
|
22 |
+metricsRelevancy$rskc |
|
23 |
+# Trimmed cases from input (row indexes) |
|
24 |
+metricsRelevancy$trimmed_cases |
|
25 |
+# Metrics relevancy table |
|
26 |
+metricsRelevancy$relevancy |
|
27 |
+ |
|
28 |
+ |
|
29 |
+test = qualityRange(data=ontMetrics, k.range=c(3,3), |
|
30 |
+ seed=13007, |
|
31 |
+ all_metrics=TRUE, |
|
32 |
+ cbi="rskc", L1=2, alpha=0) |
|
33 |
+ |
|
34 |
+# Shows how clusters are partitioned according to the individuals |
|
35 |
+individuals_per_cluster(test$k_3) |
|
36 |
+ |
0 | 37 |
new file mode 100755 |
... | ... |
@@ -0,0 +1,84 @@ |
1 |
+library(evaluomeR) |
|
2 |
+library(RSKC) |
|
3 |
+library(sparcl) |
|
4 |
+seed = 100 |
|
5 |
+dataFrame <- quality(data=ontMetrics, cbi="kmeans", k=3) |
|
6 |
+assay(dataFrame) |
|
7 |
+# Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size |
|
8 |
+# [1,] "ANOnto" "0.754894925204277" "0.570241066303214" "0.775876285585267" "0.736742918153759" "12" "14" "54" |
|
9 |
+# [2,] "AROnto" "0.837074497995987" "0.509946991883709" "0.959264389073384" "0.786971025529677" "65" "13" "2" |
|
10 |
+# [3,] "CBOOnto" "0.766630500367533" "0.574451527320666" "0.470708665744913" "0.72319889705568" "63" "15" "2" |
|
11 |
+# [4,] "CBOOnto2" "0.766630500367533" "0.574451527320666" "0.470708665744913" "0.72319889705568" "63" "15" "2" |
|
12 |
+# [5,] "CROnto" "0.885055456924709" "0.636126752920544" "0" "0.855322610912838" "73" "6" "1" |
|
13 |
+# [6,] "DITOnto" "0.615581638093901" "0.441137593941046" "0.746848044839846" "0.553468450386794" "41" "33" "6" |
|
14 |
+# [7,] "INROnto" "0.760945813444805" "0.506239463726949" "0" "0.690941232718754" "60" "19" "1" |
|
15 |
+# [8,] "LCOMOnto" "0.657281417643165" "0.61764525421598" "0.722333227599342" "0.652913140794165" "21" "40" "19" |
|
16 |
+# [9,] "NACOnto" "0.759522276872854" "0.445845264823784" "0.254826579985626" "0.661322430756974" "58" "17" "5" |
|
17 |
+# [10,] "NOCOnto" "0.898396530127955" "0.742673517080307" "0.363472944618239" "0.879183827500925" "75" "3" "2" |
|
18 |
+# [11,] "NOMOnto" "0.708789049998754" "0.605603643727872" "0" "0.668973564992505" "55" "24" "1" |
|
19 |
+# [12,] "POnto" "0.755700546488043" "0.737169134813343" "0.651090644844594" "0.67661537075347" "8" "14" "58" |
|
20 |
+# [13,] "PROnto" "0.770018889790615" "0.56606585120985" "0.636058646833202" "0.668644905329162" "32" "24" "24" |
|
21 |
+# [14,] "RFCOnto" "0.672903800663584" "0.571360647044581" "0" "0.635298846489826" "56" "23" "1" |
|
22 |
+# [15,] "RROnto" "0.636058646833202" "0.56606585120985" "0.770018889790615" "0.668644905329162" "24" "24" "32" |
|
23 |
+# [16,] "TMOnto" "0.782948726523096" "0.50860642260504" "0.634534477835837" "0.710090639489989" "56" "18" "6" |
|
24 |
+# [17,] "TMOnto2" "1" "0.73737171744016" "0.462679160671249" "0.724657891719511" "16" "45" "19" |
|
25 |
+# [18,] "WMCOnto" "0.868556472442156" "0.369670756071292" "0.763547528087877" "0.828514820105485" "72" "6" "2" |
|
26 |
+# [19,] "WMCOnto2" "0.891854974826074" "0.598522433823083" "0.613618761016468" "0.870232442430684" "74" "4" "2" |
|
27 |
+ |
|
28 |
+dataFrame <- quality(data=ontMetrics, cbi="kmeans", k=4) |
|
29 |
+assay(dataFrame) |
|
30 |
+# Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size Cluster_4_Size |
|
31 |
+# [1,] "ANOnto" "0.717030499002753" "0.569222510427433" "0.552363239306396" "0.584449669565973" "0.600638738086962" "12" "11" "4" "53" |
|
32 |
+# [2,] "AROnto" "0.891757427020894" "0.614385150712436" "0.498602630835942" "0.953766280221553" "0.813833608784603" "58" "13" "7" "2" |
|
33 |
+# [3,] "CBOOnto" "0.682847685112873" "0.475694878561971" "0.418096612044278" "0.462053414220223" "0.5843870090796" "46" "18" "14" "2" |
|
34 |
+# [4,] "CBOOnto2" "0.682847685112873" "0.475694878561971" "0.418096612044278" "0.462053414220223" "0.5843870090796" "46" "18" "14" "2" |
|
35 |
+# [5,] "CROnto" "0.931552645421743" "0.615016966742524" "0.460688748724164" "0" "0.84502648526675" "63" "10" "6" "1" |
|
36 |
+# [6,] "DITOnto" "0.621392145232729" "0.589638237470761" "0.512852920317478" "0.717462336796908" "0.582143307479606" "15" "35" "24" "6" |
|
37 |
+# [7,] "INROnto" "0.679354776901229" "0.514845315378322" "0.552323396139528" "0" "0.609561353444975" "46" "19" "14" "1" |
|
38 |
+# [8,] "LCOMOnto" "0.563584714383498" "0.565734453969461" "0.526937877760086" "0.662861247621334" "0.57713748864992" "19" "19" "23" "19" |
|
39 |
+# [9,] "NACOnto" "0.763008703189753" "0.507554700154524" "0.610806402578204" "0.0693863149967116" "0.627188990478616" "42" "23" "10" "5" |
|
40 |
+# [10,] "NOCOnto" "0.712806750183687" "0.368068489789737" "0.711626648649838" "0.363472944618239" "0.600607673118847" "51" "24" "3" "2" |
|
41 |
+# [11,] "NOMOnto" "0.796568957921031" "0.487448631370323" "0.505810544669573" "0" "0.620956620752701" "35" "25" "19" "1" |
|
42 |
+# [12,] "POnto" "0.755700546488043" "0.717551583859045" "0.702605079149018" "0.531828315626997" "0.676374911502771" "8" "14" "42" "16" |
|
43 |
+# [13,] "PROnto" "0.808419016380534" "0.406920889282586" "0.546429726628472" "0.636912857924547" "0.623564355956028" "22" "12" "23" "23" |
|
44 |
+# [14,] "RFCOnto" "0.708660103503223" "0.527891770926241" "0.575667190561062" "0" "0.613856368788046" "37" "27" "15" "1" |
|
45 |
+# [15,] "RROnto" "0.636912857924547" "0.546429726628472" "0.406920889282586" "0.808419016380534" "0.623564355956028" "23" "23" "12" "22" |
|
46 |
+# [16,] "TMOnto" "0.772548576303018" "0.527581279093128" "0.56435245544769" "0.756878515673905" "0.694408411158545" "48" "15" "12" "5" |
|
47 |
+# [17,] "TMOnto2" "1" "0.709314170957853" "0.593309463294573" "0.516092763511662" "0.725408613137789" "16" "39" "19" "6" |
|
48 |
+# [18,] "WMCOnto" "0.811550829534933" "0.517887706724764" "0.232935788267106" "0.751527957476758" "0.737070037248562" "62" "12" "4" "2" |
|
49 |
+# [19,] "WMCOnto2" "0.806794961402285" "0.458575230569131" "0.48724511207104" "0.613618761016468" "0.72940235766569" "61" "13" "4" "2" |
|
50 |
+ |
|
51 |
+dataFrame <- qualityRange(data=ontMetrics, cbi="kmeans", k.range = c(3,4)) |
|
52 |
+assay(dataFrame$k_4) |
|
53 |
+# Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size Cluster_4_Size |
|
54 |
+# 1 "ANOnto" "0.569222510427433" "0.552363239306396" "0.584449669565973" "0.717030499002753" "0.600638738086962" "11" "4" "53" "12" |
|
55 |
+# 2 "AROnto" "0.891757427020894" "0.498602630835942" "0.953766280221553" "0.614385150712436" "0.813833608784603" "58" "7" "2" "13" |
|
56 |
+# 3 "CBOOnto" "0.682847685112873" "0.475694878561971" "0.418096612044278" "0.462053414220223" "0.5843870090796" "46" "18" "14" "2" |
|
57 |
+# 4 "CBOOnto2" "0.682847685112873" "0.475694878561971" "0.418096612044278" "0.462053414220223" "0.5843870090796" "46" "18" "14" "2" |
|
58 |
+# 5 "CROnto" "0.615016966742524" "0.931552645421743" "0.460688748724164" "0" "0.84502648526675" "10" "63" "6" "1" |
|
59 |
+# 6 "DITOnto" "0.621392145232729" "0.589638237470761" "0.512852920317478" "0.717462336796908" "0.582143307479606" "15" "35" "24" "6" |
|
60 |
+# 7 "INROnto" "0.679354776901229" "0.514845315378322" "0.552323396139528" "0" "0.609561353444975" "46" "19" "14" "1" |
|
61 |
+# 8 "LCOMOnto" "0.563584714383498" "0.565734453969461" "0.526937877760086" "0.662861247621334" "0.57713748864992" "19" "19" "23" "19" |
|
62 |
+# 9 "NACOnto" "0.507554700154524" "0.763008703189753" "0.0693863149967116" "0.610806402578204" "0.627188990478616" "23" "42" "5" "10" |
|
63 |
+# 10 "NOCOnto" "0.363472944618239" "0.712806750183687" "0.368068489789737" "0.711626648649838" "0.600607673118847" "2" "51" "24" "3" |
|
64 |
+# 11 "NOMOnto" "0.796568957921031" "0" "0.487448631370323" "0.505810544669573" "0.620956620752701" "35" "1" "25" "19" |
|
65 |
+# 12 "POnto" "0.717551583859045" "0.702605079149018" "0.531828315626997" "0.755700546488043" "0.676374911502771" "14" "42" "16" "8" |
|
66 |
+# 13 "PROnto" "0.808419016380534" "0.636912857924547" "0.406920889282586" "0.546429726628472" "0.623564355956028" "22" "23" "12" "23" |
|
67 |
+# 14 "RFCOnto" "0.708660103503223" "0" "0.527891770926241" "0.575667190561062" "0.613856368788046" "37" "1" "27" "15" |
|
68 |
+# 15 "RROnto" "0.808419016380534" "0.636912857924547" "0.406920889282586" "0.546429726628472" "0.623564355956028" "22" "23" "12" "23" |
|
69 |
+# 16 "TMOnto" "0.527581279093128" "0.772548576303018" "0.756878515673905" "0.56435245544769" "0.694408411158545" "15" "48" "5" "12" |
|
70 |
+# 17 "TMOnto2" "0.593309463294573" "1" "0.709314170957853" "0.516092763511662" "0.725408613137789" "19" "16" "39" "6" |
|
71 |
+# 18 "WMCOnto" "0.811550829534933" "0.517887706724764" "0.751527957476758" "0.232935788267106" "0.737070037248562" "62" "12" "2" "4" |
|
72 |
+# 19 "WMCOnto2" "0.48724511207104" "0.806794961402285" "0.613618761016468" "0.458575230569131" "0.72940235766569" "4" "61" "2" "13" |
|
73 |
+ |
|
74 |
+dataFrame <- qualityRange(data=ontMetrics, cbi="kmeans", k.range = c(3,4), all_metrics=TRUE, getImages = TRUE) |
|
75 |
+assay(dataFrame$k_3) |
|
76 |
+# Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Cluster_4_SilScore Avg_Silhouette_Width Cluster_1_Size Cluster_2_Size Cluster_3_Size Cluster_4_Size |
|
77 |
+# 1 "all_metrics" "0.560364615463509" "0.768006541644696" "0.761635263968552" "0.343459043619883" "0.730815149196402" "2" "70" "2" "6" |
|
78 |
+ |
|
79 |
+dataFrame <- quality(data=ontMetrics, cbi="kmeans", k=4, all_metrics=TRUE) |
|
80 |
+assay(dataFrame) |
|
81 |
+# Metric Cluster_1_SilScore Cluster_2_SilScore Cluster_3_SilScore Cluster_4_SilScore Avg_Silhouette_Width |
|
82 |
+# [1,] "all_metrics" "0.560364615463509" "0.768006541644696" "0.761635263968552" "0.343459043619883" "0.730815149196402" |
|
83 |
+# Cluster_1_Size Cluster_2_Size Cluster_3_Size Cluster_4_Size |
|
84 |
+# [1,] "2" "70" "2" "6" |
0 | 85 |
new file mode 100755 |
... | ... |
@@ -0,0 +1,88 @@ |
1 |
+library(evaluomeR) |
|
2 |
+library(RSKC) |
|
3 |
+library(sparcl) |
|
4 |
+ |
|
5 |
+dataFrame <- stability(data=ontMetrics, cbi="kmeans", k=3, bs=100) |
|
6 |
+assay(dataFrame) |
|
7 |
+# Metric Mean_stability_k_3 |
|
8 |
+# [1,] "ANOnto" "0.711599421597794" |
|
9 |
+# [2,] "AROnto" "0.834242802235359" |
|
10 |
+# [3,] "CBOOnto" "0.836200447888132" |
|
11 |
+# [4,] "CBOOnto2" "0.836200447888132" |
|
12 |
+# [5,] "CROnto" "0.80871022609772" |
|
13 |
+# [6,] "DITOnto" "0.802620378293628" |
|
14 |
+# [7,] "INROnto" "0.813132039213596" |
|
15 |
+# [8,] "LCOMOnto" "0.995402775270891" |
|
16 |
+# [9,] "NACOnto" "0.705135779579475" |
|
17 |
+# [10,] "NOCOnto" "0.902528819875511" |
|
18 |
+# [11,] "NOMOnto" "0.793513639960901" |
|
19 |
+# [12,] "POnto" "0.660145923222329" |
|
20 |
+# [13,] "PROnto" "0.960518110441289" |
|
21 |
+# [14,] "RFCOnto" "0.765127486244089" |
|
22 |
+# [15,] "RROnto" "0.960518110441289" |
|
23 |
+# [16,] "TMOnto" "0.862955680341511" |
|
24 |
+# [17,] "TMOnto2" "0.953719590152899" |
|
25 |
+# [18,] "WMCOnto" "0.85715656831332" |
|
26 |
+# [19,] "WMCOnto2" "0.904134166028688" |
|
27 |
+ |
|
28 |
+dataFrame <- stability(data=ontMetrics, cbi="kmeans", k=5, bs=100) |
|
29 |
+assay(dataFrame) |
|
30 |
+# Metric Mean_stability_k_5 |
|
31 |
+# [1,] "ANOnto" "0.53661574785721" |
|
32 |
+# [2,] "AROnto" "0.808877375863211" |
|
33 |
+# [3,] "CBOOnto" "0.773161766854306" |
|
34 |
+# [4,] "CBOOnto2" "0.773161766854306" |
|
35 |
+# [5,] "CROnto" "0.747939612559589" |
|
36 |
+# [6,] "DITOnto" "0.738901091226716" |
|
37 |
+# [7,] "INROnto" "0.804579603939195" |
|
38 |
+# [8,] "LCOMOnto" "0.703629344931179" |
|
39 |
+# [9,] "NACOnto" "0.663958844840551" |
|
40 |
+# [10,] "NOCOnto" "0.899994756895055" |
|
41 |
+# [11,] "NOMOnto" "0.758789978458299" |
|
42 |
+# [12,] "POnto" "0.646480707690646" |
|
43 |
+# [13,] "PROnto" "0.782307410022412" |
|
44 |
+# [14,] "RFCOnto" "0.726761185593769" |
|
45 |
+# [15,] "RROnto" "0.782307410022412" |
|
46 |
+# [16,] "TMOnto" "0.88221333660635" |
|
47 |
+# [17,] "TMOnto2" "0.830282245373099" |
|
48 |
+# [18,] "WMCOnto" "0.747236615208537" |
|
49 |
+# [19,] "WMCOnto2" "0.752468990321845" |
|
50 |
+ |
|
51 |
+dataFrame <- stabilityRange(data=ontMetrics, cbi="kmeans", k.range = c(3,5), bs=100) |
|
52 |
+assay(dataFrame) |
|
53 |
+# Metric Mean_stability_k_3 Mean_stability_k_4 Mean_stability_k_5 |
|
54 |
+# [1,] "ANOnto" "0.711599421597794" "0.661877018484356" "0.53661574785721" |
|
55 |
+# [2,] "AROnto" "0.834242802235359" "0.905679508527523" "0.808877375863211" |
|
56 |
+# [3,] "CBOOnto" "0.836200447888132" "0.809715382620901" "0.773161766854306" |
|
57 |
+# [4,] "CBOOnto2" "0.836200447888132" "0.809715382620901" "0.773161766854306" |
|
58 |
+# [5,] "CROnto" "0.80871022609772" "0.848428661689236" "0.747939612559589" |
|
59 |
+# [6,] "DITOnto" "0.802620378293628" "0.801976319968573" "0.738901091226716" |
|
60 |
+# [7,] "INROnto" "0.813132039213596" "0.833324929464065" "0.804579603939195" |
|
61 |
+# [8,] "LCOMOnto" "0.995402775270891" "0.758953924881616" "0.703629344931179" |
|
62 |
+# [9,] "NACOnto" "0.705135779579475" "0.679182045909186" "0.663958844840551" |
|
63 |
+# [10,] "NOCOnto" "0.902528819875511" "0.844518653163586" "0.899994756895055" |
|
64 |
+# [11,] "NOMOnto" "0.793513639960901" "0.779713596698101" "0.758789978458299" |
|
65 |
+# [12,] "POnto" "0.660145923222329" "0.795675361207579" "0.646480707690646" |
|
66 |
+# [13,] "PROnto" "0.960518110441289" "0.790969731730725" "0.782307410022412" |
|
67 |
+# [14,] "RFCOnto" "0.765127486244089" "0.790802265552443" "0.726761185593769" |
|
68 |
+# [15,] "RROnto" "0.960518110441289" "0.790969731730725" "0.782307410022412" |
|
69 |
+# [16,] "TMOnto" "0.862955680341511" "0.904973710968594" "0.88221333660635" |
|
70 |
+# [17,] "TMOnto2" "0.953719590152899" "0.868195348078741" "0.830282245373099" |
|
71 |
+# [18,] "WMCOnto" "0.85715656831332" "0.854182751568963" "0.747236615208537" |
|
72 |
+# [19,] "WMCOnto2" "0.904134166028688" "0.883417390847072" "0.752468990321845" |
|
73 |
+ |
|
74 |
+ |
|
75 |
+dataFrame <- stability(data=ontMetrics, cbi="kmeans", k=3, all_metrics = TRUE, bs=100) |
|
76 |
+assay(dataFrame) |
|
77 |
+# Metric Mean_stability_k_3 |
|
78 |
+# [1,] "all_metrics" "0.846238406081907" |
|
79 |
+ |
|
80 |
+dataFrame <- stability(data=ontMetrics, cbi="kmeans", k=5, all_metrics = TRUE, bs=100) |
|
81 |
+assay(dataFrame) |
|
82 |
+# Metric Mean_stability_k_3 |
|
83 |
+# [1,] "all_metrics" "0.803322946463351" |
|
84 |
+ |
|
85 |
+dataFrame <- stabilityRange(data=ontMetrics, cbi="kmeans", k.range = c(3,5), all_metrics = TRUE, bs=100) |
|
86 |
+assay(dataFrame) |
|
87 |
+# Metric Mean_stability_k_3 Mean_stability_k_4 Mean_stability_k_5 |
|
88 |
+# [1,] "all_metrics" "0.846238406081907" "0.783588073668732" "0.803322946463351" |