... | ... |
@@ -1,11 +1,12 @@ |
1 | 1 |
Package: singleCellTK |
2 | 2 |
Type: Package |
3 | 3 |
Title: Interactive Analysis of Single Cell RNA-Seq Data |
4 |
-Version: 0.1.8 |
|
4 |
+Version: 0.1.999 |
|
5 | 5 |
Author: David Jenkins |
6 | 6 |
Maintainer: David Jenkins <[email protected]> |
7 | 7 |
Depends: |
8 |
- R (>= 3.2) |
|
8 |
+ R (>= 3.2), |
|
9 |
+ SingleCellExperiment |
|
9 | 10 |
Description: Run common single cell analysis directly through your browser |
10 | 11 |
including differential expression, downsampling analysis, and clustering. |
11 | 12 |
License: MIT + file LICENSE |
... | ... |
@@ -38,11 +39,10 @@ Imports: |
38 | 39 |
rsvd, |
39 | 40 |
Rtsne, |
40 | 41 |
S4Vectors, |
41 |
- scater, |
|
42 | 42 |
shiny, |
43 | 43 |
shinyjs |
44 | 44 |
RoxygenNote: 6.0.1 |
45 |
-Suggests: |
|
45 |
+Suggests: |
|
46 | 46 |
Rsubread, |
47 | 47 |
knitr, |
48 | 48 |
rmarkdown |
... | ... |
@@ -5,7 +5,7 @@ export(MAST) |
5 | 5 |
export(MASTregression) |
6 | 6 |
export(MASTviolin) |
7 | 7 |
export(alignSingleCellData) |
8 |
-export(createSCESet) |
|
8 |
+export(createSCE) |
|
9 | 9 |
export(differentialPower) |
10 | 10 |
export(filterSCData) |
11 | 11 |
export(getBiomarker) |
... | ... |
@@ -22,6 +22,7 @@ export(plot_d3DiffEx) |
22 | 22 |
export(runDimRed) |
23 | 23 |
export(runPCA) |
24 | 24 |
export(scDiffEx) |
25 |
+export(scDiffEx_anova) |
|
25 | 26 |
export(scDiffEx_deseq) |
26 | 27 |
export(scDiffEx_deseq2) |
27 | 28 |
export(scDiffEx_limma) |
... | ... |
@@ -1,4 +1,5 @@ |
1 |
-#' Example Single Cell RNA-Seq data in SCESet Object, GSE60361 subest |
|
1 |
+#' Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE60361 |
|
2 |
+#' subest |
|
2 | 3 |
#' |
3 | 4 |
#' A subset of 30 samples from a single cell RNA-Seq experiment from Zeisel, et |
4 | 5 |
#' al. Science 2015. The data was produced from cells from the mouse |
... | ... |
@@ -6,93 +7,67 @@ |
6 | 7 |
#' identified as oligodendrocytes and 15 of the cell were identified as |
7 | 8 |
#' microglia. |
8 | 9 |
#' |
9 |
-#' @name GSE60361_subset |
|
10 |
+#' @name GSE60361_subset_sce |
|
10 | 11 |
#' @docType data |
11 |
-#' @format List of two data frames, with counts and annotations. Use them as |
|
12 |
-#' input to createSCESet() |
|
12 |
+#' @format SingleCellExperiment |
|
13 | 13 |
#' @source DOI: 10.1126/science.aaa1934 |
14 | 14 |
#' @keywords datasets |
15 | 15 |
#' @examples |
16 |
-#' library(scater) |
|
17 |
-#' data("GSE60361_subset") |
|
18 |
-#' GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
19 |
-#' annotfile = GSE60361_subset$annot, |
|
20 |
-#' inputdataframes = TRUE) |
|
21 |
-"GSE60361_subset" |
|
16 |
+#' data("GSE60361_subset_sce") |
|
17 |
+"GSE60361_subset_sce" |
|
22 | 18 |
|
23 |
-#' Example Single Cell RNA-Seq data in SCESet Object, GSE73121 |
|
19 |
+#' Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE73121 |
|
24 | 20 |
#' |
25 | 21 |
#' 117 Single-cell transcriptome profiling for metastatic renal cell carcinoma |
26 | 22 |
#' patient-derived cells |
27 | 23 |
#' |
28 |
-#' @name GSE73121 |
|
24 |
+#' @name GSE73121_sce |
|
29 | 25 |
#' @docType data |
30 |
-#' @format List of two data frames, with counts and annotations. Use them as |
|
31 |
-#' input to createSCESet() |
|
26 |
+#' @format SingleCellExperiment |
|
32 | 27 |
#' @source DOI: 10.1186/s13059-016-0945-9 |
33 | 28 |
#' @keywords datasets |
34 | 29 |
#' @examples |
35 |
-#' library(scater) |
|
36 |
-#' data("GSE73121") |
|
37 |
-#' GSE73121_SCESet <- createSCESet(countfile = GSE73121$counts, |
|
38 |
-#' annotfile = GSE73121$annot, |
|
39 |
-#' inputdataframes = TRUE) |
|
40 |
-"GSE73121" |
|
30 |
+#' data("GSE73121_sce") |
|
31 |
+"GSE73121_sce" |
|
41 | 32 |
|
42 |
-#' Example Single Cell RNA-Seq data in SCESet Object, GSE66507 |
|
33 |
+#' Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE66507 |
|
43 | 34 |
#' |
44 | 35 |
#' 30 Single-cells from embryonic stem cells separated into three different |
45 | 36 |
#' tissue types. |
46 | 37 |
#' |
47 |
-#' @name GSE66507 |
|
38 |
+#' @name GSE66507_sce |
|
48 | 39 |
#' @docType data |
49 |
-#' @format List of two data frames, with counts and annotations. Use them as |
|
50 |
-#' input to createSCESet() |
|
40 |
+#' @format SingleCellExperiment |
|
51 | 41 |
#' @source DOI: 10.1242/dev.123547 |
52 | 42 |
#' @keywords datasets |
53 | 43 |
#' @examples |
54 |
-#' library(scater) |
|
55 |
-#' data("GSE66507") |
|
56 |
-#' GSE66507_SCESet <- createSCESet(countfile = GSE66507$counts, |
|
57 |
-#' annotfile = GSE66507$annot, |
|
58 |
-#' inputdataframes = TRUE) |
|
59 |
-"GSE66507" |
|
44 |
+#' data("GSE66507_sce") |
|
45 |
+"GSE66507_sce" |
|
60 | 46 |
|
61 |
-#' Example Single Cell RNA-Seq data in SCESet Object, GSE36552 |
|
47 |
+#' Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE36552 |
|
62 | 48 |
#' |
63 | 49 |
#' 124 Single-cell transcriptome profiling from embryonic stem cells derived |
64 | 50 |
#' from donated human pre-implatation embryos. |
65 | 51 |
#' |
66 |
-#' @name GSE36552 |
|
52 |
+#' @name GSE36552_sce |
|
67 | 53 |
#' @docType data |
68 |
-#' @format List of two data frames, with counts and annotations. Use them as |
|
69 |
-#' input to createSCESet() |
|
54 |
+#' @format SingleCellExperiment |
|
70 | 55 |
#' @source DOI: 10.1038/nsmb.2660 |
71 | 56 |
#' @keywords datasets |
72 | 57 |
#' @examples |
73 |
-#' library(scater) |
|
74 |
-#' data("GSE36552") |
|
75 |
-#' GSE36552_SCESet <- createSCESet(countfile = GSE36552$counts, |
|
76 |
-#' annotfile = GSE36552$annot, |
|
77 |
-#' inputdataframes = TRUE) |
|
78 |
-"GSE36552" |
|
58 |
+#' data("GSE36552_sce") |
|
59 |
+"GSE36552_sce" |
|
79 | 60 |
|
80 | 61 |
#' Example Single Cell RNA-Seq MAITS data from MAST package |
81 | 62 |
#' |
82 | 63 |
#' 96 Single-cell transcriptome profiling from Mucosal Associated Invariant T |
83 | 64 |
#' cells (MAITs), measured on the Fluidigm C1. |
84 | 65 |
#' |
85 |
-#' @name maits_SCESet |
|
66 |
+#' @name maits_sce |
|
86 | 67 |
#' @docType data |
87 |
-#' @format List of three data frames, with counts, features and annotations. |
|
88 |
-#' Use them as input to createSCESet() |
|
68 |
+#' @format SingleCellExperiment |
|
89 | 69 |
#' @source DOI: 10.1186/s13059-015-0844-5 |
90 | 70 |
#' @keywords datasets |
91 | 71 |
#' @examples |
92 |
-#' library(scater) |
|
93 |
-#' data("maits_SCESet") |
|
94 |
-#' maits_SCESet <- createSCESet(countfile = maits_SCESet$counts, |
|
95 |
-#' annotfile = maits_SCESet$annot, |
|
96 |
-#' featurefile = maits_SCESet$features, |
|
97 |
-#' inputdataframes = TRUE) |
|
98 |
-"maits_SCESet" |
|
72 |
+#' data("maits_sce") |
|
73 |
+"maits_sce" |
... | ... |
@@ -1,8 +1,8 @@ |
1 |
-#' Summarize SCESet |
|
1 |
+#' Summarize SingleCellExperiment |
|
2 | 2 |
#' |
3 |
-#' Creates a table of summary metrics from an input SCESet. |
|
3 |
+#' Creates a table of summary metrics from an input SingleCellExperiment. |
|
4 | 4 |
#' |
5 |
-#' @param indata Input SCESet |
|
5 |
+#' @param indata Input SingleCellExperiment |
|
6 | 6 |
#' |
7 | 7 |
#' @return A data.frame object of summary metrics. |
8 | 8 |
#' @export summarizeTable |
... | ... |
@@ -15,16 +15,16 @@ summarizeTable <- function(indata){ |
15 | 15 |
"Genes with no expression across all samples"), |
16 | 16 |
"Value" = c(ncol(indata), |
17 | 17 |
nrow(indata), |
18 |
- as.integer(mean(apply(scater::counts(indata), 2, function(x) sum(x)))), |
|
19 |
- as.integer(mean(apply(scater::counts(indata), 2, function(x) sum(x > 0)))), |
|
20 |
- sum(apply(scater::counts(indata), 2, function(x) sum(as.numeric(x) == 0)) < 1700), |
|
21 |
- sum(rowSums(scater::counts(indata)) == 0)))) |
|
18 |
+ as.integer(mean(apply(assay(indata, "counts"), 2, function(x) sum(x)))), |
|
19 |
+ as.integer(mean(apply(assay(indata, "counts"), 2, function(x) sum(x > 0)))), |
|
20 |
+ sum(apply(assay(indata, "counts"), 2, function(x) sum(as.numeric(x) == 0)) < 1700), |
|
21 |
+ sum(rowSums(assay(indata, "counts")) == 0)))) |
|
22 | 22 |
} |
23 | 23 |
|
24 |
-#' Create a SCESet object |
|
24 |
+#' Create a SingleCellExperiment object |
|
25 | 25 |
#' |
26 |
-#' From a file of counts and a file of annotation information, create a SCESet |
|
27 |
-#' object. |
|
26 |
+#' From a file of counts and a file of annotation information, create a |
|
27 |
+#' SingleCellExperiment object. |
|
28 | 28 |
#' |
29 | 29 |
#' @param countfile The path to a text file that contains a header row of sample |
30 | 30 |
#' names, and rows of raw counts per gene for those samples. |
... | ... |
@@ -37,16 +37,15 @@ summarizeTable <- function(indata){ |
37 | 37 |
#' @param inputdataframes If TRUE, countfile and annotfile are read as data |
38 | 38 |
#' frames instead of file paths. The default is FALSE. |
39 | 39 |
#' |
40 |
-#' @return a SCESet object |
|
41 |
-#' @export createSCESet |
|
40 |
+#' @return a SingleCellExperiment object |
|
41 |
+#' @export createSCE |
|
42 | 42 |
#' @examples |
43 |
-#' library(scater) |
|
44 |
-#' data("GSE60361_subset") |
|
45 |
-#' GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
46 |
-#' annotfile = GSE60361_subset$annot, |
|
47 |
-#' inputdataframes = TRUE) |
|
48 |
-createSCESet <- function(countfile=NULL, annotfile=NULL, featurefile=NULL, |
|
49 |
- inputdataframes=FALSE){ |
|
43 |
+#' \dontrun{ |
|
44 |
+#' GSE60361_sce <- createSCE(countfile = "/path/to/input_counts.txt", |
|
45 |
+#' annotfile = "/path/to/input_annots.txt") |
|
46 |
+#'} |
|
47 |
+createSCE <- function(countfile=NULL, annotfile=NULL, featurefile=NULL, |
|
48 |
+ inputdataframes=FALSE){ |
|
50 | 49 |
if (is.null(countfile)){ |
51 | 50 |
stop("You must supply a count file.") |
52 | 51 |
} |
... | ... |
@@ -66,15 +65,16 @@ createSCESet <- function(countfile=NULL, annotfile=NULL, featurefile=NULL, |
66 | 65 |
if (is.null(annotfile)){ |
67 | 66 |
annotin <- data.frame(row.names = colnames(countsin)) |
68 | 67 |
annotin$Sample <- rownames(annotin) |
68 |
+ annotin <- DataFrame(annotin) |
|
69 | 69 |
} |
70 | 70 |
if (is.null(featurefile)){ |
71 | 71 |
featurein <- data.frame(Gene = rownames(countsin)) |
72 | 72 |
rownames(featurein) <- featurein$Gene |
73 |
+ featurein <- DataFrame(featurein) |
|
73 | 74 |
} |
74 |
- pd <- methods::new("AnnotatedDataFrame", data = annotin) |
|
75 |
- fd <- methods::new("AnnotatedDataFrame", data = featurein) |
|
76 |
- return(scater::newSCESet(countData = countsin, phenoData = pd, |
|
77 |
- featureData = fd)) |
|
75 |
+ return(SummarizedExperiment(assays=list(counts=as.matrix(countsin)), |
|
76 |
+ colData=annotin, |
|
77 |
+ rowData=featurein)) |
|
78 | 78 |
} |
79 | 79 |
|
80 | 80 |
#' Filter Genes and Samples from a Single Cell Object |
... | ... |
@@ -92,22 +92,18 @@ createSCESet <- function(countfile=NULL, annotfile=NULL, featurefile=NULL, |
92 | 92 |
#' @export filterSCData |
93 | 93 |
#' |
94 | 94 |
#' @examples |
95 |
-#' library(scater) |
|
96 |
-#' data("GSE60361_subset") |
|
97 |
-#' GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
98 |
-#' annotfile = GSE60361_subset$annot, |
|
99 |
-#' inputdataframes = TRUE) |
|
100 |
-#' GSE60361_SCESet_filtered <- filterSCData(GSE60361_SCESet, |
|
101 |
-#' deletesamples="X1772063061_G11") |
|
95 |
+#' data("GSE60361_subset_sce") |
|
96 |
+#' GSE60361_subset_sce <- filterSCData(GSE60361_subset_sce, |
|
97 |
+#' deletesamples="X1772063061_G11") |
|
102 | 98 |
filterSCData <- function(insceset, deletesamples=NULL, remove_noexpress=TRUE, |
103 | 99 |
remove_bottom=0.5, minimum_detect_genes=1700){ |
104 | 100 |
insceset <- insceset[, !(colnames(insceset) %in% deletesamples)] |
105 | 101 |
if (remove_noexpress){ |
106 |
- insceset <- insceset[rowSums(counts(insceset)) != 0, ] |
|
102 |
+ insceset <- insceset[rowSums(assay(insceset, "counts")) != 0, ] |
|
107 | 103 |
} |
108 | 104 |
nkeeprows <- ceiling((1 - remove_bottom) * as.numeric(nrow(insceset))) |
109 |
- tokeeprow <- order(rowSums(counts(insceset)), decreasing = TRUE)[1:nkeeprows] |
|
110 |
- tokeepcol <- apply(counts(insceset), 2, function(x) sum(as.numeric(x) == 0)) >= minimum_detect_genes |
|
105 |
+ tokeeprow <- order(rowSums(assay(insceset, "counts")), decreasing = TRUE)[1:nkeeprows] |
|
106 |
+ tokeepcol <- apply(assay(insceset, "counts"), 2, function(x) sum(as.numeric(x) == 0)) >= minimum_detect_genes |
|
111 | 107 |
insceset <- insceset[tokeeprow, tokeepcol] |
112 | 108 |
return(insceset) |
113 | 109 |
} |
114 | 110 |
deleted file mode 100644 |
... | ... |
@@ -1,26 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/data.R |
|
3 |
-\docType{data} |
|
4 |
-\name{GSE36552} |
|
5 |
-\alias{GSE36552} |
|
6 |
-\title{Example Single Cell RNA-Seq data in SCESet Object, GSE36552} |
|
7 |
-\format{List of two data frames, with counts and annotations. Use them as |
|
8 |
-input to createSCESet()} |
|
9 |
-\source{ |
|
10 |
-DOI: 10.1038/nsmb.2660 |
|
11 |
-} |
|
12 |
-\usage{ |
|
13 |
-GSE36552 |
|
14 |
-} |
|
15 |
-\description{ |
|
16 |
-124 Single-cell transcriptome profiling from embryonic stem cells derived |
|
17 |
-from donated human pre-implatation embryos. |
|
18 |
-} |
|
19 |
-\examples{ |
|
20 |
-library(scater) |
|
21 |
-data("GSE36552") |
|
22 |
-GSE36552_SCESet <- createSCESet(countfile = GSE36552$counts, |
|
23 |
- annotfile = GSE36552$annot, |
|
24 |
- inputdataframes = TRUE) |
|
25 |
-} |
|
26 |
-\keyword{datasets} |
27 | 0 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,21 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/data.R |
|
3 |
+\docType{data} |
|
4 |
+\name{GSE36552_sce} |
|
5 |
+\alias{GSE36552_sce} |
|
6 |
+\title{Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE36552} |
|
7 |
+\format{SingleCellExperiment} |
|
8 |
+\source{ |
|
9 |
+DOI: 10.1038/nsmb.2660 |
|
10 |
+} |
|
11 |
+\usage{ |
|
12 |
+GSE36552_sce |
|
13 |
+} |
|
14 |
+\description{ |
|
15 |
+124 Single-cell transcriptome profiling from embryonic stem cells derived |
|
16 |
+from donated human pre-implatation embryos. |
|
17 |
+} |
|
18 |
+\examples{ |
|
19 |
+data("GSE36552_sce") |
|
20 |
+} |
|
21 |
+\keyword{datasets} |
0 | 22 |
similarity index 51% |
1 | 23 |
rename from man/GSE60361_subset.Rd |
2 | 24 |
rename to man/GSE60361_subset_sce.Rd |
... | ... |
@@ -1,16 +1,16 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/data.R |
3 | 3 |
\docType{data} |
4 |
-\name{GSE60361_subset} |
|
5 |
-\alias{GSE60361_subset} |
|
6 |
-\title{Example Single Cell RNA-Seq data in SCESet Object, GSE60361 subest} |
|
7 |
-\format{List of two data frames, with counts and annotations. Use them as |
|
8 |
-input to createSCESet()} |
|
4 |
+\name{GSE60361_subset_sce} |
|
5 |
+\alias{GSE60361_subset_sce} |
|
6 |
+\title{Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE60361 |
|
7 |
+subest} |
|
8 |
+\format{SingleCellExperiment} |
|
9 | 9 |
\source{ |
10 | 10 |
DOI: 10.1126/science.aaa1934 |
11 | 11 |
} |
12 | 12 |
\usage{ |
13 |
-GSE60361_subset |
|
13 |
+GSE60361_subset_sce |
|
14 | 14 |
} |
15 | 15 |
\description{ |
16 | 16 |
A subset of 30 samples from a single cell RNA-Seq experiment from Zeisel, et |
... | ... |
@@ -20,10 +20,6 @@ identified as oligodendrocytes and 15 of the cell were identified as |
20 | 20 |
microglia. |
21 | 21 |
} |
22 | 22 |
\examples{ |
23 |
-library(scater) |
|
24 |
-data("GSE60361_subset") |
|
25 |
-GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
26 |
- annotfile = GSE60361_subset$annot, |
|
27 |
- inputdataframes = TRUE) |
|
23 |
+data("GSE60361_subset_sce") |
|
28 | 24 |
} |
29 | 25 |
\keyword{datasets} |
30 | 26 |
deleted file mode 100644 |
... | ... |
@@ -1,26 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/data.R |
|
3 |
-\docType{data} |
|
4 |
-\name{GSE66507} |
|
5 |
-\alias{GSE66507} |
|
6 |
-\title{Example Single Cell RNA-Seq data in SCESet Object, GSE66507} |
|
7 |
-\format{List of two data frames, with counts and annotations. Use them as |
|
8 |
-input to createSCESet()} |
|
9 |
-\source{ |
|
10 |
-DOI: 10.1242/dev.123547 |
|
11 |
-} |
|
12 |
-\usage{ |
|
13 |
-GSE66507 |
|
14 |
-} |
|
15 |
-\description{ |
|
16 |
-30 Single-cells from embryonic stem cells separated into three different |
|
17 |
-tissue types. |
|
18 |
-} |
|
19 |
-\examples{ |
|
20 |
-library(scater) |
|
21 |
-data("GSE66507") |
|
22 |
-GSE66507_SCESet <- createSCESet(countfile = GSE66507$counts, |
|
23 |
- annotfile = GSE66507$annot, |
|
24 |
- inputdataframes = TRUE) |
|
25 |
-} |
|
26 |
-\keyword{datasets} |
27 | 0 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,21 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/data.R |
|
3 |
+\docType{data} |
|
4 |
+\name{GSE66507_sce} |
|
5 |
+\alias{GSE66507_sce} |
|
6 |
+\title{Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE66507} |
|
7 |
+\format{SingleCellExperiment} |
|
8 |
+\source{ |
|
9 |
+DOI: 10.1242/dev.123547 |
|
10 |
+} |
|
11 |
+\usage{ |
|
12 |
+GSE66507_sce |
|
13 |
+} |
|
14 |
+\description{ |
|
15 |
+30 Single-cells from embryonic stem cells separated into three different |
|
16 |
+tissue types. |
|
17 |
+} |
|
18 |
+\examples{ |
|
19 |
+data("GSE66507_sce") |
|
20 |
+} |
|
21 |
+\keyword{datasets} |
0 | 22 |
deleted file mode 100644 |
... | ... |
@@ -1,26 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/data.R |
|
3 |
-\docType{data} |
|
4 |
-\name{GSE73121} |
|
5 |
-\alias{GSE73121} |
|
6 |
-\title{Example Single Cell RNA-Seq data in SCESet Object, GSE73121} |
|
7 |
-\format{List of two data frames, with counts and annotations. Use them as |
|
8 |
-input to createSCESet()} |
|
9 |
-\source{ |
|
10 |
-DOI: 10.1186/s13059-016-0945-9 |
|
11 |
-} |
|
12 |
-\usage{ |
|
13 |
-GSE73121 |
|
14 |
-} |
|
15 |
-\description{ |
|
16 |
-117 Single-cell transcriptome profiling for metastatic renal cell carcinoma |
|
17 |
-patient-derived cells |
|
18 |
-} |
|
19 |
-\examples{ |
|
20 |
-library(scater) |
|
21 |
-data("GSE73121") |
|
22 |
-GSE73121_SCESet <- createSCESet(countfile = GSE73121$counts, |
|
23 |
- annotfile = GSE73121$annot, |
|
24 |
- inputdataframes = TRUE) |
|
25 |
-} |
|
26 |
-\keyword{datasets} |
27 | 0 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,21 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/data.R |
|
3 |
+\docType{data} |
|
4 |
+\name{GSE73121_sce} |
|
5 |
+\alias{GSE73121_sce} |
|
6 |
+\title{Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE73121} |
|
7 |
+\format{SingleCellExperiment} |
|
8 |
+\source{ |
|
9 |
+DOI: 10.1186/s13059-016-0945-9 |
|
10 |
+} |
|
11 |
+\usage{ |
|
12 |
+GSE73121_sce |
|
13 |
+} |
|
14 |
+\description{ |
|
15 |
+117 Single-cell transcriptome profiling for metastatic renal cell carcinoma |
|
16 |
+patient-derived cells |
|
17 |
+} |
|
18 |
+\examples{ |
|
19 |
+data("GSE73121_sce") |
|
20 |
+} |
|
21 |
+\keyword{datasets} |
0 | 22 |
similarity index 65% |
1 | 23 |
rename from man/createSCESet.Rd |
2 | 24 |
rename to man/createSCE.Rd |
... | ... |
@@ -1,10 +1,10 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 | 2 |
% Please edit documentation in R/misc_functions.R |
3 |
-\name{createSCESet} |
|
4 |
-\alias{createSCESet} |
|
5 |
-\title{Create a SCESet object} |
|
3 |
+\name{createSCE} |
|
4 |
+\alias{createSCE} |
|
5 |
+\title{Create a SingleCellExperiment object} |
|
6 | 6 |
\usage{ |
7 |
-createSCESet(countfile = NULL, annotfile = NULL, featurefile = NULL, |
|
7 |
+createSCE(countfile = NULL, annotfile = NULL, featurefile = NULL, |
|
8 | 8 |
inputdataframes = FALSE) |
9 | 9 |
} |
10 | 10 |
\arguments{ |
... | ... |
@@ -20,20 +20,18 @@ annotation information for each gene in the count matrix. This file should |
20 | 20 |
have the same genes in the same order as countfile. This is optional.} |
21 | 21 |
|
22 | 22 |
\item{inputdataframes}{If TRUE, countfile and annotfile are read as data |
23 |
-frames instead of file paths. The default is FALSE. |
|
24 |
-instead of} |
|
23 |
+frames instead of file paths. The default is FALSE.} |
|
25 | 24 |
} |
26 | 25 |
\value{ |
27 |
-a SCESet object |
|
26 |
+a SingleCellExperiment object |
|
28 | 27 |
} |
29 | 28 |
\description{ |
30 |
-From a file of counts and a file of annotation information, create a SCESet |
|
31 |
-object. |
|
29 |
+From a file of counts and a file of annotation information, create a |
|
30 |
+SingleCellExperiment object. |
|
32 | 31 |
} |
33 | 32 |
\examples{ |
34 |
-library(scater) |
|
35 |
-data("GSE60361_subset") |
|
36 |
-GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
37 |
- annotfile = GSE60361_subset$annot, |
|
38 |
- inputdataframes = TRUE) |
|
33 |
+\dontrun{ |
|
34 |
+GSE60361_sce <- createSCE(countfile = "/path/to/input_counts.txt", |
|
35 |
+ annotfile = "/path/to/input_annots.txt") |
|
36 |
+} |
|
39 | 37 |
} |
... | ... |
@@ -28,11 +28,7 @@ The filtered single cell object. |
28 | 28 |
Filter Genes and Samples from a Single Cell Object |
29 | 29 |
} |
30 | 30 |
\examples{ |
31 |
-library(scater) |
|
32 |
-data("GSE60361_subset") |
|
33 |
-GSE60361_SCESet <- createSCESet(countfile = GSE60361_subset$counts, |
|
34 |
- annotfile = GSE60361_subset$annot, |
|
35 |
- inputdataframes = TRUE) |
|
36 |
-GSE60361_SCESet_filtered <- filterSCData(GSE60361_SCESet, |
|
37 |
- deletesamples="X1772063061_G11") |
|
31 |
+data("GSE60361_subset_sce") |
|
32 |
+GSE60361_subset_sce <- filterSCData(GSE60361_subset_sce, |
|
33 |
+ deletesamples="X1772063061_G11") |
|
38 | 34 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/getBiomarker.R |
3 | 3 |
\name{getBiomarker} |
4 | 4 |
\alias{getBiomarker} |
5 |
-\title{get Biomarker |
|
6 |
- |
|
7 |
-Use this function to get expression or binary data of gene list} |
|
5 |
+\title{get Biomarker} |
|
8 | 6 |
\usage{ |
9 | 7 |
getBiomarker(count_data, gene, binary = "Binary") |
10 | 8 |
} |
... | ... |
@@ -19,7 +17,5 @@ getBiomarker(count_data, gene, binary = "Binary") |
19 | 17 |
A PCA plot |
20 | 18 |
} |
21 | 19 |
\description{ |
22 |
-get Biomarker |
|
23 |
- |
|
24 | 20 |
Use this function to get expression or binary data of gene list |
25 | 21 |
} |
... | ... |
@@ -2,11 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/getPCA.R |
3 | 3 |
\name{getPCA} |
4 | 4 |
\alias{getPCA} |
5 |
-\title{Get PCA components for a feature counts table |
|
6 |
- |
|
7 |
-Selects the 500 most variable genes in the feature count, performs |
|
8 |
-PCA based on them and outputs the principal components in a data frame |
|
9 |
-and their variances as percentVar attribute} |
|
5 |
+\title{Get PCA components for a feature counts table} |
|
10 | 6 |
\usage{ |
11 | 7 |
getPCA(count_data) |
12 | 8 |
} |
... | ... |
@@ -17,8 +13,6 @@ getPCA(count_data) |
17 | 13 |
A reduced dimension object |
18 | 14 |
} |
19 | 15 |
\description{ |
20 |
-Get PCA components for a feature counts table |
|
21 |
- |
|
22 | 16 |
Selects the 500 most variable genes in the feature count, performs |
23 | 17 |
PCA based on them and outputs the principal components in a data frame |
24 | 18 |
and their variances as percentVar attribute |
... | ... |
@@ -2,11 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/getTSNE.R |
3 | 3 |
\name{getTSNE} |
4 | 4 |
\alias{getTSNE} |
5 |
-\title{Get t-SNE components for a feature counts table |
|
6 |
- |
|
7 |
-Selects the 500 most variable genes in the feature count, performs |
|
8 |
-t-SNE based on them and outputs the principal components in a data frame |
|
9 |
-and their variances as percentVar attribute} |
|
5 |
+\title{Get t-SNE components for a feature counts table} |
|
10 | 6 |
\usage{ |
11 | 7 |
getTSNE(count_data) |
12 | 8 |
} |
... | ... |
@@ -17,8 +13,6 @@ getTSNE(count_data) |
17 | 13 |
A reduced dimension object |
18 | 14 |
} |
19 | 15 |
\description{ |
20 |
-Get t-SNE components for a feature counts table |
|
21 |
- |
|
22 | 16 |
Selects the 500 most variable genes in the feature count, performs |
23 | 17 |
t-SNE based on them and outputs the principal components in a data frame |
24 | 18 |
and their variances as percentVar attribute |
25 | 19 |
deleted file mode 100644 |
... | ... |
@@ -1,27 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/data.R |
|
3 |
-\docType{data} |
|
4 |
-\name{maits_SCESet} |
|
5 |
-\alias{maits_SCESet} |
|
6 |
-\title{Example Single Cell RNA-Seq MAITS data from MAST package} |
|
7 |
-\format{List of three data frames, with counts, features and annotations. |
|
8 |
-Use them as input to createSCESet()} |
|
9 |
-\source{ |
|
10 |
-DOI: 10.1186/s13059-015-0844-5 |
|
11 |
-} |
|
12 |
-\usage{ |
|
13 |
-maits_SCESet |
|
14 |
-} |
|
15 |
-\description{ |
|
16 |
-96 Single-cell transcriptome profiling from Mucosal Associated Invariant T |
|
17 |
-cells (MAITs), measured on the Fluidigm C1. |
|
18 |
-} |
|
19 |
-\examples{ |
|
20 |
-library(scater) |
|
21 |
-data("maits_SCESet") |
|
22 |
-maits_SCESet <- createSCESet(countfile = maits_SCESet$counts, |
|
23 |
- annotfile = maits_SCESet$annot, |
|
24 |
- featurefile = maits_SCESet$features, |
|
25 |
- inputdataframes = TRUE) |
|
26 |
-} |
|
27 |
-\keyword{datasets} |
28 | 0 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,21 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/data.R |
|
3 |
+\docType{data} |
|
4 |
+\name{maits_sce} |
|
5 |
+\alias{maits_sce} |
|
6 |
+\title{Example Single Cell RNA-Seq MAITS data from MAST package} |
|
7 |
+\format{SingleCellExperiment} |
|
8 |
+\source{ |
|
9 |
+DOI: 10.1186/s13059-015-0844-5 |
|
10 |
+} |
|
11 |
+\usage{ |
|
12 |
+maits_sce |
|
13 |
+} |
|
14 |
+\description{ |
|
15 |
+96 Single-cell transcriptome profiling from Mucosal Associated Invariant T |
|
16 |
+cells (MAITs), measured on the Fluidigm C1. |
|
17 |
+} |
|
18 |
+\examples{ |
|
19 |
+data("maits_sce") |
|
20 |
+} |
|
21 |
+\keyword{datasets} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/plotBiomarker.R |
3 | 3 |
\name{plotBiomarker} |
4 | 4 |
\alias{plotBiomarker} |
5 |
-\title{get Biomarker |
|
6 |
- |
|
7 |
-Use this function to get expression or binary data of gene list} |
|
5 |
+\title{get Biomarker} |
|
8 | 6 |
\usage{ |
9 | 7 |
plotBiomarker(count_data, gene, binary = "Binary", visual = "PCA", |
10 | 8 |
shape = "No Shape", axis_df = NULL, x = "PC1", y = "PC2") |
... | ... |
@@ -30,7 +28,5 @@ plotBiomarker(count_data, gene, binary = "Binary", visual = "PCA", |
30 | 28 |
A Biomarker plot |
31 | 29 |
} |
32 | 30 |
\description{ |
33 |
-get Biomarker |
|
34 |
- |
|
35 | 31 |
Use this function to get expression or binary data of gene list |
36 | 32 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/plotDimRed.R |
3 | 3 |
\name{plotDimRed} |
4 | 4 |
\alias{plotDimRed} |
5 |
-\title{Plot PCA or tSNE |
|
6 |
- |
|
7 |
-Use this function to plot PCA or tSNE results} |
|
5 |
+\title{Plot PCA or tSNE} |
|
8 | 6 |
\usage{ |
9 | 7 |
plotDimRed(method, vals_method, count_data, colorClusters, pc1, pc2) |
10 | 8 |
} |
... | ... |
@@ -25,7 +23,5 @@ plotDimRed(method, vals_method, count_data, colorClusters, pc1, pc2) |
25 | 23 |
A reduced dimension object |
26 | 24 |
} |
27 | 25 |
\description{ |
28 |
-Plot PCA or tSNE |
|
29 |
- |
|
30 | 26 |
Use this function to plot PCA or tSNE results |
31 | 27 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/plotPCA.R |
3 | 3 |
\name{plotPCA} |
4 | 4 |
\alias{plotPCA} |
5 |
-\title{Plot PCA |
|
6 |
- |
|
7 |
-Use this function to plot PCA or tSNE results} |
|
5 |
+\title{Plot PCA} |
|
8 | 6 |
\usage{ |
9 | 7 |
plotPCA(count_data, pca_df = NULL, colorBy = NULL, shape = NULL, |
10 | 8 |
pcX = "PC1", pcY = "PC2") |
... | ... |
@@ -26,7 +24,5 @@ plotPCA(count_data, pca_df = NULL, colorBy = NULL, shape = NULL, |
26 | 24 |
A PCA plot |
27 | 25 |
} |
28 | 26 |
\description{ |
29 |
-Plot PCA |
|
30 |
- |
|
31 | 27 |
Use this function to plot PCA or tSNE results |
32 | 28 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/plotTSNE.R |
3 | 3 |
\name{plotTSNE} |
4 | 4 |
\alias{plotTSNE} |
5 |
-\title{Plot TSNE |
|
6 |
- |
|
7 |
-Use this function to plot PCA or tSNE results} |
|
5 |
+\title{Plot TSNE} |
|
8 | 6 |
\usage{ |
9 | 7 |
plotTSNE(count_data, tsne_df = NULL, colorBy = NULL, shape = NULL) |
10 | 8 |
} |
... | ... |
@@ -21,7 +19,5 @@ plotTSNE(count_data, tsne_df = NULL, colorBy = NULL, shape = NULL) |
21 | 19 |
A TSNE plot |
22 | 20 |
} |
23 | 21 |
\description{ |
24 |
-Plot TSNE |
|
25 |
- |
|
26 | 22 |
Use this function to plot PCA or tSNE results |
27 | 23 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/runDimRed.R |
3 | 3 |
\name{runDimRed} |
4 | 4 |
\alias{runDimRed} |
5 |
-\title{Run PCA or tSNE |
|
6 |
- |
|
7 |
-Use this function to run limma differential expression and load an interactive D3 heatmap} |
|
5 |
+\title{Run PCA or tSNE} |
|
8 | 6 |
\usage{ |
9 | 7 |
runDimRed(method, count_data, colorClusters, pc1, pc2) |
10 | 8 |
} |
... | ... |
@@ -23,7 +21,5 @@ runDimRed(method, count_data, colorClusters, pc1, pc2) |
23 | 21 |
A reduced dimension object |
24 | 22 |
} |
25 | 23 |
\description{ |
26 |
-Run PCA or tSNE |
|
27 |
- |
|
28 | 24 |
Use this function to run limma differential expression and load an interactive D3 heatmap |
29 | 25 |
} |
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/runPCA.R |
3 | 3 |
\name{runPCA} |
4 | 4 |
\alias{runPCA} |
5 |
-\title{Run multiple PCA approach |
|
6 |
- |
|
7 |
-Use this function to run Principle component Analysis using different approach and load plot} |
|
5 |
+\title{Run multiple PCA approach} |
|
8 | 6 |
\usage{ |
9 | 7 |
runPCA(plot.type, method, countm, annotm, featurem, involving.variables, |
10 | 8 |
additional.variables, colorClusters) |
... | ... |
@@ -30,7 +28,6 @@ runPCA(plot.type, method, countm, annotm, featurem, involving.variables, |
30 | 28 |
A reduced dimension object |
31 | 29 |
} |
32 | 30 |
\description{ |
33 |
-Run multiple PCA approach |
|
34 |
- |
|
35 |
-Use this function to run Principle component Analysis using different approach and load plot |
|
31 |
+Use this function to run Principle component Analysis using different |
|
32 |
+approach and load plot |
|
36 | 33 |
} |
37 | 34 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,21 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/scDiffEx.R |
|
3 |
+\name{scDiffEx_anova} |
|
4 |
+\alias{scDiffEx_anova} |
|
5 |
+\title{Perform ANOVA analysis} |
|
6 |
+\usage{ |
|
7 |
+scDiffEx_anova(inSCESet, condition) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{inSCESet}{Input SCESet object. Required} |
|
11 |
+ |
|
12 |
+\item{condition}{The name of the condition to use for differential |
|
13 |
+expression. Must be a name of a column from pData that contains two labels. |
|
14 |
+Required} |
|
15 |
+} |
|
16 |
+\value{ |
|
17 |
+A data frame of gene names and adjusted p-values |
|
18 |
+} |
|
19 |
+\description{ |
|
20 |
+Returns a data frame of gene names and adjusted p-values |
|
21 |
+} |
... | ... |
@@ -14,7 +14,7 @@ singlecell_SVM(train_set, train_label, test_set, var, tune_para = FALSE, |
14 | 14 |
|
15 | 15 |
\item{test_set}{The test dataset (cells x features)} |
16 | 16 |
|
17 |
-\item{var}{feature names used for predicting cell quality ##} |
|
17 |
+\item{var}{feature names used for predicting cell quality} |
|
18 | 18 |
|
19 | 19 |
\item{tune_para}{boolean values determining if doing the parameter tuning} |
20 | 20 |
|
... | ... |
@@ -2,16 +2,16 @@ |
2 | 2 |
% Please edit documentation in R/misc_functions.R |
3 | 3 |
\name{summarizeTable} |
4 | 4 |
\alias{summarizeTable} |
5 |
-\title{Summarize SCESet} |
|
5 |
+\title{Summarize SingleCellExperiment} |
|
6 | 6 |
\usage{ |
7 | 7 |
summarizeTable(indata) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{indata}{Input SCESet} |
|
10 |
+\item{indata}{Input SingleCellExperiment} |
|
11 | 11 |
} |
12 | 12 |
\value{ |
13 | 13 |
A data.frame object of summary metrics. |
14 | 14 |
} |
15 | 15 |
\description{ |
16 |
-Creates a table of summary metrics from an input SCESet. |
|
16 |
+Creates a table of summary metrics from an input SingleCellExperiment. |
|
17 | 17 |
} |