% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ggPlotting.R \name{plotSCEDimReduceFeatures} \alias{plotSCEDimReduceFeatures} \title{Dimension reduction plot tool for assay data} \usage{ plotSCEDimReduceFeatures( inSCE, feature, reducedDimName, sample = NULL, featureLocation = NULL, featureDisplay = NULL, shape = NULL, useAssay = "logcounts", xlab = NULL, ylab = NULL, axisSize = 10, axisLabelSize = 10, dim1 = NULL, dim2 = NULL, bin = NULL, binLabel = NULL, dotSize = 0.1, transparency = 1, colorLow = "white", colorMid = "gray", colorHigh = "blue", defaultTheme = TRUE, title = NULL, titleSize = 15, legendTitle = NULL, legendSize = 10, legendTitleSize = 12, groupBy = NULL, combinePlot = "none", plotLabels = NULL ) } \arguments{ \item{inSCE}{Input \linkS4class{SingleCellExperiment} object with saved dimension reduction components or a variable with saved results. Required.} \item{feature}{Name of feature stored in assay of SingleCellExperiment object.} \item{reducedDimName}{saved dimension reduction name in the \linkS4class{SingleCellExperiment} object. Required.} \item{sample}{Character vector. Indicates which sample each cell belongs to.} \item{featureLocation}{Indicates which column name of rowData to query gene.} \item{featureDisplay}{Indicates which column name of rowData to use to display feature for visualization.} \item{shape}{add shapes to each condition. Default NULL.} \item{useAssay}{Indicate which assay to use. The default is "logcounts"} \item{xlab}{Character vector. Label for x-axis. Default NULL.} \item{ylab}{Character vector. Label for y-axis. Default NULL.} \item{axisSize}{Size of x/y-axis ticks. Default 10.} \item{axisLabelSize}{Size of x/y-axis labels. Default 10.} \item{dim1}{1st dimension to be used for plotting. Can either be a string which specifies the name of the dimension to be plotted from reducedDims, or a numeric value which specifies the index of the dimension to be plotted. Default is NULL.} \item{dim2}{2nd dimension to be used for plotting. Can either be a string which specifies the name of the dimension to be plotted from reducedDims, or a numeric value which specifies the index of the dimension to be plotted. Default is NULL.} \item{bin}{Numeric vector. If single value, will divide the numeric values into the `bin` groups. If more than one value, will bin numeric values using values as a cut point.} \item{binLabel}{Character vector. Labels for the bins created by the `bin` parameter. Default NULL.} \item{dotSize}{Size of dots. Default 0.1.} \item{transparency}{Transparency of the dots, values will be 0-1. Default 1.} \item{colorLow}{Character. A color available from `colors()`. The color will be used to signify the lowest values on the scale. Default 'white'.} \item{colorMid}{Character. A color available from `colors()`. The color will be used to signify the midpoint on the scale. Default 'gray'.} \item{colorHigh}{Character. A color available from `colors()`. The color will be used to signify the highest values on the scale. Default 'blue'.} \item{defaultTheme}{adds grid to plot when TRUE. Default TRUE.} \item{title}{Title of plot. Default NULL.} \item{titleSize}{Size of title of plot. Default 15.} \item{legendTitle}{title of legend. Default NULL.} \item{legendSize}{size of legend. Default 10.} \item{legendTitleSize}{size of legend title. Default 12.} \item{groupBy}{Facet wrap the scatterplot based on value. Default \code{NULL}.} \item{combinePlot}{Must be either "all", "sample", or "none". "all" will combine all plots into a single .ggplot object, while "sample" will output a list of plots separated by sample. Default "none".} \item{plotLabels}{labels to each plot. If set to "default", will use the name of the samples as the labels. If set to "none", no label will be plotted.} } \value{ a ggplot of the reduced dimension plot of feature data. } \description{ Plot results of reduced dimensions data and colors by feature data stored in the assays slot. } \examples{ data("mouseBrainSubsetSCE") plotSCEDimReduceFeatures( inSCE = mouseBrainSubsetSCE, feature = "Apoe", shape = NULL, reducedDimName = "TSNE_counts", useAssay = "counts", xlab = "tSNE1", ylab = "tSNE2" ) }