Name Mode Size
R 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitattributes 100644 0 kb
.gitignore 100644 0 kb
.travis.yml 100644 0 kb
CONDUCT.md 100644 3 kb
DESCRIPTION 100644 4 kb
LICENSE 100644 0 kb
NAMESPACE 100644 9 kb
NEWS 100644 21 kb
README.md 100644 10 kb
appveyor.yml 100644 1 kb
codecov.yml 100644 0 kb
psichomics.Rproj 100644 0 kb
screenshot.png 100644 294 kb
README.md
# psichomics [![Build Status][travisIcon]][travis] [![AppVeyor Build Status][appVeyorIcon]][appVeyor] [![codecov][codecovIcon]][codecov] > **Original article:** > > Nuno Saraiva-Agostinho and Nuno L. Barbosa-Morais (2018). [psichomics: graphical application for alternative splicing quantification and analysis][article]. *Nucleic Acids Research*. Interactive R package with an intuitive Shiny-based graphical interface for alternative splicing quantification and integrative analyses of alternative splicing and gene expression based on [The Cancer Genome Atlas (TCGA)][TCGA], the [Genotype-Tissue Expression (GTEx) project][GTEx], [Sequence Read Archive (SRA)][SRA] and user-provided data. *psichomics* interactively performs survival, dimensionality reduction and median- and variance-based differential splicing and gene expression analyses that benefit from the incorporation of clinical and molecular sample-associated features (such as tumour stage or survival). Interactive visual access to genomic mapping and functional annotation of selected alternative splicing events is also included. ![Differential splicing analysis in *psichomics*](screenshot.png) ## Table of Contents * [Install and start running](#install-and-start-running) * [Bioconductor release](#bioconductor-release) * [GitHub version](#github-version) * [Tutorials](#tutorials) * [Data input](#data-input) * [Download TCGA data](#download-tcga-data) * [Load GTEx data](#load-gtex-data) * [Load SRA data](#load-sra-data) * [Load user-provided files](#load-user-provided-files) * [Splicing quantification](#splicing-quantification) * [Gene expression processing](#gene-expression-processing) * [Data analyses](#data-analyses) * [Differential splicing and gene expression analysis](#differential-splicing-and-gene-expression-analysis) * [Dimensionality reduction](#dimensionality-reduction) * [Survival analysis](#survival-analysis) * [Gene, transcript and protein information](#gene-transcript-and-protein-information) * [Correlation between gene expression and splicing quantification](#correlation-between-gene-expression-and-splicing-quantification) * [Data grouping](#data-grouping) * [Feedback and support](#feedback-and-support) * [Contributions](#contributions) * [References](#references) ## Install and start running ### Bioconductor release To install the package from [Bioconductor][bioconductor], type the following in [RStudio][rstudio] or in an R console: ```r install.packages("BiocManager") BiocManager::install("psichomics") ``` ### GitHub version To install and start using the GitHub version (that may be updated faster than its Bioconductor counterpart), follow the following steps: 1. [Install R][r] 2. Depending on your operative system, install: - [Rtools](https://cran.r-project.org/bin/windows/Rtools/) (Windows) - [Xcode command-line tools](https://developer.apple.com/downloads) (Mac) - **r-devel** or **r-base-dev** (Linux) 3. Open [RStudio][rstudio] or an R console 4. Install [Bioconductor][bioconductor] with: - `install.packages("BiocManager")` 5. Install, load and start the visual interface with: ```r install.packages("devtools") devtools::install_github("nuno-agostinho/psichomics") library(psichomics) psichomics() ``` #### Running the latest versions of *psichomics* in R 3.2 or newer If you prefer to run *psichomics* in an older R version (3.2 or newer), run the following commands (note that the newest versions of *psichomics* were not tested in older R versions and some features may not be supported): ```r install.packages("devtools") devtools::install_github("nuno-agostinho/psichomics", ref="R3.2") library(psichomics) psichomics() ``` ## Tutorials The following case studies and tutorials are available and were based on our [original article][article] (currently in preprint): * [Visual interface][tutorial-gui] * [Command-line interface][tutorial-cli] * [Loading SRA and user-provided RNA-seq data][tutorial-custom-data] * [Preparing alternative splicing annotations][tutorial-prep-AS-annotation] ## Data input ### Download TCGA Data Pre-processed data of given tumours of interest can be automatically downloaded from [TCGA][TCGA]. Subject- and sample-associated information, junction quantification and gene expression data from TCGA are supported. ### Load GTEx Data GTEx data needs to be manually downloaded from the [GTEx Portal][GTEx]. Subject- and sample-associated data, junction quantification and gene expression data from GTEx are supported. ### Load SRA Data Although only select [SRA][SRA] projects are available to be automatically downloaded (based on pre-processed data from the [recount2][recount2] project), other SRA projects can be manually downloaded, aligned using a splice-aware aligner and loaded by the user, as per the instructions in [Loading SRA and user-provided RNA-seq data][tutorial-custom-data]. Sample-associated files from SRA are also supported. ### Load user-provided files User-provided files (including subject-associated data, sample-associated data, junction quantification, alternative splicing quantification and gene expression) can be loaded as per the instructions in [Loading SRA and user-provided RNA-seq data][tutorial-custom-data]. ## Splicing quantification The quantification of each alternative splicing event is based on the proportion of junction reads that support the inclusion isoform, known as percent spliced-in or PSI [(Wang *et al.*, 2008)][Wang2008]. An estimate of this value is obtained based on the the proportion of reads supporting the inclusion of an exon over the reads supporting both the inclusion and exclusion of that exon. To measure this estimate, both alternative splicing annotation and the quantification of RNA-Seq reads aligning to splice junctions (junction quantification) are required. While alternative splicing Human (hg19 and hg38 assemblies) annotation is provided within the package, junction quantification may be handed by the user or retrieved from [TCGA][TCGA], [GTEx][GTEx] and [SRA][SRA]. ## Gene expression processing Gene expression can be normalised, filtered and log2-transformed in-app. Alternatively, the user can also provide its own pre-processed gene expression file. ## Data grouping Molecular and clinical sample-associated attributes allow to establish groups that can be explored in data analyses. For instance, [TCGA][TCGA] data can be analysed based on smoking history, gender and race, among other attributes. Groups can also be manipulated (e.g. merged, intersected, etc.), allowing for complex attribute combinations, as well as saved and loaded between sessions. ## Data Analyses ### Dimensionality reduction Perform principal and independent component analysis (PCA and ICA, respectively) on alternative splicing quantification and gene expression based on the previously created groups. ### Differential splicing and gene expression analysis Analyse alternative splicing quantification (based on variance and median statistical tests) and gene expression data based on the previously created groups. ### Correlation between gene expression and splicing quantification Test the correlation betweem the gene expression of a specific gene with the alternative splicing quantification of selected alternative splicing events. ### Survival analysis Perform Kaplan-Meier curves and Cox models based on sample-associated features. Additionally, study the impact of a splicing event (based on its quantification) or a gene (based on its gene expression) on patient survivability. ### Gene, transcript and protein information Examine the annotation and corresponding transcripts and proteins for a gene of interest. Relevant research articles are also presented here. ## Feedback and support All feedback on the program, documentation and associated material is welcome. Please send any suggestions and comments to: > Nuno Saraiva-Agostinho ([[email protected]](mailto:[email protected])) > > [Disease Transcriptomics Lab, Instituto de Medicina Molecular (Portugal)][NMorais] ## Contributions Please note that this project is released with a [Contributor Code of Conduct][conduct]. By participating in this project you agree to abide by its terms. ## References Wang, E. T., R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F. Kingsmore, G. P. Schroth, and C. B. Burge. 2008. [*Alternative isoform regulation in human tissue transcriptomes.*][Wang2008] Nature 456 (7221): 470–76. [TCGA]: https://tcga-data.nci.nih.gov [bioconductor]: https://www.bioconductor.org [r]: https://www.r-project.org [rstudio]: https://www.rstudio.com/products/rstudio [NMorais]: http://imm.medicina.ulisboa.pt/group/distrans/ [conduct]: CONDUCT.md [Wang2008]: http://www.nature.com/nature/journal/v456/n7221/full/nature07509.html [travisIcon]: https://travis-ci.org/nuno-agostinho/psichomics.svg?branch=master [travis]: https://travis-ci.org/nuno-agostinho/psichomics [appVeyorIcon]: https://ci.appveyor.com/api/projects/status/github/nuno-agostinho/psichomics?branch=master&svg=true [appVeyor]: https://ci.appveyor.com/project/nuno-agostinho/psichomics [codecovIcon]: https://codecov.io/gh/nuno-agostinho/psichomics/branch/master/graph/badge.svg [codecov]: https://codecov.io/gh/nuno-agostinho/psichomics [GTEx]: http://www.gtexportal.org [article]: https://doi.org/10.1093/nar/gky888 [SRA]: https://www.ncbi.nlm.nih.gov/sra [tutorial-gui]: http://rpubs.com/nuno-agostinho/psichomics-tutorial-visual [tutorial-cli]: http://rpubs.com/nuno-agostinho/psichomics-cli-tutorial [tutorial-custom-data]: http://rpubs.com/nuno-agostinho/psichomics-custom-data [tutorial-prep-AS-annotation]: http://rpubs.com/nuno-agostinho/preparing-AS-annotation [recount2]: https://jhubiostatistics.shinyapps.io/recount/