% Generated by roxygen2: do not edit by hand % Please edit documentation in R/scanpyFunctions.R \name{runScanpyFindHVG} \alias{runScanpyFindHVG} \title{runScanpyFindHVG Find highly variable genes and store in the input sce object} \usage{ runScanpyFindHVG( inSCE, useAssay = "scanpyNormData", method = c("seurat", "cell_ranger", "seurat_v3"), altExpName = "featureSubset", altExp = FALSE, hvgNumber = 2000, minMean = 0.0125, maxMean = 3, minDisp = 0.5, maxDisp = Inf ) } \arguments{ \item{inSCE}{(sce) object to compute highly variable genes from and to store back to it} \item{useAssay}{Specify the name of the assay to use for computation of variable genes. It is recommended to use log normalized data, except when flavor='seurat_v3', in which counts data is expected.} \item{method}{selected method to use for computation of highly variable genes. One of \code{'seurat'}, \code{'cell_ranger'}, or \code{'seurat_v3'}. Default \code{"seurat"}.} \item{altExpName}{Character. Name of the alternative experiment object to add if \code{returnAsAltExp = TRUE}. Default \code{featureSubset}.} \item{altExp}{Logical value indicating if the input object is an altExperiment. Default \code{FALSE}.} \item{hvgNumber}{numeric value of how many genes to select as highly variable. Default \code{2000}} \item{minMean}{If n_top_genes unequals None, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored if flavor='seurat_v3'. Default \code{0.0125}} \item{maxMean}{If n_top_genes unequals None, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored if flavor='seurat_v3'. Default \code{3}} \item{minDisp}{If n_top_genes unequals None, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored if flavor='seurat_v3'. Default \code{0.5}} \item{maxDisp}{If n_top_genes unequals None, this and all other cutoffs for the means and the normalized dispersions are ignored. Ignored if flavor='seurat_v3'. Default \code{Inf}} } \value{ Updated \code{SingleCellExperiment} object with highly variable genes computation stored \code{\link{getTopHVG}}, \code{\link{plotTopHVG}} } \description{ runScanpyFindHVG Find highly variable genes and store in the input sce object } \examples{ data(scExample, package = "singleCellTK") \dontrun{ sce <- runScanpyNormalizeData(sce, useAssay = "counts") sce <- runScanpyFindHVG(sce, useAssay = "scanpyNormData", method = "seurat") g <- getTopHVG(sce, method = "seurat", hvgNumber = 500) } }