% Generated by roxygen2: do not edit by hand % Please edit documentation in R/correlatePCs.R \name{correlatePCs} \alias{correlatePCs} \title{Principal components (cor)relation with experimental covariates} \usage{ correlatePCs(pcaobj, coldata, pcs = 1:4) } \arguments{ \item{pcaobj}{A \code{prcomp} object} \item{coldata}{A \code{data.frame} object containing the experimental covariates} \item{pcs}{A numeric vector, containing the corresponding PC number} } \value{ A \code{data.frame} object with computed p values for each covariate and for each principal component } \description{ Computes the significance of (cor)relations between PCA scores and the sample experimental covariates, using Kruskal-Wallis test for categorial variables and the \code{cor.test} based on Spearman's correlation for continuous variables } \examples{ library(DESeq2) dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1) rlt <- DESeq2::rlogTransformation(dds) pcaobj <- prcomp(t(assay(rlt))) correlatePCs(pcaobj, colData(dds)) }