... | ... |
@@ -382,11 +382,9 @@ runSilhouetteIMG <- function(data, k) { |
382 | 382 |
sil.c$clus.avg.silwidths=summary(sil.w)$clus.avg.widths |
383 | 383 |
sil.c$avg.silwidths=summary(sil.w)$avg.width |
384 | 384 |
|
385 |
- |
|
386 | 385 |
estable[[i.datos]]$kmk.dynamic.bs.or.numeric=part.onto |
387 | 386 |
estable[[i.datos]]$sil.width=sil.w |
388 | 387 |
|
389 |
- #DESDE AQUI new |
|
390 | 388 |
g.main=paste(metric.name,sep="") |
391 | 389 |
|
392 | 390 |
plot(sil.w, col=colores, main=g.main, border=NULL, |
... | ... |
@@ -400,12 +398,14 @@ runSilhouetteIMG <- function(data, k) { |
400 | 398 |
legend(x=x.leyenda+0.1,y=sil.c$n+1, legend=expression(' s'['i']), col="black", |
401 | 399 |
xjust=0, yjust=0, bty="n", xpd=TRUE, inset=c(-0.1,0), cex=escalax) |
402 | 400 |
xleyenda=rep(x.leyenda,k.cl) |
401 |
+ #yleyenda=(sil.c$cluster.size==1)*0.6*(sil.c$n-cumsum(sil.c$cluster.size))+ |
|
402 |
+ # (sil.c$n-cumsum(sil.c$cluster.size))+sil.c$cluster.size*3/k.cl+2 |
|
403 | 403 |
yleyenda=(sil.c$cluster.size==1)*0.6*(sil.c$n-cumsum(sil.c$cluster.size))+ |
404 |
- (sil.c$n-cumsum(sil.c$cluster.size))+sil.c$cluster.size*3/k.cl+2 |
|
404 |
+ (sil.c$n-cumsum(sil.c$cluster.size))+sil.c$cluster.size/k.cl+2 |
|
405 | 405 |
leyenda=paste(names(sil.c$clus.avg.silwidths),rep(": ",k.cl), |
406 | 406 |
sil.c$cluster.size,"|",round(sil.c$clus.avg.silwidths,digits=2),sec="") |
407 | 407 |
for (i.leyenda in 1:k.cl){ |
408 |
- legend(list(x=xleyenda[i.leyenda],y=yleyenda[i.leyenda]-0.7), legend=leyenda[i.leyenda], col="black", |
|
408 |
+ legend(list(x=xleyenda[i.leyenda],y=yleyenda[i.leyenda]), legend=leyenda[i.leyenda], col="black", |
|
409 | 409 |
xjust=0, yjust=1, bty="n", xpd=TRUE, inset=c(-0.1,0), cex=escalal) |
410 | 410 |
} |
411 | 411 |
} |
... | ... |
@@ -276,11 +276,12 @@ runStabilityIndexK_IMG <- function(bs, k.min, k.max) { |
276 | 276 |
for (j.k in i.min:i.max) { |
277 | 277 |
cur.data = e.stab.global[[j.k]] |
278 | 278 |
cur.data = cur.data[!is.na(cur.data)] |
279 |
+ ymin = min(cur.data) |
|
279 | 280 |
xnames=as.character(names.metr) |
280 | 281 |
ynames="Global Stability Indices" |
281 | 282 |
g.main=paste(" St. Indices of the metrics for k=", j.k,sep="") |
282 | 283 |
plot(cur.data, main=g.main, axes=TRUE, col.axis="white", |
283 |
- xlim=c(0.75,length(xnames)+0.25), xlab="", ylim=c(0.3,1), |
|
284 |
+ xlim=c(0.75,length(xnames)+0.25), xlab="", ylim=c(ymin,1), |
|
284 | 285 |
ylab=ynames, col=colores[1],type="o", lwd=1, lty=ltype[1]) |
285 | 286 |
axis(1,at=1:length(xnames),labels=xnames,las=2,cex.axis=0.75) |
286 | 287 |
axis(2,las=3,cex.axis=0.85) |
... | ... |
@@ -316,13 +317,13 @@ runStabilityIndexMetric_IMG <- function(bs, k.min, k.max) { |
316 | 317 |
for (i.metr in 1:length(names.metr)) { |
317 | 318 |
cur.data = m.stab.global[[i.metr]] |
318 | 319 |
cur.data = cur.data[!is.na(cur.data)] |
319 |
- |
|
320 |
+ ymin = min(cur.data) |
|
320 | 321 |
xnames=c(k.min:k.max) |
321 | 322 |
ynames="Global Stability Indices" |
322 | 323 |
g.main=paste(" St. Indices of '", names.metr[i.metr], "' for k in [", |
323 | 324 |
k.min, ",", k.max,"]",sep="") |
324 | 325 |
plot(cur.data, main=g.main, axes=TRUE, col.axis="white", |
325 |
- xlim=c(0.75,length(k.min:k.max)+0.25), xlab="", ylim=c(0.3,1), |
|
326 |
+ xlim=c(0.75,length(k.min:k.max)+0.25), xlab="", ylim=c(ymin,1), |
|
326 | 327 |
ylab=ynames, col=colores[1],type="o", lwd=1, lty=ltype[1]) |
327 | 328 |
axis(1,at=1:length(k.min:k.max),labels=xnames,las=1,cex.axis=escalax) |
328 | 329 |
axis(2,las=3,cex.axis=0.85) |