- The dimnames<- method for EListRaw objects now sets rownames for
the background matrix Eb as well as for the foreground matrix E.
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/limma@104591 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -1,6 +1,6 @@ |
1 | 1 |
Package: limma |
2 |
-Version: 3.25.6 |
|
3 |
-Date: 2015/06/03 |
|
2 |
+Version: 3.25.7 |
|
3 |
+Date: 2015-06-05 |
|
4 | 4 |
Title: Linear Models for Microarray Data |
5 | 5 |
Description: Data analysis, linear models and differential expression for microarray data. |
6 | 6 |
Author: Gordon Smyth [cre,aut], Matthew Ritchie [ctb], Jeremy Silver [ctb], James Wettenhall [ctb], Natalie Thorne [ctb], Davis McCarthy [ctb], Di Wu [ctb], Yifang Hu [ctb], Wei Shi [ctb], Belinda Phipson [ctb], Alicia Oshlack [ctb], Carolyn de Graaf [ctb], Mette Langaas [ctb], Egil Ferkingstad [ctb], Marcus Davy [ctb], Francois Pepin [ctb], Dongseok Choi [ctb] |
... | ... |
@@ -142,7 +142,7 @@ dimnames.MArrayLM <- function(x) dimnames(x$coefficients) |
142 | 142 |
# Gordon Smyth |
143 | 143 |
# 17 Dec 2005. Last modified 23 March 2009. |
144 | 144 |
{ |
145 |
- exprmatrices <- c("R","G","Rb","Gb","M","A","E","weights") |
|
145 |
+ exprmatrices <- c("R","G","Rb","Gb","M","A","E","Eb","weights") |
|
146 | 146 |
for (a in exprmatrices) if(!is.null(x[[a]])) dimnames(x[[a]]) <- value |
147 | 147 |
for(a in names(x$other)) dimnames(x$other[[a]]) <- value |
148 | 148 |
if(!is.null(x$targets)) row.names(x$targets) <- value[[2]] |
... | ... |
@@ -1,3 +1,8 @@ |
1 |
+ 5 June 2015: limma 3.25.7 |
|
2 |
+ |
|
3 |
+- The dimnames<- method for EListRaw objects now sets rownames for |
|
4 |
+ the background matrix Eb as well as for the foreground matrix E. |
|
5 |
+ |
|
1 | 6 |
3 June 2015: limma 3.25.6 |
2 | 7 |
|
3 | 8 |
- new function kegga() to conduct KEGG pathway over-representation |
... | ... |
@@ -33,8 +33,12 @@ This page gives an overview of the LIMMA functions for gene set testing and path |
33 | 33 |
\item{ \code{\link{barcodeplot}} }{ |
34 | 34 |
Enrichment plot of a gene set.} |
35 | 35 |
|
36 |
-\item{ \code{\link{goana}} and \code{\link{topGO}}}{ |
|
37 |
- Gene ontology analysis of gene lists using Entrez Gene IDs. |
|
36 |
+\item{ \code{\link{goana}} and \code{\link{topGO}}}{ |
|
37 |
+ Gene ontology over-representation analysis of gene lists using Entrez Gene IDs. |
|
38 |
+ \code{goana} can work directly on a fitted model object or on one or more lists of genes.} |
|
39 |
+ |
|
40 |
+\item{ \code{\link{kegga}} and \code{\link{topKEGG}}}{ |
|
41 |
+ KEGG pathway over-representation analysis of gene lists using Entrez Gene IDs. |
|
38 | 42 |
\code{goana} can work directly on a fitted model object or on one or more lists of genes.} |
39 | 43 |
} |
40 | 44 |
} |
... | ... |
@@ -26,6 +26,7 @@ These classes contains no slots (other than \code{.Data}), but objects should co |
26 | 26 |
\section{Optional Components}{ |
27 | 27 |
Optional components include: |
28 | 28 |
\describe{ |
29 |
+ \item{\code{Eb}}{numeric matrix containing unlogged background expression values, of same dimensions as \code{E}. For an \code{EListRaw} object only.} |
|
29 | 30 |
\item{\code{weights}}{numeric matrix of same dimensions as \code{E} containing relative spot quality weights. Elements should be non-negative.} |
30 | 31 |
\item{\code{other}}{list containing other matrices, all of the same dimensions as \code{E}.} |
31 | 32 |
\item{\code{genes}}{data.frame containing probe information. Should have one row for each probe. May have any number of columns.} |
... | ... |
@@ -12,14 +12,12 @@ Test for over-representation of gene ontology (GO) terms or KEGG pathways in one |
12 | 12 |
} |
13 | 13 |
|
14 | 14 |
\usage{ |
15 |
-\method{goana}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, |
|
16 |
- trend = FALSE, \dots) |
|
17 |
-\method{goana}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, |
|
18 |
- covariate=NULL, plot=FALSE, \dots) |
|
19 |
-\method{kegga}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, |
|
20 |
- trend = FALSE, \dots) |
|
21 |
-\method{kegga}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, |
|
22 |
- covariate=NULL, plot=FALSE, \dots) |
|
15 |
+\method{goana}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, \dots) |
|
16 |
+\method{goana}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL, |
|
17 |
+ plot=FALSE, \dots) |
|
18 |
+\method{kegga}{MArrayLM}(de, coef = ncol(de), geneid = rownames(de), FDR = 0.05, trend = FALSE, \dots) |
|
19 |
+\method{kegga}{default}(de, universe = NULL, species = "Hs", prior.prob = NULL, covariate=NULL, |
|
20 |
+ plot=FALSE, \dots) |
|
23 | 21 |
} |
24 | 22 |
|
25 | 23 |
\arguments{ |
... | ... |
@@ -68,7 +66,7 @@ While \code{tricubeMovingAverage} does not enforce monotonicity, it has the adva |
68 | 66 |
} |
69 | 67 |
|
70 | 68 |
\value{ |
71 |
-The default method produces a data frame with a row for each GO term and the following columns: |
|
69 |
+The \code{goana} default method produces a data frame with a row for each GO term and the following columns: |
|
72 | 70 |
\item{Term}{GO term.} |
73 | 71 |
\item{Ont}{ontology that the GO term belongs to. Possible values are \code{"BP"}, \code{"CC"} and \code{"MF"}.} |
74 | 72 |
\item{N}{number of genes in the GO term.} |
... | ... |
@@ -77,7 +75,7 @@ The default method produces a data frame with a row for each GO term and the fol |
77 | 75 |
The last two column names above assume one gene set with the name \code{DE}. |
78 | 76 |
In general, there will be a pair of such columns for each gene set and the name of the set will appear in place of \code{"DE"}. |
79 | 77 |
|
80 |
-The \code{MArrayLM} method produces a data frame with a row for each GO term and the following columns: |
|
78 |
+The \code{goana} method for \code{MArrayLM} objects produces a data frame with a row for each GO term and the following columns: |
|
81 | 79 |
\item{Term}{GO term.} |
82 | 80 |
\item{Ont}{ontology that the GO term belongs to. Possible values are \code{"BP"}, \code{"CC"} and \code{"MF"}.} |
83 | 81 |
\item{N}{number of genes in the GO term.} |
... | ... |
@@ -87,6 +85,8 @@ The \code{MArrayLM} method produces a data frame with a row for each GO term and |
87 | 85 |
\item{P.Down}{p-value for over-representation of GO term in down-regulated genes.} |
88 | 86 |
|
89 | 87 |
The row names of the data frame give the GO term IDs. |
88 |
+ |
|
89 |
+The output from \code{kegga} is the same except that row names become KEGG pathway IDs, \code{Term} becomes \code{Path} and there is no \code{Ont} column. |
|
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
\references{ |
... | ... |
@@ -97,12 +97,12 @@ The row names of the data frame give the GO term IDs. |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
\seealso{ |
100 |
-\code{\link{topGO}} |
|
100 |
+\code{\link{topGO}}, \code{\link{topKEGG}} |
|
101 | 101 |
|
102 | 102 |
The goseq package provides an alternative implementation of methods from Young et al (2010). |
103 |
-The goseq version will work with a variety of gene identifiers, not only Entrez Gene as here, and includes a database of gene length information for various species. |
|
103 |
+Unlike the limma functions documented here, goseq will work with a variety of gene identifiers and includes a database of gene length information for various species. |
|
104 | 104 |
|
105 |
-The gostats package also does GO analyses with some different options. |
|
105 |
+The gostats package also does GO analyses without adjustment for bias but with some other options. |
|
106 | 106 |
|
107 | 107 |
See \link{10.GeneSetTests} for a description of other functions used for gene set testing. |
108 | 108 |
} |