... | ... |
@@ -1,7 +1,9 @@ |
1 | 1 |
#' evaluateClustering |
2 | 2 |
#' |
3 | 3 |
#' Evaluates a clustering using 'true' labels. Entries with missing true labels |
4 |
-#' (i.e. NA) are excluded from calculations. |
|
4 |
+#' (i.e. NA) are excluded from calculations. If using `evaluteClustering` in a |
|
5 |
+#' custom pipeline, you might want to use the corresponding |
|
6 |
+#' `pipeComp:::.aggregateClusterEvaluation` aggregation function. |
|
5 | 7 |
#' |
6 | 8 |
#' @param x The clustering labels |
7 | 9 |
#' @param tl The true labels |
... | ... |
@@ -123,6 +125,8 @@ evaluateClustering <- function(x, tl=NULL){ |
123 | 125 |
#' evaluateDimRed |
124 | 126 |
#' |
125 | 127 |
#' Gathers evaluation statistics on a reduced space using known cell labels. |
128 |
+#' If using `evaluteDimRed` in a custom pipeline, you will probably want to use |
|
129 |
+#' `pipeComp:::.aggregateDR` as the corresponding aggregation function. |
|
126 | 130 |
#' |
127 | 131 |
#' @param x The matrix of the reduced space, with cells as rows and components |
128 | 132 |
#' as columns |
... | ... |
@@ -17,7 +17,9 @@ details) |
17 | 17 |
} |
18 | 18 |
\description{ |
19 | 19 |
Evaluates a clustering using 'true' labels. Entries with missing true labels |
20 |
-(i.e. NA) are excluded from calculations. |
|
20 |
+(i.e. NA) are excluded from calculations. If using `evaluteClustering` in a |
|
21 |
+custom pipeline, you might want to use the corresponding |
|
22 |
+`pipeComp:::.aggregateClusterEvaluation` aggregation function. |
|
21 | 23 |
} |
22 | 24 |
\examples{ |
23 | 25 |
# random data |
... | ... |
@@ -17,7 +17,8 @@ to gather statistics (default `c(10,20,50)`). Will use all available |
17 | 17 |
dimensions if a higher number is given.} |
18 | 18 |
|
19 | 19 |
\item{covars}{A character vectors containing any additional covariates |
20 |
-(column names of `colData`) to track during evalutation.} |
|
20 |
+(column names of `colData`) to track during evalutation. If missing, will |
|
21 |
+attempt to use default covariates. To disable, set `covars=c()`.} |
|
21 | 22 |
} |
22 | 23 |
\value{ |
23 | 24 |
A list with the following components: |
... | ... |
@@ -30,6 +31,8 @@ explained by the clusters (i.e. R-squared of a linear model). |
30 | 31 |
} |
31 | 32 |
\description{ |
32 | 33 |
Gathers evaluation statistics on a reduced space using known cell labels. |
34 |
+If using `evaluteDimRed` in a custom pipeline, you will probably want to use |
|
35 |
+`pipeComp:::.aggregateDR` as the corresponding aggregation function. |
|
33 | 36 |
} |
34 | 37 |
\examples{ |
35 | 38 |
# random data |