a5acd20a |
\name{dudi.rwcoa}
\alias{dudi.rwcoa}
\title{Row weighted Correspondence Analysis}
\description{
\code{dudi.rwcoa} Row weighted COA, calls \code{forrwcoa} to perform row
weighted correspondence analysis.
}
\usage{
dudi.rwcoa(df, rowweights = rep(1/nrow(df),nrow(df)), ...)
}
\arguments{
\item{df}{a \code{data.frame} containing positive or null values. It should not
contain missing (NA) values. }
\item{rowweights}{ a vector of row weights (by default, uniform row weights) }
\item{\dots}{further arguments passed to or from other methods ) }
}
\details{
Performs row weighted COA. Calls \code{forrwcoa} to calculates weights.
}
\value{
Returns a list of class 'coa', 'rwcoa', and 'dudi' (see \code{\link[ade4:dudi]{dudi}})
}
\references{ Culhane AC, et al., 2003 Cross platform comparison and visualisation of gene expression data using co-inertia analysis. BMC Bioinformatics. 4:59 }
\author{ Aedin Culhane, A.B. Dufour }
\note{ In the paper by Culhane et al., 2002, coinertia analysis
was performed with two COAs, a standard \code{\link[ade4:dudi.coa]{COA}} and a row weighted COA \code{dudi.rwcoa}, on
the two gene expression datasets. However it is now recommended to perform
two non-symmetric COA, instead of two COA. This avoids having to force
the row weights from one analysis on the second. To perform
non-symmetric correspondence coinertia analysis, use \code{\link[made4:bet.coinertia]{bet.coinertia}}.}
\seealso{ See Also as
\code{\link[ade4:dudi]{dudi}},\code{\link[ade4:dudi.coa]{dudi.coa}},\code{\link[ade4:dudi.pca]{dudi.pca}}}
\keyword{internal}
|