% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nnlsParam-class.R \name{nnlsParam} \alias{nnlsParam} \title{Make new object of class nnlsParam} \usage{ nnlsParam( bulkExpression, referenceExpression, cellScaleFactors, returnInfo = FALSE ) } \arguments{ \item{bulkExpression}{Bulk mixed signals matrix of samples, which can be matched to single-cell samples.} \item{referenceExpression}{Signature matrix of cell type-specific signals. If not provided, can be computed from a provided \linkS4class{ExpressionSet} containing single-cell data.} \item{cellScaleFactors}{Cell size factor transformations of length equal to the K cell types to deconvolve.} \item{returnInfo}{Whether to return metadata and original method outputs with predicted proportions.} } \value{ Object of class \linkS4class{nnlsParam} } \description{ Main constructor for class \linkS4class{nnlsParam}. } \details{ Main parameter class for mapping inputs to the non-negative least squares (NNLS) deconvolution algorithm, implemented as \code{nnls::nnls()}. } \examples{ exampleList <- getDeconvolutionExampleData() param <- nnlsParam(cellScaleFactors=exampleList[["cellScaleFactors"]], bulkExpression=exampleList[["bulkExpression"]], referenceExpression=exampleList[["referenceExpression"]]) ## return only predicted proportions deconvolution(param) # return full results param@returnInfo <- TRUE names(deconvolution(param)) } \seealso{ \linkS4class{referencebasedParam}, \linkS4class{deconvolutionParam} }