% Generated by roxygen2: do not edit by hand % Please edit documentation in R/seuratFunctions.R \name{runSeuratHeatmap} \alias{runSeuratHeatmap} \title{runSeuratHeatmap Computes the heatmap plot object from the pca slot in the input sce object} \usage{ runSeuratHeatmap( inSCE, useAssay, useReduction = c("pca", "ica"), dims = NULL, nfeatures = 30, cells = NULL, ncol = NULL, balanced = TRUE, fast = TRUE, combine = TRUE, raster = TRUE, externalReduction = NULL ) } \arguments{ \item{inSCE}{(sce) object from which to compute heatmap (pca should be computed)} \item{useAssay}{Specify name of the assay that will be scaled by this function. The output scaled assay will be used for computation of the heatmap.} \item{useReduction}{Reduction method to use for computing clusters. One of "pca" or "ica". Default \code{"pca"}.} \item{dims}{Number of components to generate heatmap plot objects. If \code{NULL}, a heatmap will be generated for all components. Default \code{NULL}.} \item{nfeatures}{Number of features to include in the heatmap. Default \code{30}.} \item{cells}{Numeric value indicating the number of top cells to plot. Default is \code{NULL} which indicates all cells.} \item{ncol}{Numeric value indicating the number of columns to use for plot. Default is \code{NULL} which will automatically compute accordingly.} \item{balanced}{Plot equal number of genes with positive and negative scores. Default is \code{TRUE}.} \item{fast}{See \link[Seurat]{DimHeatmap} for more information. Default \code{TRUE}.} \item{combine}{See \link[Seurat]{DimHeatmap} for more information. Default \code{TRUE}.} \item{raster}{See \link[Seurat]{DimHeatmap} for more information. Default \code{TRUE}.} \item{externalReduction}{Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}.} } \value{ plot object } \description{ runSeuratHeatmap Computes the heatmap plot object from the pca slot in the input sce object } \examples{ data(scExample, package = "singleCellTK") \dontrun{ sce <- runSeuratNormalizeData(sce, useAssay = "counts") sce <- runSeuratFindHVG(sce, useAssay = "counts") sce <- runSeuratScaleData(sce, useAssay = "counts") sce <- runSeuratPCA(sce, useAssay = "counts") heatmap <- runSeuratHeatmap(sce, useAssay = "counts") plotSeuratHeatmap(heatmap) } }