% Generated by roxygen2: do not edit by hand % Please edit documentation in R/runBatchCorrection.R \name{runFastMNN} \alias{runFastMNN} \title{Apply a fast version of the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object} \usage{ runFastMNN( inSCE, useAssay = "logcounts", useReducedDim = NULL, batch = "batch", reducedDimName = "fastMNN", k = 20, propK = NULL, ndist = 3, minBatchSkip = 0, cosNorm = TRUE, nComponents = 50, weights = NULL, BPPARAM = BiocParallel::SerialParam() ) } \arguments{ \item{inSCE}{Input \linkS4class{SingleCellExperiment} object} \item{useAssay}{A single character indicating the name of the assay requiring batch correction. Default \code{"logcounts"}.} \item{useReducedDim}{A single character indicating the dimension reduction used for batch correction. Will ignore \code{useAssay} when using. Default \code{NULL}.} \item{batch}{A single character indicating a field in \code{colData} that annotates the batches of each cell; or a vector/factor with the same length as the number of cells. Default \code{"batch"}.} \item{reducedDimName}{A single character. The name for the corrected low-dimensional representation. Default \code{"fastMNN"}.} \item{k}{An integer scalar specifying the number of nearest neighbors to consider when identifying MNNs. See "See Also". Default \code{20}.} \item{propK}{A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to use for mutual nearest neighbor searching. See "See Also". Default \code{NULL}.} \item{ndist}{A numeric scalar specifying the threshold beyond which neighbours are to be ignored when computing correction vectors. See "See Also". Default \code{3}.} \item{minBatchSkip}{Numeric scalar specifying the minimum relative magnitude of the batch effect, below which no correction will be performed at a given merge step. See "See Also". Default \code{0}.} \item{cosNorm}{A logical scalar indicating whether cosine normalization should be performed on \code{useAssay} prior to PCA. See "See Also". Default \code{TRUE}.} \item{nComponents}{An integer scalar specifying the number of dimensions to produce. See "See Also". Default \code{50}.} \item{weights}{The weighting scheme to use. Passed to \code{\link[batchelor]{multiBatchPCA}}. Default \code{NULL}.} \item{BPPARAM}{A \linkS4class{BiocParallelParam} object specifying whether the SVD should be parallelized.} } \value{ The input \linkS4class{SingleCellExperiment} object with \code{reducedDim(inSCE, reducedDimName)} updated. } \description{ fastMNN is a variant of the classic MNN method, modified for speed and more robust performance. For introduction of MNN, see \code{\link{runMNNCorrect}}. } \examples{ data('sceBatches', package = 'singleCellTK') logcounts(sceBatches) <- log1p(counts(sceBatches)) sceCorr <- runFastMNN(sceBatches, useAssay = 'logcounts') } \references{ Lun ATL, et al., 2016 } \seealso{ \code{\link[batchelor]{fastMNN}} for using \code{useAssay}, and \code{\link[batchelor]{reducedMNN}} for using \code{useReducedDim} }