Browse code

updated documentation

Pierre-Luc Germain authored on 29/10/2020 10:56:29
Showing 3 changed files

... ...
@@ -1,7 +1,9 @@
1 1
 #' evaluateClustering
2 2
 #'
3 3
 #' Evaluates a clustering using 'true' labels. Entries with missing true labels
4
-#' (i.e. NA) are excluded from calculations.
4
+#' (i.e. NA) are excluded from calculations. If using `evaluteClustering` in a
5
+#' custom pipeline, you might want to use the corresponding 
6
+#' `pipeComp:::.aggregateClusterEvaluation` aggregation function.
5 7
 #'
6 8
 #' @param x The clustering labels
7 9
 #' @param tl The true labels
... ...
@@ -123,6 +125,8 @@ evaluateClustering <- function(x, tl=NULL){
123 125
 #' evaluateDimRed
124 126
 #'
125 127
 #' Gathers evaluation statistics on a reduced space using known cell labels.
128
+#' If using `evaluteDimRed` in a custom pipeline, you will probably want to use
129
+#' `pipeComp:::.aggregateDR` as the corresponding aggregation function.
126 130
 #'
127 131
 #' @param x The matrix of the reduced space, with cells as rows and components 
128 132
 #' as columns
... ...
@@ -17,7 +17,9 @@ details)
17 17
 }
18 18
 \description{
19 19
 Evaluates a clustering using 'true' labels. Entries with missing true labels
20
-(i.e. NA) are excluded from calculations.
20
+(i.e. NA) are excluded from calculations. If using `evaluteClustering` in a
21
+custom pipeline, you might want to use the corresponding 
22
+`pipeComp:::.aggregateClusterEvaluation` aggregation function.
21 23
 }
22 24
 \examples{
23 25
 # random data
... ...
@@ -17,7 +17,8 @@ to gather statistics (default `c(10,20,50)`). Will use all available
17 17
 dimensions if a higher number is given.}
18 18
 
19 19
 \item{covars}{A character vectors containing any additional covariates 
20
-(column names of `colData`) to track during evalutation.}
20
+(column names of `colData`) to track during evalutation. If missing, will
21
+attempt to use default covariates. To disable, set `covars=c()`.}
21 22
 }
22 23
 \value{
23 24
 A list with the following components:
... ...
@@ -30,6 +31,8 @@ explained by the clusters (i.e. R-squared of a linear model).
30 31
 }
31 32
 \description{
32 33
 Gathers evaluation statistics on a reduced space using known cell labels.
34
+If using `evaluteDimRed` in a custom pipeline, you will probably want to use
35
+`pipeComp:::.aggregateDR` as the corresponding aggregation function.
33 36
 }
34 37
 \examples{
35 38
 # random data