% Generated by roxygen2: do not edit by hand % Please edit documentation in R/scanpyFunctions.R \name{runScanpyFindMarkers} \alias{runScanpyFindMarkers} \title{runScanpyFindMarkers} \usage{ runScanpyFindMarkers( inSCE, nGenes = NULL, useAssay = "scanpyNormData", colDataName, group1 = "all", group2 = "rest", test = c("wilcoxon", "t-test", "t-test_overestim_var", "logreg"), corr_method = c("benjamini-hochberg", "bonferroni") ) } \arguments{ \item{inSCE}{Input \code{SingleCellExperiment} object.} \item{nGenes}{The number of genes that appear in the returned tables. Defaults to all genes.} \item{useAssay}{Specify the name of the assay to use for computation of marker genes. It is recommended to use log normalized assay.} \item{colDataName}{colData to use as the key of the observations grouping to consider.} \item{group1}{Name of group1. Subset of groups, to which comparison shall be restricted, or 'all' (default), for all groups.} \item{group2}{Name of group2. If 'rest', compare each group to the union of the rest of the group. If a group identifier, compare with respect to this group. Default is 'rest'} \item{test}{Test to use for DE. Default \code{"t-test"}.} \item{corr_method}{p-value correction method. Used only for 't-test', 't-test_overestim_var', and 'wilcoxon'.} } \value{ A \code{SingleCellExperiment} object that contains marker genes populated in a data.frame stored inside metadata slot. } \description{ runScanpyFindMarkers } \examples{ data(scExample, package = "singleCellTK") \dontrun{ sce <- runScanpyNormalizeData(sce, useAssay = "counts") sce <- runScanpyFindHVG(sce, useAssay = "scanpyNormData", method = "seurat") sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") sce <- runScanpyPCA(sce, useAssay = "scanpyScaledData") sce <- runScanpyFindClusters(sce, useReducedDim = "scanpyPCA") sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) } }