... | ... |
@@ -84,40 +84,21 @@ lisa <- |
84 | 84 |
BPcellType <- BPPARAM |
85 | 85 |
} |
86 | 86 |
|
87 |
- if (!fast) { |
|
88 |
- message("Generating local L-curves. ") |
|
89 |
- if (identical(BPimage, BPcellType)) { |
|
90 |
- message("You might like to consider setting BPPARAM to run the calculations in parallel.") |
|
91 |
- } |
|
92 |
- curveList <- |
|
93 |
- BiocParallel::bplapply( |
|
94 |
- cellSummary, |
|
95 |
- generateCurves, |
|
96 |
- Rs = Rs, |
|
97 |
- window = window, |
|
98 |
- window.length = window.length, |
|
99 |
- BPcellType = BPcellType, |
|
100 |
- BPPARAM = BPimage, |
|
101 |
- sigma = sigma |
|
102 |
- ) |
|
103 |
- } |
|
104 | 87 |
|
105 |
- if (fast) { |
|
106 |
- message("Generating local L-curves. If you run out of memory, try 'fast = FALSE'.") |
|
107 |
- |
|
108 |
- curveList <- |
|
109 |
- BiocParallel::bplapply( |
|
110 |
- cellSummary, |
|
111 |
- inhomLocalK, |
|
112 |
- Rs = Rs, |
|
113 |
- sigma = sigma, |
|
114 |
- window = window, |
|
115 |
- window.length = window.length, |
|
116 |
- minLambda = minLambda, |
|
117 |
- lisaFunc = lisaFunc, |
|
118 |
- BPPARAM = BPimage |
|
119 |
- ) |
|
120 |
- } |
|
88 |
+ message("Generating local L-curves.") |
|
89 |
+ |
|
90 |
+ curveList <- |
|
91 |
+ BiocParallel::bplapply( |
|
92 |
+ cellSummary, |
|
93 |
+ inhomLocalK, |
|
94 |
+ Rs = Rs, |
|
95 |
+ sigma = sigma, |
|
96 |
+ window = window, |
|
97 |
+ window.length = window.length, |
|
98 |
+ minLambda = minLambda, |
|
99 |
+ lisaFunc = lisaFunc, |
|
100 |
+ BPPARAM = BPimage |
|
101 |
+ ) |
|
121 | 102 |
|
122 | 103 |
curvelist <- lapply(curveList, as.data.frame) |
123 | 104 |
curves <- as.matrix(dplyr::bind_rows(curvelist)) |
... | ... |
@@ -17,8 +17,6 @@ |
17 | 17 |
#' @param sigma A numeric variable used for scaling when filting inhomogeneous L-curves. |
18 | 18 |
#' @param lisaFunc Either "K" or "L" curve. |
19 | 19 |
#' @param minLambda Minimum value for density for scaling when fitting inhomogeneous L-curves. |
20 |
-#' @param fast A logical describing whether to use a fast approximation of the |
|
21 |
-#' inhomogeneous local L-curves. |
|
22 | 20 |
#' |
23 | 21 |
#' @return A matrix of LISA curves |
24 | 22 |
#' |
... | ... |
@@ -66,8 +64,7 @@ lisaClust <- |
66 | 64 |
whichParallel = "imageID", |
67 | 65 |
sigma = NULL, |
68 | 66 |
lisaFunc = "K", |
69 |
- minLambda = 0.05, |
|
70 |
- fast = TRUE) { |
|
67 |
+ minLambda = 0.05) { |
|
71 | 68 |
if (methods::is(cells, "SummarizedExperiment")) { |
72 | 69 |
cd <- spicyR:::.format_data( |
73 | 70 |
cells, imageID, cellType, spatialCoords, FALSE |
... | ... |
@@ -81,8 +78,7 @@ lisaClust <- |
81 | 78 |
whichParallel = whichParallel, |
82 | 79 |
sigma = sigma, |
83 | 80 |
lisaFunc = lisaFunc, |
84 |
- minLambda = minLambda, |
|
85 |
- fast = fast |
|
81 |
+ minLambda = minLambda |
|
86 | 82 |
) |
87 | 83 |
kM <- kmeans(lisaCurves, k) |
88 | 84 |
regions <- paste("region", kM$cluster, sep = "_") |
... | ... |
@@ -103,8 +99,7 @@ lisaClust <- |
103 | 99 |
whichParallel = whichParallel, |
104 | 100 |
sigma = sigma, |
105 | 101 |
lisaFunc = lisaFunc, |
106 |
- minLambda = minLambda, |
|
107 |
- fast = fast |
|
102 |
+ minLambda = minLambda |
|
108 | 103 |
) |
109 | 104 |
|
110 | 105 |
kM <- kmeans(lisaCurves, k) |