% Generated by roxygen2: do not edit by hand % Please edit documentation in R/runBatchCorrection.R \name{runSCMerge} \alias{runSCMerge} \title{Apply scMerge batch effect correction method to SingleCellExperiment object} \usage{ runSCMerge( inSCE, useAssay = "logcounts", batch = "batch", assayName = "scMerge", hvgExprs = "counts", seg = NULL, kmeansK = NULL, cellType = NULL, BPPARAM = BiocParallel::SerialParam() ) } \arguments{ \item{inSCE}{Input \linkS4class{SingleCellExperiment} object} \item{useAssay}{A single character indicating the name of the assay requiring batch correction. Default \code{"logcounts"}.} \item{batch}{A single character indicating a field in \code{\link{colData}} that annotates the batches. Default \code{"batch"}.} \item{assayName}{A single characeter. The name for the corrected assay. Will be saved to \code{\link{assay}}. Default \code{"scMerge"}.} \item{hvgExprs}{A single characeter. The assay that to be used for highly variable genes identification. Default \code{"counts"}.} \item{seg}{A vector of gene names or indices that specifies SEG (Stably Expressed Genes) set as negative control. Pre-defined dataset with human and mouse SEG lists is available with \code{\link[scMerge]{segList}} or \code{\link[scMerge]{segList_ensemblGeneID}}. Default \code{NULL}, and this value will be auto-detected by default with \code{\link[scMerge]{scSEGIndex}}.} \item{kmeansK}{An integer vector. Indicating the kmeans' K-value for each batch (i.e. how many subclusters in each batch should exist), in order to construct pseudo-replicates. The length of \code{kmeansK} needs to be the same as the number of batches. Default \code{NULL}, and this value will be auto-detected by default, depending on \code{cellType}.} \item{cellType}{A single character. A string indicating a field in \code{colData(inSCE)} that defines different cell types. Default \code{'cell_type'}.} \item{BPPARAM}{A \linkS4class{BiocParallelParam} object specifying whether should be parallelized. Default \code{BiocParallel::SerialParam()}.} } \value{ The input \linkS4class{SingleCellExperiment} object with \code{assay(inSCE, assayName)} updated. } \description{ The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo-) replicates to remove unwanted variations and merge multiple scRNA-Seq data. } \examples{ data('sceBatches', package = 'singleCellTK') \dontrun{ logcounts(sceBatches) <- log1p(counts(sceBatches)) sceCorr <- runSCMerge(sceBatches) } } \references{ Hoa, et al., 2020 }