% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllGenerics.R, R/pca_matrix_plot-methods.R \name{pca_matrix_plot} \alias{pca_matrix_plot} \alias{pca_matrix_plot,matrix-method} \alias{pca_matrix_plot,Matrix-method} \alias{pca_matrix_plot,data.frame-method} \alias{pca_matrix_plot,ExpressionSet-method} \alias{pca_matrix_plot,DGEList-method} \alias{pca_matrix_plot,SummarizedExperiment-method} \alias{pca_matrix_plot,Seurat-method} \title{Make a matrix plot of PCA with top PCs} \usage{ pca_matrix_plot( data, features = "all", slot = "counts", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{matrix}( data, features = "all", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{Matrix}( data, features = "all", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{data.frame}( data, features = "all", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{ExpressionSet}( data, features = "all", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{DGEList}( data, features = "all", slot = "counts", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{SummarizedExperiment}( data, features = "all", slot = "counts", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) \S4method{pca_matrix_plot}{Seurat}( data, features = "all", slot = "counts", group_by = NULL, scale = TRUE, n = 4, loading = FALSE, n_loadings = 10, gene_id = "SYMBOL" ) } \arguments{ \item{data}{expression data, can be matrix, eSet, seurat...} \item{features}{vector of gene symbols or 'all', specify the genes used for PCA, default 'all'} \item{slot}{character, specify the slot name of expression to be used, optional} \item{group_by}{character, specify the column to be grouped and colored, default NULL} \item{scale}{logical, if to scale data for PCA, default TRUE} \item{n}{num, specify top n PCs to plot} \item{loading}{logical, if to plot and label loadings of PCA, default 'FALSE'} \item{n_loadings}{num, top n loadings to plot; or a vector of gene IDs; only work when \code{loading = TRUE}} \item{gene_id}{character, specify which column of IDs used to calculate TPM, also indicate the ID type of expression data's rowname, could be one of 'ENSEMBL', 'SYMBOL', 'ENTREZ'..., default 'SYMBOL'} } \value{ matrix plot of PCA } \description{ Make a matrix plot of PCA with top PCs } \examples{ data("im_data_6") pca_matrix_plot(data = im_data_6, scale = FALSE) }