... | ... |
@@ -2,7 +2,7 @@ Package: omada |
2 | 2 |
Type: Package |
3 | 3 |
Title: Machine learning tools for automated transcriptome |
4 | 4 |
clustering analysis |
5 |
-Version: 0.99.12 |
|
5 |
+Version: 0.99.13 |
|
6 | 6 |
Authors@R: person("Sokratis Kariotis", "Developer", role = c("aut", "cre"), |
7 | 7 |
email = "[email protected]") |
8 | 8 |
Description: Symptomatic heterogeneity in complex diseases reveals differences |
... | ... |
@@ -13,9 +13,7 @@ |
13 | 13 |
#' |
14 | 14 |
#' @examples |
15 | 15 |
#' clusteringMethodSelection(toy_genes, method.upper.k = 3, |
16 |
-#' number.of.comparisons = 4) |
|
17 |
-#' clusteringMethodSelection(toy_genes, method.upper.k = 2, |
|
18 |
-#' number.of.comparisons = 2) |
|
16 |
+#' number.of.comparisons = 3) |
|
19 | 17 |
#' |
20 | 18 |
#' @import ggplot2 |
21 | 19 |
#' @importFrom clValid clusters |
... | ... |
@@ -14,8 +14,7 @@ |
14 | 14 |
#' @export |
15 | 15 |
#' |
16 | 16 |
#' @examples |
17 |
-#' feasibilityAnalysis(classes = 3, samples = 320, features = 400) |
|
18 |
-#' feasibilityAnalysis(classes = 4, samples = 400, features = 120) |
|
17 |
+#' feasibilityAnalysis(classes = 2, samples = 20, features = 30) |
|
19 | 18 |
#' |
20 | 19 |
#' @importFrom fpc speccCBI |
21 | 20 |
|
... | ... |
@@ -5,7 +5,7 @@ |
5 | 5 |
#' @export |
6 | 6 |
#' |
7 | 7 |
#' @examples |
8 |
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
8 |
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
9 | 9 |
#' average.sts.k <- get_average_stabilities_per_k(fa.object) |
10 | 10 |
get_average_stabilities_per_k <- function(object) { |
11 | 11 |
UseMethod("get_average_stabilities_per_k") |
... | ... |
@@ -5,7 +5,7 @@ |
5 | 5 |
#' @export |
6 | 6 |
#' |
7 | 7 |
#' @examples |
8 |
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
8 |
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
9 | 9 |
#' average.st <- get_average_stability(fa.object) |
10 | 10 |
get_average_stability <- function(object) { |
11 | 11 |
UseMethod("get_average_stability") |
... | ... |
@@ -5,7 +5,7 @@ |
5 | 5 |
#' @export |
6 | 6 |
#' |
7 | 7 |
#' @examples |
8 |
-#' fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
8 |
+#' fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
9 | 9 |
#' maximum.st <- get_max_stability(fa.object) |
10 | 10 |
get_max_stability <- function(object) { |
11 | 11 |
UseMethod("get_max_stability") |
... | ... |
@@ -24,8 +24,6 @@ Method Selection through intra-method Consensus Partition Consistency |
24 | 24 |
} |
25 | 25 |
\examples{ |
26 | 26 |
clusteringMethodSelection(toy_genes, method.upper.k = 3, |
27 |
-number.of.comparisons = 4) |
|
28 |
-clusteringMethodSelection(toy_genes, method.upper.k = 2, |
|
29 |
-number.of.comparisons = 2) |
|
27 |
+number.of.comparisons = 3) |
|
30 | 28 |
|
31 | 29 |
} |
... | ... |
@@ -26,7 +26,6 @@ Simulating dataset and calculate stabilities over different number of |
26 | 26 |
clusters |
27 | 27 |
} |
28 | 28 |
\examples{ |
29 |
-feasibilityAnalysis(classes = 3, samples = 320, features = 400) |
|
30 |
-feasibilityAnalysis(classes = 4, samples = 400, features = 120) |
|
29 |
+feasibilityAnalysis(classes = 2, samples = 20, features = 30) |
|
31 | 30 |
|
32 | 31 |
} |
... | ... |
@@ -25,7 +25,6 @@ the selected features |
25 | 25 |
Predictor variable subsampling sets and bootstrapping stability set selection |
26 | 26 |
} |
27 | 27 |
\examples{ |
28 |
-featureSelection(toy_genes, min.k = 3, max.k = 9, step = 3) |
|
29 | 28 |
featureSelection(toy_genes, min.k = 2, max.k = 4, step = 4) |
30 | 29 |
|
31 | 30 |
} |
... | ... |
@@ -16,6 +16,6 @@ Average stabilities for all numbers of clusters(k) |
16 | 16 |
Get average stabilities for all numbers of clusters(k) |
17 | 17 |
} |
18 | 18 |
\examples{ |
19 |
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
19 |
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
20 | 20 |
average.sts.k <- get_average_stabilities_per_k(fa.object) |
21 | 21 |
} |
... | ... |
@@ -16,6 +16,6 @@ The average stability(over all k) |
16 | 16 |
Get the average stability(over all k) |
17 | 17 |
} |
18 | 18 |
\examples{ |
19 |
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
19 |
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
20 | 20 |
average.st <- get_average_stability(fa.object) |
21 | 21 |
} |
... | ... |
@@ -16,6 +16,6 @@ The maximum stability |
16 | 16 |
Get the maximum stability |
17 | 17 |
} |
18 | 18 |
\examples{ |
19 |
-fa.object <- feasibilityAnalysis(classes = 4, samples = 50, features = 15) |
|
19 |
+fa.object <- feasibilityAnalysis(classes = 2, samples = 10, features = 15) |
|
20 | 20 |
maximum.st <- get_max_stability(fa.object) |
21 | 21 |
} |