Browse code

5 June 2015: limma 3.25.7

- The dimnames<- method for EListRaw objects now sets rownames for
the background matrix Eb as well as for the foreground matrix E.


git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/limma@104591 bc3139a8-67e5-0310-9ffc-ced21a209358

Gordon Smyth authored on 05/06/2015 09:45:37
Showing 7 changed files

... ...
@@ -1,6 +1,6 @@
1 1
 Package: limma
2
-Version: 3.25.6
3
-Date: 2015/06/03
2
+Version: 3.25.7
3
+Date: 2015-06-05
4 4
 Title: Linear Models for Microarray Data
5 5
 Description: Data analysis, linear models and differential expression for microarray data.
6 6
 Author: Gordon Smyth [cre,aut], Matthew Ritchie [ctb], Jeremy Silver [ctb], James Wettenhall [ctb], Natalie Thorne [ctb], Davis McCarthy [ctb], Di Wu [ctb], Yifang Hu [ctb], Wei Shi [ctb], Belinda Phipson [ctb], Alicia Oshlack [ctb], Carolyn de Graaf [ctb], Mette Langaas [ctb], Egil Ferkingstad [ctb], Marcus Davy [ctb], Francois Pepin [ctb], Dongseok Choi [ctb]
... ...
@@ -13,6 +13,7 @@ S3method("[",EList)
13 13
 S3method("[",EListRaw)
14 14
 S3method(anova,MAList)
15 15
 S3method(as.data.frame,EList)
16
+S3method(as.data.frame,EListRaw)
16 17
 S3method(as.data.frame,MAList)
17 18
 S3method(as.data.frame,MArrayLM)
18 19
 S3method(as.matrix,MAList)
... ...
@@ -142,7 +142,7 @@ dimnames.MArrayLM <- function(x) dimnames(x$coefficients)
142 142
 #  Gordon Smyth
143 143
 #  17 Dec 2005. Last modified 23 March 2009.
144 144
 {
145
-	exprmatrices <- c("R","G","Rb","Gb","M","A","E","weights")
145
+	exprmatrices <- c("R","G","Rb","Gb","M","A","E","Eb","weights")
146 146
 	for (a in exprmatrices) if(!is.null(x[[a]])) dimnames(x[[a]]) <- value
147 147
 	for(a in names(x$other)) dimnames(x$other[[a]]) <- value
148 148
 	if(!is.null(x$targets)) row.names(x$targets) <- value[[2]]
... ...
@@ -1,3 +1,8 @@
1
+ 5 June 2015: limma 3.25.7
2
+
3
+- The dimnames<- method for EListRaw objects now sets rownames for
4
+  the background matrix Eb as well as for the foreground matrix E.
5
+
1 6
  3 June 2015: limma 3.25.6
2 7
 
3 8
 - new function kegga() to conduct KEGG pathway over-representation
... ...
@@ -33,8 +33,12 @@ This page gives an overview of the LIMMA functions for gene set testing and path
33 33
 \item{ \code{\link{barcodeplot}} }{
34 34
 	Enrichment plot of a gene set.}
35 35
 
36
-\item{ \code{\link{goana}} and  \code{\link{topGO}}}{
37
-	Gene ontology analysis of gene lists using Entrez Gene IDs.
36
+\item{ \code{\link{goana}} and \code{\link{topGO}}}{
37
+	Gene ontology over-representation analysis of gene lists using Entrez Gene IDs.
38
+	\code{goana} can work directly on a fitted model object or on one or more lists of genes.}
39
+
40
+\item{ \code{\link{kegga}} and \code{\link{topKEGG}}}{
41
+	KEGG pathway over-representation analysis of gene lists using Entrez Gene IDs.
38 42
 	\code{goana} can work directly on a fitted model object or on one or more lists of genes.}
39 43
 }
40 44
 }
... ...
@@ -26,6 +26,7 @@ These classes contains no slots (other than \code{.Data}), but objects should co
26 26
 \section{Optional Components}{
27 27
 Optional components include:
28 28
 \describe{
29
+  \item{\code{Eb}}{numeric matrix containing unlogged background expression values, of same dimensions as \code{E}. For an \code{EListRaw} object only.}
29 30
   \item{\code{weights}}{numeric matrix of same dimensions as \code{E} containing relative spot quality weights.  Elements should be non-negative.}
30 31
   \item{\code{other}}{list containing other matrices, all of the same dimensions as \code{E}.}
31 32
   \item{\code{genes}}{data.frame containing probe information. Should have one row for each probe. May have any number of columns.}
... ...
@@ -12,14 +12,12 @@ Test for over-representation of gene ontology (GO) terms or KEGG pathways in one
12 12
 }
13 13
 
14 14
 \usage{
15
-\method{goana}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, 
16
-      trend = FALSE, \dots)
17
-\method{goana}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL,
18
-      covariate=NULL, plot=FALSE, \dots)
19
-\method{kegga}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, 
20
-      trend = FALSE, \dots)
21
-\method{kegga}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL,
22
-      covariate=NULL, plot=FALSE, \dots)
15
+\method{goana}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, \dots)
16
+\method{goana}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL,
17
+      plot=FALSE, \dots)
18
+\method{kegga}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, \dots)
19
+\method{kegga}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL,
20
+      plot=FALSE, \dots)
23 21
 }
24 22
 
25 23
 \arguments{
... ...
@@ -68,7 +66,7 @@ While \code{tricubeMovingAverage} does not enforce monotonicity, it has the adva
68 66
 }
69 67
 
70 68
 \value{
71
-The default method produces a data frame with a row for each GO term and the following columns:
69
+The \code{goana} default method produces a data frame with a row for each GO term and the following columns:
72 70
   \item{Term}{GO term.}
73 71
   \item{Ont}{ontology that the GO term belongs to.  Possible values are \code{"BP"}, \code{"CC"} and \code{"MF"}.}
74 72
   \item{N}{number of genes in the GO term.}
... ...
@@ -77,7 +75,7 @@ The default method produces a data frame with a row for each GO term and the fol
77 75
 The last two column names above assume one gene set with the name \code{DE}.
78 76
 In general, there will be a pair of such columns for each gene set and the name of the set will appear in place of \code{"DE"}.
79 77
 
80
-The \code{MArrayLM} method produces a data frame with a row for each GO term and the following columns:
78
+The \code{goana} method for \code{MArrayLM} objects produces a data frame with a row for each GO term and the following columns:
81 79
   \item{Term}{GO term.}
82 80
   \item{Ont}{ontology that the GO term belongs to.  Possible values are \code{"BP"}, \code{"CC"} and \code{"MF"}.}
83 81
   \item{N}{number of genes in the GO term.}
... ...
@@ -87,6 +85,8 @@ The \code{MArrayLM} method produces a data frame with a row for each GO term and
87 85
   \item{P.Down}{p-value for over-representation of GO term in down-regulated genes.}
88 86
 
89 87
 The row names of the data frame give the GO term IDs.
88
+
89
+The output from \code{kegga} is the same except that row names become KEGG pathway IDs, \code{Term} becomes \code{Path} and there is no \code{Ont} column.
90 90
 }
91 91
 
92 92
 \references{
... ...
@@ -97,12 +97,12 @@ The row names of the data frame give the GO term IDs.
97 97
 }
98 98
 
99 99
 \seealso{
100
-\code{\link{topGO}}
100
+\code{\link{topGO}}, \code{\link{topKEGG}}
101 101
 
102 102
 The goseq package provides an alternative implementation of methods from Young et al (2010).
103
-The goseq version will work with a variety of gene identifiers, not only Entrez Gene as here, and includes a database of gene length information for various species.
103
+Unlike the limma functions documented here, goseq will work with a variety of gene identifiers and includes a database of gene length information for various species.
104 104
 
105
-The gostats package also does GO analyses with some different options.
105
+The gostats package also does GO analyses without adjustment for bias but with some other options.
106 106
 
107 107
 See \link{10.GeneSetTests} for a description of other functions used for gene set testing.
108 108
 }