Browse code

adjusting examples

Sokratis Kariotis authored on 16/06/2022 07:46:31
Showing 19 changed files

... ...
@@ -2,7 +2,7 @@ Package: omada
2 2
 Type: Package
3 3
 Title: Machine learning tools for automated transcriptome 
4 4
     clustering analysis
5
-Version: 0.99.12
5
+Version: 0.99.13
6 6
 Authors@R: person("Sokratis Kariotis", "Developer", role = c("aut", "cre"),
7 7
                      email = "[email protected]")
8 8
 Description: Symptomatic heterogeneity in complex diseases reveals differences 
... ...
@@ -13,9 +13,7 @@
13 13
 #'
14 14
 #' @examples
15 15
 #' clusteringMethodSelection(toy_genes, method.upper.k = 3,
16
-#' number.of.comparisons = 4)
17
-#' clusteringMethodSelection(toy_genes, method.upper.k = 2,
18
-#' number.of.comparisons = 2)
16
+#' number.of.comparisons = 3)
19 17
 #'
20 18
 #' @import ggplot2
21 19
 #' @importFrom clValid clusters
... ...
@@ -13,7 +13,6 @@
13 13
 #' @export
14 14
 #'
15 15
 #' @examples
16
-#' feasibilityAnalysisDataBased(data = toy_genes, classes = 3)
17 16
 #' feasibilityAnalysisDataBased(data = toy_genes, classes = 2)
18 17
 #'
19 18
 #' @importFrom fpc speccCBI
... ...
@@ -14,8 +14,7 @@
14 14
 #' @export
15 15
 #'
16 16
 #' @examples
17
-#' feasibilityAnalysis(classes = 3, samples = 320, features = 400)
18
-#' feasibilityAnalysis(classes = 4, samples = 400, features = 120)
17
+#' feasibilityAnalysis(classes = 2, samples = 20, features = 30)
19 18
 #'
20 19
 #' @importFrom fpc speccCBI
21 20
 
... ...
@@ -13,7 +13,6 @@
13 13
 #' @export
14 14
 #'
15 15
 #' @examples
16
-#' featureSelection(toy_genes, min.k = 3, max.k = 9, step = 3)
17 16
 #' featureSelection(toy_genes, min.k = 2, max.k = 4, step = 4)
18 17
 #'
19 18
 #' @importFrom fpc speccCBI
... ...
@@ -5,7 +5,7 @@
5 5
 #' @export
6 6
 #'
7 7
 #' @examples
8
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
8
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
9 9
 #' average.sts.k <- get_average_stabilities_per_k(fa.object)
10 10
 get_average_stabilities_per_k <- function(object) {
11 11
     UseMethod("get_average_stabilities_per_k")
... ...
@@ -5,7 +5,7 @@
5 5
 #' @export
6 6
 #'
7 7
 #' @examples
8
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
8
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
9 9
 #' average.st <- get_average_stability(fa.object)
10 10
 get_average_stability <- function(object) {
11 11
     UseMethod("get_average_stability")
... ...
@@ -5,7 +5,7 @@
5 5
 #' @export
6 6
 #'
7 7
 #' @examples
8
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
8
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
9 9
 #' maximum.st <- get_max_stability(fa.object)
10 10
 get_max_stability <- function(object) {
11 11
     UseMethod("get_max_stability")
... ...
@@ -16,7 +16,6 @@
16 16
 #' @export
17 17
 #'
18 18
 #' @examples
19
-#' omada(toy_genes, method.upper.k = 5)
20 19
 #' omada(toy_genes, method.upper.k = 3)
21 20
 
22 21
 omada <- function(data, method.upper.k = 5) {
... ...
@@ -11,7 +11,6 @@
11 11
 #' @export
12 12
 #'
13 13
 #' @examples
14
-#' optimalClustering(toy_genes, 4,"spectral")
15 14
 #' optimalClustering(toy_genes, 2,"kmeans")
16 15
 #'
17 16
 #' @importFrom fpc speccCBI hclustCBI kmeansCBI
... ...
@@ -24,8 +24,6 @@ Method Selection through intra-method Consensus Partition Consistency
24 24
 }
25 25
 \examples{
26 26
 clusteringMethodSelection(toy_genes, method.upper.k = 3,
27
-number.of.comparisons = 4)
28
-clusteringMethodSelection(toy_genes, method.upper.k = 2,
29
-number.of.comparisons = 2)
27
+number.of.comparisons = 3)
30 28
 
31 29
 }
... ...
@@ -26,7 +26,6 @@ Simulating dataset and calculate stabilities over different number of
26 26
 clusters
27 27
 }
28 28
 \examples{
29
-feasibilityAnalysis(classes = 3, samples = 320, features = 400)
30
-feasibilityAnalysis(classes = 4, samples = 400, features = 120)
29
+feasibilityAnalysis(classes = 2, samples = 20, features = 30)
31 30
 
32 31
 }
... ...
@@ -25,7 +25,6 @@ Simulating dataset based on existing dataset's dimensions, mean and standard
25 25
 deviation
26 26
 }
27 27
 \examples{
28
-feasibilityAnalysisDataBased(data = toy_genes, classes = 3)
29 28
 feasibilityAnalysisDataBased(data = toy_genes, classes = 2)
30 29
 
31 30
 }
... ...
@@ -25,7 +25,6 @@ the selected features
25 25
 Predictor variable subsampling sets and bootstrapping stability set selection
26 26
 }
27 27
 \examples{
28
-featureSelection(toy_genes, min.k = 3, max.k = 9, step = 3)
29 28
 featureSelection(toy_genes, min.k = 2, max.k = 4, step = 4)
30 29
 
31 30
 }
... ...
@@ -16,6 +16,6 @@ Average stabilities for all numbers of clusters(k)
16 16
 Get average stabilities for all numbers of clusters(k)
17 17
 }
18 18
 \examples{
19
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
19
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
20 20
 average.sts.k <- get_average_stabilities_per_k(fa.object)
21 21
 }
... ...
@@ -16,6 +16,6 @@ The average stability(over all k)
16 16
 Get the average stability(over all k)
17 17
 }
18 18
 \examples{
19
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
19
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
20 20
 average.st <- get_average_stability(fa.object)
21 21
 }
... ...
@@ -16,6 +16,6 @@ The maximum stability
16 16
 Get the maximum stability
17 17
 }
18 18
 \examples{
19
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15)
19
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15)
20 20
 maximum.st <- get_max_stability(fa.object)
21 21
 }
... ...
@@ -27,6 +27,5 @@ A wrapper function that utilizes all tools to produce the optimal
27 27
 sample memberships
28 28
 }
29 29
 \examples{
30
-omada(toy_genes, method.upper.k = 5)
31 30
 omada(toy_genes, method.upper.k = 3)
32 31
 }
... ...
@@ -22,7 +22,6 @@ stability score and parameter used
22 22
 Clustering with the optimal parameters estimated by these tools
23 23
 }
24 24
 \examples{
25
-optimalClustering(toy_genes, 4,"spectral")
26 25
 optimalClustering(toy_genes, 2,"kmeans")
27 26
 
28 27
 }