% Generated by roxygen2: do not edit by hand % Please edit documentation in R/reduction-methods.R \name{poplin_reduce_pca} \alias{poplin_reduce_pca} \alias{poplin_reduce_pca,poplin-method} \title{Principal component analysis (PCA)} \usage{ \S4method{poplin_reduce_pca}{matrix}(x, ncomp = 2, center = TRUE, scale = FALSE, ...) \S4method{poplin_reduce_pca}{poplin}( x, poplin_in, poplin_out, ncomp = 2, center = 2, scale = FALSE, ... ) } \arguments{ \item{x}{A matrix or \linkS4class{poplin} object.} \item{ncomp}{Output dimensionality.} \item{center}{A logical indicating mean-centering prior to PCA.} \item{scale}{A logical indicating unit variance scaling prior to PCA.} \item{...}{Additional arguments passed to \link[pcaMethods:bpca]{pcaMethods::bpca}.} \item{poplin_in}{Name of a data matrix to retrieve.} \item{poplin_out}{Name of a data matrix to store.} } \value{ A poplin.pca matrix or \linkS4class{poplin} object with the same number of rows as \code{ncol(x)} containing the dimension reduction result. } \description{ Apply PCA to a matrix or \linkS4class{poplin} object. For the data without missing values, PCA is performed via a singular value decomposition. Otherwise, Bayesian PCA is performed using \link[pcaMethods:bpca]{pcaMethods::bpca} from the \pkg{pcaMethods} package. Note that Bayesian PCA does not force orthogonality between factor loadings. } \references{ Shigeyuki Oba, Masa-aki Sato, Ichiro Takemasa, Morito Monden, Ken-ichi Matsubara, Shin Ishii, A Bayesian missing value estimation method for gene expression profile data, Bioinformatics, Volume 19, Issue 16, 1 November 2003, Pages 2088–2096, https://doi.org/10.1093/bioinformatics/btg287 } \seealso{ Other data reduction methods: \code{\link{poplin_reduce_plsda}()}, \code{\link{poplin_reduce_tsne}()}, \code{\link{poplin_reduce}()} } \concept{data reduction methods}