... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
Package: scmeth |
2 | 2 |
Type: Package |
3 | 3 |
Title: Functions to conduct quality control analysis in methylation data |
4 |
-Version: 0.99.17 |
|
4 |
+Version: 0.99.18 |
|
5 | 5 |
Author: Divy Kangeyan <[email protected]> |
6 | 6 |
Maintainer: Divy Kangeyan <[email protected]> |
7 | 7 |
Depends: R (>= 3.5.0) |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
#'of CpGs observed in certain base pair long region. |
3 | 3 |
#'@param bs bsseq object |
4 | 4 |
#'@param organism scientific name of the organism of interest, |
5 |
-#'e.g. Mus musculus or Homo sapiens |
|
5 |
+#'e.g. Mmusculus or Hsapiens |
|
6 | 6 |
#'@param windowLength Length of the window to calculate the density |
7 | 7 |
#'Default value for window length is 1000 basepairs. |
8 | 8 |
#'@return Data frame with sample name and coverage in repeat masker regions |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#'Provides Coverage metrics in the repeat masker region |
2 | 2 |
#'@param bs bsseq object |
3 | 3 |
#'@param organism scientific name of the organism of interest, |
4 |
-#'e.g. Mus musculus or Homo sapiens |
|
4 |
+#'e.g. Mmusculus or Hsapiens |
|
5 | 5 |
#'@param genome reference alignment, i.e. mm10 or hg38 |
6 | 6 |
#'@return Data frame with sample name and coverage in repeat masker regions |
7 | 7 |
#'@examples |
... | ... |
@@ -11,7 +11,7 @@ cpgDensity(bs, organism, windowLength = 1000) |
11 | 11 |
\item{bs}{bsseq object} |
12 | 12 |
|
13 | 13 |
\item{organism}{scientific name of the organism of interest, |
14 |
-e.g. Mus musculus or Homo sapiens} |
|
14 |
+e.g. Mmusculus or Hsapiens} |
|
15 | 15 |
|
16 | 16 |
\item{windowLength}{Length of the window to calculate the density |
17 | 17 |
Default value for window length is 1000 basepairs.} |
... | ... |
@@ -10,7 +10,7 @@ repMask(bs, organism, genome) |
10 | 10 |
\item{bs}{bsseq object} |
11 | 11 |
|
12 | 12 |
\item{organism}{scientific name of the organism of interest, |
13 |
-e.g. Mus musculus or Homo sapiens} |
|
13 |
+e.g. Mmusculus or Hsapiens} |
|
14 | 14 |
|
15 | 15 |
\item{genome}{reference alignment, i.e. mm10 or hg38} |
16 | 16 |
} |
17 | 17 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,20 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/scmeth.R |
|
3 |
+\docType{package} |
|
4 |
+\name{scmeth} |
|
5 |
+\alias{scmeth} |
|
6 |
+\alias{scmeth-package} |
|
7 |
+\title{scmeth: a package to conduct quality control analysis for methylation data. |
|
8 |
+Most functions can be applied to both bulk and single-cell methylation |
|
9 |
+while other functions are specific to single-cell methylation data. |
|
10 |
+scmeth is especially customized to use the output from the FireCloud |
|
11 |
+implementation of methylation pipeline to produce comprehensive |
|
12 |
+quality control report} |
|
13 |
+\description{ |
|
14 |
+scmeth: a package to conduct quality control analysis for methylation data. |
|
15 |
+Most functions can be applied to both bulk and single-cell methylation |
|
16 |
+while other functions are specific to single-cell methylation data. |
|
17 |
+scmeth is especially customized to use the output from the FireCloud |
|
18 |
+implementation of methylation pipeline to produce comprehensive |
|
19 |
+quality control report |
|
20 |
+} |
... | ... |
@@ -31,23 +31,22 @@ Contents |
31 | 31 |
Though a small chemical change in the genome, DNA methylation has significant |
32 | 32 |
impact in several diseases, developmental processes and other biological |
33 | 33 |
changes. Hence methylation data should be analyzed carefully to gain |
34 |
-biological insights. **scmeth** package offers a few functions to asseess |
|
34 |
+biological insights. **scmeth** package offers a few functions to assess |
|
35 | 35 |
the quality of the methylation data. |
36 | 36 |
</p> |
37 | 37 |
|
38 | 38 |
<p style="text-align: justify;"> |
39 | 39 |
This bioconductor package contains functions to perform quality control and |
40 | 40 |
preprocessing analysis for single-cell methylation data. *scmeth* is |
41 |
-especially customized to use the output from the fireCloud implementation of |
|
42 |
-methylation pipeline. For now only human and mouse genomes are supported in |
|
43 |
-this package but in the future we will expand to other organisms. In addition |
|
44 |
-to individual functions, **report** function in the package provides all |
|
45 |
-inclusive report using most of the functions. If users prefer |
|
46 |
-they can just use the **report** function to gain summary of their data. |
|
41 |
+especially customized to use the output from the FireCloud implementation of |
|
42 |
+methylation pipeline. In addition to individual functions, **report** function |
|
43 |
+in the package provides all inclusive report using most of the functions. If |
|
44 |
+users prefer they can just use the **report** function to gain summary of |
|
45 |
+their data. |
|
47 | 46 |
</p> |
48 | 47 |
|
49 |
-2. Installation |
|
48 |
+2. Installation and package loading |
|
49 |
+------------------------------------ |
|
50 | 50 |
**scmeth** is available in bioconductor and can be downloaded using the |
51 | 51 |
following commands |
52 | 52 |
```{r, eval=FALSE} |
... | ... |
@@ -55,14 +54,19 @@ source("http://bioconductor.org/biocLite.R") |
55 | 54 |
biocLite("scmeth") |
56 | 55 |
``` |
57 | 56 |
|
57 |
+Load the package |
|
58 |
+```{r, warning=FALSE, message=FALSE} |
|
59 |
+library(scmeth) |
|
60 |
+``` |
|
61 |
+ |
|
58 | 62 |
3. Input files |
59 | 63 |
--------------------- |
60 | 64 |
<p style="text-align: justify;"> |
61 | 65 |
|
62 | 66 |
|
63 |
-Main input for most of the function is a *bsseq* object. In the fireCloud |
|
67 |
+Main input for most of the function is a *bsseq* object. In the FireCloud |
|
64 | 68 |
implementation it is stored as hdf5 file which can be read via |
65 |
-*loadHDF5SummarizedExperiment* function in *SummarizedExperiment* package. |
|
69 |
+*loadHDF5SummarizedExperiment* function in *HDF5Array* package. |
|
66 | 70 |
Code chunk below shows how it can be loaded. |
67 | 71 |
</p> |
68 | 72 |
|
... | ... |
@@ -99,13 +103,12 @@ when subsetting from the beginning of the data. |
99 | 103 |
</p> |
100 | 104 |
|
101 | 105 |
```{r, eval=FALSE} |
102 |
-library(scmeth) |
|
103 |
-scmeth::report(bsObject, '~/Documents',Hsapiens,"hg38") |
|
106 |
+report(bsObject, '~/Documents',Hsapiens,"hg38") |
|
104 | 107 |
``` |
105 | 108 |
|
106 | 109 |
|
107 | 110 |
<p style="text-align: justify;"> |
108 |
-Command above generayed an html report named *qcReport.html*. It will be stored |
|
111 |
+Command above generated an html report named *qcReport.html*. It will be stored |
|
109 | 112 |
in the indicated directory. |
110 | 113 |
</p> |
111 | 114 |
|
... | ... |
@@ -129,8 +132,6 @@ sample. **coverage** function can be used to get this information. |
129 | 132 |
</p> |
130 | 133 |
Loading the data |
131 | 134 |
```{r, warning=FALSE, message=FALSE, comment=FALSE} |
132 |
-# |
|
133 |
-library(scmeth) |
|
134 | 135 |
directory <- system.file("extdata","bismark_data",package='scmeth') |
135 | 136 |
bsObject <- HDF5Array::loadHDF5SummarizedExperiment(directory) |
136 | 137 |
``` |
... | ... |
@@ -145,7 +146,7 @@ succeeded. **readmetrics** function outputs a visualization showing number |
145 | 146 |
of reads seen in each samples and of those reads what proportion of |
146 | 147 |
them were mapped to the reference genome. |
147 | 148 |
```{r,fig.width=6,fig.height=3} |
148 |
-scmeth::readmetrics(bsObject) |
|
149 |
+readmetrics(bsObject) |
|
149 | 150 |
``` |
150 | 151 |
|
151 | 152 |
### repmask |
... | ... |
@@ -163,7 +164,7 @@ the genome build information. |
163 | 164 |
```{r, warning=FALSE,message=FALSE} |
164 | 165 |
library(BSgenome.Mmusculus.UCSC.mm10) |
165 | 166 |
load(system.file("extdata",'bsObject.rda',package='scmeth')) |
166 |
-scmeth::repMask(bs,Mmusculus,"mm10") |
|
167 |
+repMask(bs,Mmusculus,"mm10") |
|
167 | 168 |
``` |
168 | 169 |
|
169 | 170 |
### Coverage by Chromosome |
... | ... |
@@ -177,7 +178,7 @@ only the CpGs covered in chromosome 1 is shown.) |
177 | 178 |
</p> |
178 | 179 |
|
179 | 180 |
```{r, warning=FALSE} |
180 |
-scmeth::chromosomeCoverage(bsObject) |
|
181 |
+chromosomeCoverage(bsObject) |
|
181 | 182 |
``` |
182 | 183 |
|
183 | 184 |
### featureCoverage |
... | ... |
@@ -195,7 +196,7 @@ that region. |
195 | 196 |
```{r, warning=FALSE,message=FALSE} |
196 | 197 |
library(annotatr) |
197 | 198 |
featureList <- c('genes_exons','genes_introns') |
198 |
-DT::datatable(scmeth::featureCoverage(bsObject,features=featureList,"hg38")) |
|
199 |
+DT::datatable(featureCoverage(bsObject,features=featureList,"hg38")) |
|
199 | 200 |
``` |
200 | 201 |
</p> |
201 | 202 |
|
... | ... |
@@ -217,7 +218,7 @@ obtained uniformly across the regions. |
217 | 218 |
|
218 | 219 |
```{r,warning=FALSE,message=FALSE} |
219 | 220 |
library(BSgenome.Hsapiens.NCBI.GRCh38) |
220 |
-DT::datatable(scmeth::cpgDensity(bsObject,Hsapiens,windowLength=1000)) |
|
221 |
+DT::datatable(cpgDensity(bsObject,Hsapiens,windowLength=1000)) |
|
221 | 222 |
``` |
222 | 223 |
|
223 | 224 |
### downsample |
... | ... |
@@ -236,7 +237,7 @@ report renders this information into a plot. Downsampling rate ranges from |
236 | 237 |
</p> |
237 | 238 |
|
238 | 239 |
```{r,warning=FALSE} |
239 |
-DT::datatable(scmeth::downsample(bsObject)) |
|
240 |
+DT::datatable(downsample(bsObject)) |
|
240 | 241 |
``` |
241 | 242 |
|
242 | 243 |
|
... | ... |
@@ -248,13 +249,13 @@ However there could be fluctuations in the beginning or the end of the read due |
248 | 249 |
to the quality of the bases. Single cell sequencing samples also can show |
249 | 250 |
jagged trend in the methylation bias plot due to low read count. Methylation |
250 | 251 |
bias can be assessed via **mbiasPlot** function. This function takes the mbias |
251 |
-file generated from firecloud pipeline and generates the methylation bias plot. |
|
252 |
+file generated from FireCloud pipeline and generates the methylation bias plot. |
|
252 | 253 |
</p> |
253 | 254 |
|
254 | 255 |
```{r,warning=FALSE,message=FALSE,fig.width=6,fig.height=6} |
255 | 256 |
|
256 | 257 |
methylationBiasFile <- '2017-04-21_HG23KBCXY_2_AGGCAGAA_TATCTC_pe.M-bias.txt' |
257 |
-scmeth::mbiasplot(mbiasFiles=system.file("extdata",methylationBiasFile, |
|
258 |
+mbiasplot(mbiasFiles=system.file("extdata",methylationBiasFile, |
|
258 | 259 |
package='scmeth')) |
259 | 260 |
``` |
260 | 261 |
</p> |
... | ... |
@@ -272,7 +273,7 @@ are large number of intermediate methylation this indicates there might be |
272 | 273 |
some error in sequencing. |
273 | 274 |
</p> |
274 | 275 |
```{r,warning=FALSE,message=FALSE,fig.width=6,fig.height=3} |
275 |
-scmeth::methylationDist(bsObject) |
|
276 |
+methylationDist(bsObject) |
|
276 | 277 |
``` |
277 | 278 |
|
278 | 279 |
|
... | ... |
@@ -288,7 +289,7 @@ rate below 95% indicates some problem with sample preparation. |
288 | 289 |
sample. |
289 | 290 |
</p> |
290 | 291 |
```{r,warning=FALSE,message=FALSE,fig.width=4,fig.height=6} |
291 |
-scmeth::bsConversionPlot(bsObject) |
|
292 |
+bsConversionPlot(bsObject) |
|
292 | 293 |
``` |
293 | 294 |
|
294 | 295 |
```{r,warning=FALSE,message=FALSE} |