% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllGenerics.R, R/subset_sig_by_step.R \name{process_data} \alias{process_data} \alias{process_data,DGEList,character,character-method} \alias{process_data,matrix,vector,character-method} \alias{process_data,Matrix,vector,character-method} \alias{process_data,ExpressionSet,character,character-method} \alias{process_data,SummarizedExperiment,character,character-method} \alias{process_data,Seurat,character,character-method} \title{process data} \usage{ process_data( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", slot = "counts", ... ) \S4method{process_data}{DGEList,character,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", slot = "counts", ... ) \S4method{process_data}{matrix,vector,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", batch = NULL, ... ) \S4method{process_data}{Matrix,vector,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", batch = NULL, ... ) \S4method{process_data}{ExpressionSet,character,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", batch = NULL, ... ) \S4method{process_data}{SummarizedExperiment,character,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", slot = "counts", batch = NULL, ... ) \S4method{process_data}{Seurat,character,character}( data, group_col, target_group, normalize = TRUE, filter = c(10, 10), lfc = 0, p = 0.05, markers = NULL, gene_id = "SYMBOL", slot = "counts", batch = NULL, ... ) } \arguments{ \item{data}{expression object} \item{group_col}{character, column name of coldata to specify the DE comparisons} \item{target_group}{pattern, specify the group of interest, e.g. NK} \item{normalize}{logical, if the expr in data is raw counts needs to be normalized} \item{filter}{a vector of 2 numbers, filter condition to remove low expression genes, the 1st for min.counts (if normalize = TRUE) or CPM/TPM (if normalize = FALSE), the 2nd for samples size 'large.n'} \item{lfc}{num, cutoff of logFC for DE analysis} \item{p}{num, cutoff of p value for DE analysis and permutation test if feature_selection = "rankproduct"} \item{markers}{vector, a vector of gene names, listed the gene symbols to be kept anyway after filtration. Default 'NULL' means no special genes need to be kept.} \item{gene_id}{character, specify the gene ID target_group of rownames of expression data when markers is not NULL, could be one of 'ENSEMBL', 'SYMBOL', 'ENTREZ'..., default 'SYMBOL'} \item{slot}{character, specify which slot to use only for DGEList, sce or seurat object, optional, default 'counts'} \item{...}{params for \code{\link[=voom_fit_treat]{voom_fit_treat()}}} \item{batch}{vector of character, column name(s) of coldata to be treated as batch effect factor, default NULL} } \value{ A DGEList containing vfit by \code{\link[limma:voom]{limma::voom()}} (if normalize = TRUE) and tfit by \code{\link[limma:ebayes]{limma::treat()}} } \description{ filter low expression genes, normalize data by 'TMM' and apply \code{\link[limma:voom]{limma::voom()}}, \code{\link[limma:lmFit]{limma::lmFit()}} and \code{\link[limma:ebayes]{limma::treat()}} on normalized data } \examples{ data("im_data_6") proc_data <- process_data( im_data_6, group_col = "celltype:ch1", target_group = "NK" ) }