man/p_thres.Rd
0065b788
 % Generated by roxygen2: do not edit by hand
 % Please edit documentation in R/class.R
 \name{p_thres}
 \alias{p_thres}
a599c916
 \alias{p_thres<-,scAnnotatR-method}
0065b788
 \title{p_thres}
 \usage{
 p_thres(classifier)
a599c916
 
 \S4method{p_thres}{scAnnotatR}(classifier) <- value
0065b788
 }
 \arguments{
a599c916
 \item{classifier}{scAnnotatR object. 
 The object is returned from the train_classifier function.}
 
 \item{value}{the new threshold}
0065b788
 }
 \value{
 Predicting probability threshold of object
a599c916
 
 scAnnotatR object with the new threshold.
0065b788
 }
 \description{
 Returns the probability threshold for the given classifier.
 }
 \examples{
 data("tirosh_mel80_example")
7e9ee09d
 selected_marker_genes_B = c("CD19", "MS4A1", "CD79A")
0065b788
 set.seed(123)
a212ecf0
 classifier_b <- train_classifier(train_obj = tirosh_mel80_example,
 assay = 'RNA', slot = 'counts', marker_genes = selected_marker_genes_B, 
 cell_type = "B cells", tag_slot = 'active.ident')
adb6f19c
 p_thres(classifier_b)
0065b788
 
a599c916
 data("tirosh_mel80_example")
7e9ee09d
 selected_marker_genes_B = c("CD19", "MS4A1", "CD79A")
a599c916
 set.seed(123)
a212ecf0
 classifier_b <- train_classifier(train_obj = tirosh_mel80_example,
 assay = 'RNA', slot = 'counts', marker_genes = selected_marker_genes_B, 
 cell_type = "B cells", tag_slot = 'active.ident')
 classifier_b_test <- test_classifier(classifier = classifier_b, 
 test_obj = tirosh_mel80_example, assay = 'RNA', slot = 'counts', 
 tag_slot = 'active.ident')
a599c916
 # assign a new threhold probability for prediction
adb6f19c
 p_thres(classifier_b) <- 0.4
0065b788
 }