Browse code

changed nr to nrow and nc to ncol

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/multtest@68484 bc3139a8-67e5-0310-9ffc-ced21a209358

Katherine S. Pollard authored on 15/08/2012 19:57:10
Showing 1 changed files
... ...
@@ -62,10 +62,10 @@ corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alterna
62 62
   # Regression ICs written to automatically incorporate weights.
63 63
   # If W=NULL, then give equal weights.
64 64
   if(test=="lm.XvsZ"){
65
-    if(is.null(Z)) Z <- matrix(1,nr=n,nc=1)
65
+    if(is.null(Z)) Z <- matrix(1,nrow=n,ncol=1)
66 66
     else Z <- cbind(Z,1)
67
-    if(is.null(W)) W <- matrix(1/n,nr=p,nc=n)
68
-    IC.i <- matrix(0,nr=m,nc=n)
67
+    if(is.null(W)) W <- matrix(1/n,nrow=p,ncol=n)
68
+    IC.i <- matrix(0,nrow=m,ncol=n)
69 69
     for(i in 1:m){
70 70
       drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,])
71 71
       x <- as.numeric(X[i,!drop])
... ...
@@ -89,8 +89,8 @@ corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alterna
89 89
     if(length(Y)!=n) stop(paste("Dimension of outcome Y=",length(Y),", not equal dimension of data=",n,sep=""))
90 90
     if(is.null(Z)) Z <- matrix(1,n,1)
91 91
     else Z <- cbind(Z,1)
92
-    if(is.null(W)) W <- matrix(1,nr=p,nc=n)
93
-    IC.i <- matrix(0,nr=m,nc=n)
92
+    if(is.null(W)) W <- matrix(1,nrow=p,ncol=n)
93
+    IC.i <- matrix(0,nrow=m,ncol=n)
94 94
     for(i in 1:m){
95 95
       drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,])
96 96
       x <- as.numeric(X[i,!drop])
... ...
@@ -139,13 +139,13 @@ corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alterna
139 139
     EX1X2.v <- rowMeans(X.vec12,na.rm=TRUE)
140 140
 
141 141
     cons <- 1/sqrt(Var1.v*Var2.v)
142
-    gradient <- matrix(1,nr=M,nc=5)
142
+    gradient <- matrix(1,nrow=M,ncol=5)
143 143
     gradient[,1] <- EX1.v*Cov.v/Var1.v - EX2.v
144 144
     gradient[,2] <- EX2.v*Cov.v/Var2.v - EX1.v
145 145
     gradient[,3] <- -0.5*Cov.v/Var1.v
146 146
     gradient[,4] <- -0.5*Cov.v/Var2.v
147 147
 
148
-    IC.i <- matrix(0, nr=M, nc=N)
148
+    IC.i <- matrix(0, nrow=M, ncol=N)
149 149
     for(i in 1:N){
150 150
       diffs.i <- diffs.1.N(X[ind[,1],i], X[ind[,2],i], EX1.v, EX2.v, E2X1.v, E2X2.v, EX1X2.v)
151 151
       IC.M <- rep(0,M)
... ...
@@ -164,17 +164,17 @@ corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alterna
164 164
   if(MVN.method=="mvrnorm") nulldist <- t(mvrnorm(n=B,mu=rep(0,dim(IC.Cor)[1]),Sigma=IC.Cor))
165 165
   if(MVN.method=="Cholesky"){
166 166
     IC.chol <- t(chol(IC.Cor+penalty*diag(dim(IC.Cor)[1])))
167
-    norms <- matrix(rnorm(B*dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=B)
167
+    norms <- matrix(rnorm(B*dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=B)
168 168
     nulldist <- IC.chol%*%norms
169 169
   }
170 170
   if(ic.quant.trans==TRUE){
171 171
     cat("applying quantile transform...", "\n\n")
172 172
     if(is.null(marg.null)){
173 173
 	marg.null <- "t"
174
-     	if(test=="t.cor" | test=="z.cor" | test=="t.twosamp.equalvar") marg.par <- matrix(rep(dim(X)[2]-2,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
175
-        if(test=="lm.XvsZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2],dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
176
-        if(test=="lm.YvsXZ")  marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2]-1,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
177
-        else marg.par <- matrix(rep(dim(X)[2]-1,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
174
+     	if(test=="t.cor" | test=="z.cor" | test=="t.twosamp.equalvar") marg.par <- matrix(rep(dim(X)[2]-2,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1)
175
+        if(test=="lm.XvsZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2],dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1)
176
+        if(test=="lm.YvsXZ")  marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1)
177
+        else marg.par <- matrix(rep(dim(X)[2]-1,dim(IC.Cor)[1]),nrow=dim(IC.Cor)[1],ncol=1)
178 178
     }
179 179
     if(test=="z.cor" & marg.null=="t") warning("IC nulldist for z.cor already MVN. Transforming to N-2 df t marginal distribution not advised.")
180 180
     if(marg.null!="t" & marg.null!="perm") stop("IC nulldists can only be quantile transformed to a marginal t-distribution or user-supplied marginal permutation distribution")
... ...
@@ -193,11 +193,11 @@ IC.Cor.NA <- function(IC,W,N,M,output){
193 193
   n <- dim(IC)[2]
194 194
   m <- dim(IC)[1]
195 195
   if(is.null(W)){
196
-    W <- matrix(1,nr=dim(IC)[1],nc=dim(IC)[2])
196
+    W <- matrix(1,nrow=dim(IC)[1],ncol=dim(IC)[2])
197 197
     Wnew <- W/rowSums(W,na.rm=TRUE) # Equal weight, NA handling.
198 198
   }
199 199
   else Wnew <- W/rowSums(W,na.rm=TRUE)
200
-  IC.VC <- matrix(0,nr=m,nc=m)
200
+  IC.VC <- matrix(0,nrow=m,ncol=m)
201 201
   for(i in 1:n){
202 202
     temp <- crossprod(t(sqrt(Wnew[,i])*IC[,i]))
203 203
     temp[is.na(temp)] <- 0
... ...
@@ -222,7 +222,7 @@ IC.CorXW.NA <- function(X,W,N,M,output){
222 222
   EXW <- rowSums(XW)/rowSums(W)
223 223
   ICW.i <- X-EXW
224 224
   Wnew <- W/rowSums(W,na.rm=T)
225
-  IC.VC <- matrix(0,nr=m,nc=m)
225
+  IC.VC <- matrix(0,nrow=m,ncol=m)
226 226
   for(i in 1:n){
227 227
     temp <- crossprod(t(sqrt(Wnew[,i])*X[,i]))
228 228
     temp[is.na(temp)] <- 0
... ...
@@ -246,7 +246,7 @@ insert.NA <- function(orig.NA, res.vec){
246 246
 # This is the difference between estimates for
247 247
 # a sample size of one and a sample of size n.
248 248
 diffs.1.N <- function(vec1, vec2, e1, e2, e21, e22, e12){
249
-  diff.mat.1.N <- matrix(0,nr=5,nc=length(vec1))
249
+  diff.mat.1.N <- matrix(0,nrow=5,ncol=length(vec1))
250 250
   diff.mat.1.N[1,] <- vec1 - e1
251 251
   diff.mat.1.N[2,] <- vec2 - e2
252 252
   diff.mat.1.N[3,] <- vec1*vec1 - e21
Browse code

fixed t.quant.trans error

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/multtest@38657 bc3139a8-67e5-0310-9ffc-ced21a209358

Katherine S. Pollard authored on 09/04/2009 15:35:40
Showing 1 changed files
... ...
@@ -178,8 +178,8 @@ corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alterna
178 178
     }
179 179
     if(test=="z.cor" & marg.null=="t") warning("IC nulldist for z.cor already MVN. Transforming to N-2 df t marginal distribution not advised.")
180 180
     if(marg.null!="t" & marg.null!="perm") stop("IC nulldists can only be quantile transformed to a marginal t-distribution or user-supplied marginal permutation distribution")
181
-    if(marg.null=="t") nulldist <- t.quant.trans(nulldist,marg.null="t",marg.par,ncp=0,perm.mat=NULL)
182
-    if(marg.null=="perm") nulldist <- t.quant.trans(nulldist,marg.null="perm",marg.par=NULL,ncp=NULL,perm.mat=perm.mat)
181
+    if(marg.null=="t") nulldist <- tQuantTrans(nulldist,marg.null="t",marg.par,ncp=0,perm.mat=NULL)
182
+    if(marg.null=="perm") nulldist <- tQuantTrans(nulldist,marg.null="perm",marg.par=NULL,ncp=NULL,perm.mat=perm.mat)
183 183
   }
184 184
   if(alternative=="greater") nulldist <- nulldist
185 185
   else if(alternative=="less") nulldist <- -nulldist
... ...
@@ -267,7 +267,7 @@ out
267 267
 }
268 268
 
269 269
 ### Quantile transform streamlined for IC nulldists.
270
-t.quant.trans <- function(rawboot, marg.null, marg.par, ncp, perm.mat=NULL){
270
+tQuantTrans <- function(rawboot, marg.null, marg.par, ncp, perm.mat=NULL){
271 271
   m <- dim(rawboot)[1]
272 272
   B <- dim(rawboot)[2] 
273 273
   ranks <- t(apply(rawboot,1,rank,ties.method="random"))
Browse code

v1.99.3 major update with EBMTPs, new nulls, quantile mapping, etc

git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/multtest@38574 bc3139a8-67e5-0310-9ffc-ced21a209358

Katherine S. Pollard authored on 07/04/2009 20:27:18
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,321 @@
1
+
2
+# No robust correlation test statistics.
3
+# Want to return a 3 by M matrix of observations.
4
+corr.Tn <- function(X,test,alternative,use="pairwise"){
5
+  P <- dim(X)[1]
6
+  M <- P*(P-1)/2
7
+  N <- dim(X)[2]
8
+  VCM <- cov(t(X),use=use)
9
+  Cor <- cov2cor(VCM)
10
+  Cov.v <- VCM[lower.tri(VCM)] # vectorize.
11
+  Cor.v <- Cor[lower.tri(Cor)] # vectorize.
12
+  if(test=="t.cor") num <- sqrt(N-2)*Cor.v/sqrt(1-Cor.v^2)
13
+  if(test=="z.cor") num <- sqrt(N-3)*0.5*log((1+Cor.v)/(1-Cor.v))
14
+  denom <- 1
15
+  if(alternative=="two.sided"){
16
+			snum<-sign(num)
17
+		 	num<-abs(num)
18
+                      }
19
+  else {
20
+    if(alternative=="less"){
21
+      snum<-(-1)
22
+      num<-(-num)
23
+    }
24
+    else snum<-1
25
+    }
26
+  rbind(num,denom,snum)
27
+}
28
+
29
+ic.tests <- c("t.onesamp","t.pair","t.twosamp.equalvar","t.twosamp.unequalvar","lm.XvsZ","lm.YvsXZ","t.cor","z.cor")
30
+
31
+corr.null <- function(X,W=NULL,Y=NULL,Z=NULL,test="t.twosamp.unequalvar",alternative="two-sided",use="pairwise",B=1000,MVN.method="mvrnorm",penalty=1e-6,ic.quant.trans=FALSE,marg.null=NULL,marg.par=NULL,perm.mat=NULL){
32
+  # Most sanity checks conducted already...
33
+  p <- dim(X)[1]
34
+  m <- dim(X)[1] 
35
+  n <- dim(X)[2] 
36
+  cat("calculating vector influence curve...", "\n")
37
+
38
+  if(test=="t.onesamp" | test=="t.pair"){
39
+    #t.pair sanity checks and formatting done in stat.closure section
40
+    #in test.R
41
+    if(is.null(W)) IC.Cor <- cor(t(X),use=use)
42
+    else IC.Cor <- IC.CorXW.NA(X,W,N=n,M=p,output="cor")
43
+  }
44
+
45
+  if(test=="t.twosamp.equalvar" | test=="t.twosamp.unequalvar"){
46
+    uY<-sort(unique(Y))
47
+    if(length(uY)!=2) stop("Must have two class labels for this test")
48
+    n1 <- sum(Y==uY[1])
49
+    n2 <- sum(Y==uY[2])
50
+    if(is.null(W)){
51
+      cov1 <- cov(t(X[,Y==uY[1]]),use=use)
52
+      cov2 <- cov(t(X[,Y==uY[2]]),use=use)
53
+    }
54
+    else{
55
+      cov1 <- IC.CorXW.NA(X[,Y==uY[1]],W[,Y==uY[1]],N=n1,M=p,output="cov")
56
+      cov2 <- IC.CorXW.NA(X[,Y==uY[2]],W[,Y==uY[2]],N=n2,M=p,output="cov")
57
+    }
58
+    newcov <- cov1/n1 + cov2/n2
59
+    IC.Cor <- cov2cor(newcov)
60
+  }
61
+
62
+  # Regression ICs written to automatically incorporate weights.
63
+  # If W=NULL, then give equal weights.
64
+  if(test=="lm.XvsZ"){
65
+    if(is.null(Z)) Z <- matrix(1,nr=n,nc=1)
66
+    else Z <- cbind(Z,1)
67
+    if(is.null(W)) W <- matrix(1/n,nr=p,nc=n)
68
+    IC.i <- matrix(0,nr=m,nc=n)
69
+    for(i in 1:m){
70
+      drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,])
71
+      x <- as.numeric(X[i,!drop])
72
+      z <- Z[!drop,]
73
+      w <- W[i,!drop]
74
+      nn <- n-sum(drop)
75
+      EXtWXinv <- solve(t(z)%*%(w*diag(nn))%*%z)*sum(w)
76
+      res.m <- lm.wfit(z,x,w)$res
77
+      if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m)
78
+      EXtWXinvXt <- rep(0,n)
79
+      for(j in 1:n){
80
+        EXtWXinvXt[j] <- (EXtWXinv%*%(t(Z)[,j]))[1]
81
+      }
82
+      IC.i[i,] <- res.m * EXtWXinvXt
83
+    }
84
+    IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor")
85
+  }
86
+  
87
+  if(test=="lm.YvsXZ"){
88
+    if(is.null(Y)) stop("An outcome variable is needed for this test")
89
+    if(length(Y)!=n) stop(paste("Dimension of outcome Y=",length(Y),", not equal dimension of data=",n,sep=""))
90
+    if(is.null(Z)) Z <- matrix(1,n,1)
91
+    else Z <- cbind(Z,1)
92
+    if(is.null(W)) W <- matrix(1,nr=p,nc=n)
93
+    IC.i <- matrix(0,nr=m,nc=n)
94
+    for(i in 1:m){
95
+      drop <- is.na(X[i,]) | is.na(rowSums(Z)) | is.na(W[i,])
96
+      x <- as.numeric(X[i,!drop])
97
+      z <- Z[!drop,]
98
+      w <- W[i,!drop]
99
+      y <- Y[!drop]
100
+      nn <- n-sum(drop)
101
+      xz <- cbind(x,z)
102
+      XZ <- cbind(X[i,],Z)
103
+      EXtWXinv <- solve(t(xz)%*%(w*diag(nn))%*%xz)*sum(w)
104
+      res.m <- lm.wfit(xz,y,w)$res
105
+      if(sum(drop)>0) res.m <- insert.NA(which(drop==TRUE),res.m)
106
+      EXtWXinvXt <- rep(0,n)
107
+      for(j in 1:n){
108
+        EXtWXinvXt[j] <- (EXtWXinv%*%(t(XZ)[,j]))[1]
109
+      }
110
+      IC.i[i,] <- res.m * EXtWXinvXt
111
+    }
112
+    IC.Cor <- IC.Cor.NA(IC.i,W,N=n,M=p,output="cor")
113
+  }
114
+  
115
+  if(test=="t.cor" | test=="z.cor"){
116
+    if(!is.null(W)) warning("Weights not currently implemented for tests of correlation parameters.  Proceeding with unweighted version")
117
+    # Change of dimension
118
+    P <- dim(X)[1] -> p # Number of variables.
119
+    M <- P*(P-1)/2 -> m # Actual number of pairwise hypotheses.
120
+    N <- dim(X)[2] -> m
121
+    ind <- t(combn(P,2))
122
+    VCM <- cov(t(X),use="pairwise")
123
+    Cor <- cov2cor(VCM)
124
+    Vars <- diag(VCM)
125
+    Cov.v <- VCM[lower.tri(VCM)] # vectorize.
126
+    Cor.v <- Cor[lower.tri(Cor)] # vectorize.
127
+    X2 <- X*X
128
+    EX <- rowMeans(X,na.rm=TRUE)
129
+    E2X <- rowMeans(X2,na.rm=TRUE)
130
+    Var1.v <- Vars[ind[,1]]
131
+    Var2.v <- Vars[ind[,2]]
132
+    EX1.v <- EX[ind[,1]]
133
+    EX2.v <- EX[ind[,2]]
134
+    E2X1.v <- E2X[ind[,1]]
135
+    E2X2.v <- E2X[ind[,2]]
136
+    X.vec1 <- X[ind[,1],]
137
+    X.vec2 <- X[ind[,2],]
138
+    X.vec12 <- X.vec1*X.vec2
139
+    EX1X2.v <- rowMeans(X.vec12,na.rm=TRUE)
140
+
141
+    cons <- 1/sqrt(Var1.v*Var2.v)
142
+    gradient <- matrix(1,nr=M,nc=5)
143
+    gradient[,1] <- EX1.v*Cov.v/Var1.v - EX2.v
144
+    gradient[,2] <- EX2.v*Cov.v/Var2.v - EX1.v
145
+    gradient[,3] <- -0.5*Cov.v/Var1.v
146
+    gradient[,4] <- -0.5*Cov.v/Var2.v
147
+
148
+    IC.i <- matrix(0, nr=M, nc=N)
149
+    for(i in 1:N){
150
+      diffs.i <- diffs.1.N(X[ind[,1],i], X[ind[,2],i], EX1.v, EX2.v, E2X1.v, E2X2.v, EX1X2.v)
151
+      IC.M <- rep(0,M)
152
+      for(j in 1:M){
153
+        IC.M[j] <- gradient[j,]%*%diffs.i[,j]
154
+      }
155
+      IC.i[,i] <- IC.M
156
+    }
157
+    IC.i <- cons * IC.i
158
+    IC.Cor <- IC.Cor.NA(IC.i,W=NULL,N=n,M=M,output="cor")
159
+  }
160
+
161
+  if(ic.quant.trans==FALSE) cat("sampling null test statistics...", "\n\n")
162
+  else cat("sampling null test statistics...", "\n")
163
+  
164
+  if(MVN.method=="mvrnorm") nulldist <- t(mvrnorm(n=B,mu=rep(0,dim(IC.Cor)[1]),Sigma=IC.Cor))
165
+  if(MVN.method=="Cholesky"){
166
+    IC.chol <- t(chol(IC.Cor+penalty*diag(dim(IC.Cor)[1])))
167
+    norms <- matrix(rnorm(B*dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=B)
168
+    nulldist <- IC.chol%*%norms
169
+  }
170
+  if(ic.quant.trans==TRUE){
171
+    cat("applying quantile transform...", "\n\n")
172
+    if(is.null(marg.null)){
173
+	marg.null <- "t"
174
+     	if(test=="t.cor" | test=="z.cor" | test=="t.twosamp.equalvar") marg.par <- matrix(rep(dim(X)[2]-2,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
175
+        if(test=="lm.XvsZ") marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2],dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
176
+        if(test=="lm.YvsXZ")  marg.par <- matrix(rep(dim(X)[2]-dim(Z)[2]-1,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
177
+        else marg.par <- matrix(rep(dim(X)[2]-1,dim(IC.Cor)[1]),nr=dim(IC.Cor)[1],nc=1)
178
+    }
179
+    if(test=="z.cor" & marg.null=="t") warning("IC nulldist for z.cor already MVN. Transforming to N-2 df t marginal distribution not advised.")
180
+    if(marg.null!="t" & marg.null!="perm") stop("IC nulldists can only be quantile transformed to a marginal t-distribution or user-supplied marginal permutation distribution")
181
+    if(marg.null=="t") nulldist <- t.quant.trans(nulldist,marg.null="t",marg.par,ncp=0,perm.mat=NULL)
182
+    if(marg.null=="perm") nulldist <- t.quant.trans(nulldist,marg.null="perm",marg.par=NULL,ncp=NULL,perm.mat=perm.mat)
183
+  }
184
+  if(alternative=="greater") nulldist <- nulldist
185
+  else if(alternative=="less") nulldist <- -nulldist
186
+  else nulldist <- abs(nulldist)
187
+  nulldist
188
+}
189
+
190
+# Function, given ICs for each individual, returns variance covariance
191
+# matrix or corresponding correlation matrix.
192
+IC.Cor.NA <- function(IC,W,N,M,output){
193
+  n <- dim(IC)[2]
194
+  m <- dim(IC)[1]
195
+  if(is.null(W)){
196
+    W <- matrix(1,nr=dim(IC)[1],nc=dim(IC)[2])
197
+    Wnew <- W/rowSums(W,na.rm=TRUE) # Equal weight, NA handling.
198
+  }
199
+  else Wnew <- W/rowSums(W,na.rm=TRUE)
200
+  IC.VC <- matrix(0,nr=m,nc=m)
201
+  for(i in 1:n){
202
+    temp <- crossprod(t(sqrt(Wnew[,i])*IC[,i]))
203
+    temp[is.na(temp)] <- 0
204
+    IC.VC <- IC.VC + temp
205
+  }
206
+  if(output=="cov") out <- IC.VC
207
+  if(output=="cor") out <- cov2cor(IC.VC)
208
+  out
209
+}
210
+ 
211
+# Weighted correlation. Generalizes cov.wt() to account for a matrix
212
+# of weights. Uses IC formulation instead of sweep() and crossprod().
213
+# May be slower/clunkier, but pretty transparent, and allows for NA
214
+# handling much like cor(...,use="pairwise") would.  That is, each
215
+# element of the correlation matrix returned uses the maximum amount
216
+# of information possible in obtaining individual elements of that
217
+# matrix.
218
+IC.CorXW.NA <- function(X,W,N,M,output){
219
+  n <- dim(X)[2]
220
+  m <- dim(X)[1]
221
+  XW <- X*W
222
+  EXW <- rowSums(XW)/rowSums(W)
223
+  ICW.i <- X-EXW
224
+  Wnew <- W/rowSums(W,na.rm=T)
225
+  IC.VC <- matrix(0,nr=m,nc=m)
226
+  for(i in 1:n){
227
+    temp <- crossprod(t(sqrt(Wnew[,i])*X[,i]))
228
+    temp[is.na(temp)] <- 0
229
+    IC.VC <- IC.VC + temp
230
+  }
231
+  if(output=="cov") out <- IC.VC
232
+  if(output=="cor") out <- cov2cor(IC.VC)
233
+  out
234
+}
235
+
236
+# For regression ICs, a function to insert NAs into appropriate locations
237
+# of a vector of returned residuals.
238
+insert.NA <- function(orig.NA, res.vec){
239
+  for(i in 1:length(orig.NA)){
240
+    res.vec <- append(res.vec, NA, after=orig.NA[i]-1)
241
+  }
242
+  res.vec
243
+}
244
+
245
+# For correlation ICS, a function to get diff vectors for all M.
246
+# This is the difference between estimates for
247
+# a sample size of one and a sample of size n.
248
+diffs.1.N <- function(vec1, vec2, e1, e2, e21, e22, e12){
249
+  diff.mat.1.N <- matrix(0,nr=5,nc=length(vec1))
250
+  diff.mat.1.N[1,] <- vec1 - e1
251
+  diff.mat.1.N[2,] <- vec2 - e2
252
+  diff.mat.1.N[3,] <- vec1*vec1 - e21
253
+  diff.mat.1.N[4,] <- vec2*vec2 - e22
254
+  diff.mat.1.N[5,] <- vec1*vec2 - e12
255
+  diff.mat.1.N
256
+}
257
+
258
+### For quantile transform, take a sample from the marginal null distribution.
259
+marg.samp <- function(marg.null,marg.par,m,B,ncp){
260
+out <- matrix(0,m,B)
261
+for(i in 1:m){
262
+  if(marg.null=="normal") out[i,] <- rnorm(B,mean=marg.par[i,1],sd=marg.par[i,2])
263
+  if(marg.null=="t") out[i,] <- rt(B,df=marg.par[i,1],ncp)
264
+  if(marg.null=="f") out[i,] <- rf(B,df1=marg.par[i,1],df2=marg.par[i,2],ncp)
265
+}
266
+out
267
+}
268
+
269
+### Quantile transform streamlined for IC nulldists.
270
+t.quant.trans <- function(rawboot, marg.null, marg.par, ncp, perm.mat=NULL){
271
+  m <- dim(rawboot)[1]
272
+  B <- dim(rawboot)[2] 
273
+  ranks <- t(apply(rawboot,1,rank,ties.method="random"))
274
+  if(marg.null=="t") Z.quant <- marg.samp(marg.null="t",marg.par,m,B,ncp)
275
+  if(marg.null=="perm") Z.quant <- perm.mat
276
+  Z.quant <- t(apply(Z.quant,1,sort))
277
+  if(marg.null!="perm"){                   
278
+      for(i in 1:m){                         
279
+        Z.quant[i,] <- Z.quant[i,][ranks[i,]]
280
+      }
281
+    }
282
+  else{
283
+    Z.quant <- t(apply(Z.quant,1,quantile,probs=seq(0,1,length.out=B),na.rm=TRUE))
284
+      for(i in 1:m){                         
285
+        Z.quant[i,] <- Z.quant[i,][ranks[i,]]
286
+      }
287
+    }
288
+  Z.quant
289
+}
290
+
291
+### Effective df for two sample test of means, unequal var.
292
+t.effective.df <- function(X,Y){
293
+  uY<-sort(unique(Y))
294
+  X1 <- X[Y==uY[1]]
295
+  X2 <- X[Y==uY[2]]
296
+  mu <- var(X2)/var(X1)
297
+  n1 <- length(Y[Y==uY[1]])
298
+  n2 <- length(Y[Y==uY[2]])
299
+  df <- (((1/n1)+(mu/n2))^2)/(1/((n1^2)*(n1-1)) + (mu^2)/((n2^2)*(n2-1)))
300
+  df
301
+}
302
+
303
+
304
+
305
+
306
+
307
+
308
+    
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+