Browse code

removing unwanted files that accidentally got merged

Ashastry2 authored on 07/10/2024 20:40:53
Showing 9 changed files

1 1
deleted file mode 100644
... ...
@@ -1,21 +0,0 @@
1
-
2
-reportMusic <- function(inSCE, output_file = NULL,
3
-                            output_dir = NULL) {
4
-  
5
-  if (is.null(output_dir)){
6
-    output_dir<- getwd()
7
-  }
8
-  
9
-  rmarkdown::render(system.file("rmarkdown/reportMusicRun.Rmd", package = "singleCellTK"),
10
-                    params = list(object = inSCE, 
11
-                                  bulkData = bulkData,
12
-                                  analysisName = analysisName, 
13
-                                  analysisType = c("EstCellProp","PreGroupedClustProp","SingleCellClust")),
14
-                    output_file = output_file,
15
-                    output_dir = output_dir,
16
-                    intermediates_dir = output_dir,
17
-                    knit_root_dir = output_dir)
18
-  
19
-}
20
-
21
-reportMusicresults
22 0
\ No newline at end of file
23 1
deleted file mode 100644
... ...
@@ -1,299 +0,0 @@
1
-#' @title Deconvolution of RNASeq data using single cell data
2
-#' @description A wrapper that performs deconvolution and clustering using MuSiC tool and 
3
-#' SingleCellExperiment object
4
-#' @param inSCE A \link[SingleCellExperiment]{SingleCellExperiment} object.
5
-#' @param analysisType Character. Specify which function to run 
6
-#'  Available options are  "EstCellProp","PreGroupedClustProp","SingleCellClust"
7
-#' @param analysisName Character. User-defined analysis name. 
8
-#' This will be used as the slot name and results can be stored and retrived from SCE object using this name
9
-#' @param markers List. list of gene names. Same as group.markers option from MuSiC package. The list include differential expressed genes within groups. 
10
-#' List name must be the same as `clusters`. Default is NULL
11
-#' @param clusters character, the colData of single cell dataset used as clusters; Default is "cellType"
12
-#' @param samples . Default is sampleID.
13
-#' groups = NULL, 
14
-#' @param selectCt vector of cell types, default as NULL. If NULL, then use all cell types provided by single cell dataset; NULL, #same as select.ct
15
-#' @param cellSize 	data.frame of cell sizes.same as cell_size; data.frame of cell sizes. 1st column contains the names of cell types, 2nd column has the cell sizes per cell type. Default as NULL. If NULL, then estimate cell size from data;
16
-#' @param ctCov logical. If TRUE, use the covariance across cell types; #same as ctCov in MuSiC
17
-#' @param preClusterlist 	list of cell types. The list identify groups of similar cell types.
18
-#' @param verbose logical, default as TRUE.
19
-#' @param iter.max 	numeric, maximum iteration number. Default 1000
20
-#' @param nu  regulation parameter, take care of weight when taking reciprocal 1e-04,
21
-#' @param eps Threshold of convergence. Default 0.01,
22
-#' @param centered logic, subtract avg of Y and D. Default FALSE
23
-#' @param normalize logic, divide Y and D by their standard deviation. Default FALSE
24
-#' @return SingleCellExperiment object containing the outputs of the
25
-#'  specified algorithms in the \link{colData}
26
-#' of \code{inSCE}.
27
-#' @examples
28
-#' data(scExample, package = "singleCellTK")
29
-#' Add bulk data here
30
-#' \dontrun{
31
-#' sce <- runMusic(sce,bulkdata, analysisType = "EstCellProp",analysisName = "test")
32
-#' }
33
-#' @export
34
-
35
-
36
-
37
-#' @rdname s4_methods
38
-setGeneric("getMusicResults", signature = c("x","y"),
39
-           function(x,y) {standardGeneric("getMusicResults")}
40
-)
41
-
42
-setClass("y", representation(name = "character"))
43
-
44
-
45
-#' @rdname s4_methods
46
-setMethod("getMusicResults", signature = c(x = "SingleCellExperiment"), function(x,y){
47
-  results <- S4Vectors::metadata(x)$sctk$music[[y]]
48
-  if(is.null(results)) {
49
-    stop("No results from 'Music' are found. Please run `runMusic` first.") 
50
-  }    
51
-  return(results)
52
-})
53
-
54
-#' @rdname s4_methods
55
-setGeneric("getMusicResults<-", function(x,y, value) standardGeneric("getMusicResults<-"))
56
-
57
-#' @rdname s4_methods
58
-setReplaceMethod("getMusicResults", signature(x = "SingleCellExperiment",y = "character"), function(x,y, value) {
59
-  S4Vectors::metadata(x)$sctk$music[[y]] <- value
60
-  return(x)
61
-})
62
-
63
-
64
-runMusic<-function(inSCE, 
65
-                   bulkData, #camelcase
66
-                   analysisName = "NULL",
67
-                   analysisType = c("EstCellProp","PreGroupedClustProp","SingleCellClust"), 
68
-                   markers = NULL, 
69
-                   clusters = "cellType", # not a default -- user input 
70
-                   samples = "sampleID", #sample is the default and not sampleID but keeping this as sampleID for testing purpose
71
-                   preClusterlist = NULL,
72
-                   DEmarkers = NULL,
73
-                   groups = NULL, 
74
-                   selectCt = NULL, #same as select.ct
75
-                   cellSize = NULL, #same as cell_size 
76
-                   ctCov = FALSE, #same as ctCov
77
-                   verbose = TRUE,
78
-                   iterMax = 1000, #same as iter.max 
79
-                   nu = 1e-04,
80
-                   eps = 0.01,
81
-                   centered = FALSE,
82
-                   normalize = FALSE,
83
-                   nonZero = TRUE # sane as non.zero
84
-) {
85
-  
86
-
87
-
88
-  # Estimate cell type proportions 
89
-  
90
-  
91
-  .musicProp <-function(bulkData, 
92
-                        inSCE, 
93
-                        analysisType, 
94
-                        markers, 
95
-                        clusters, 
96
-                        samples, 
97
-                        selectCt, 
98
-                        cellSize,
99
-                        ctCov,
100
-                        iterMax,
101
-                        nu,
102
-                        eps,
103
-                        centered,
104
-                        normalize){
105
-    # Can also supply list of marker genes here as an input
106
-    est_prop =  music_prop(bulk.mtx = bulkData,
107
-                           sc.sce = inSCE,
108
-                           markers = markers, 
109
-                           samples = samples, 
110
-                           clusters = clusters, 
111
-                           select.ct= selectCt, 
112
-                           cell_size = cellSize,
113
-                           ct.cov = ctCov,
114
-                           iter.max = iterMax,
115
-                           nu= nu,
116
-                           eps = eps,
117
-                           centered = centered,
118
-                           normalize = normalize)
119
-    est_prop$analysisType = analysisType
120
-    return(est_prop)
121
-  }
122
-  
123
-  
124
-  
125
-  
126
-  
127
-  ###############################################################################
128
-  ##### Estimation of cell types with pre-grouping of cell types 
129
-  ###############################################################################
130
-  
131
-  
132
-  
133
-
134
-  .musicBase<- function(inSCE,
135
-                        clusters,
136
-                        samples, 
137
-                        markers,
138
-                        selectCt,
139
-                        nonZero,
140
-                        cellSize,
141
-                        ctCov
142
-  ){
143
-    
144
-    basis_object = music_basis(x = inSCE, 
145
-                               clusters = clusters, 
146
-                               samples = samples,
147
-                               markers = markers,
148
-                               select.ct = selectCt,
149
-                               non.zero = nonZero, 
150
-                               cell_size = cellSize,
151
-                               ct.cov = ctCov)
152
-    
153
-    basis_object$analysisType = analysisType
154
-    # putting things back to sce
155
-    # should this be a new S4? How to create a new slot?
156
-    return(basis_object)
157
-    
158
-  }
159
-  
160
-  .musicPropCluster<- function(bulk.mtx,
161
-                               inSCE, 
162
-                               clusters, 
163
-                               groups,
164
-                               preClusterlist, # list of list cluster groups
165
-                               DEmarkers, # group names should be same as cluster names
166
-                               samples,
167
-                               iterMax,
168
-                               nu,
169
-                               eps,
170
-                               centered,
171
-                               normalize){
172
-    
173
-    
174
-    # Preprocess cluster labels
175
-    data<-colData(inSCE)
176
-    clusterExclude = levels(factor(unique(data[[clusters]][data[[clusters]] %in% unlist(preClusterlist) == FALSE])))
177
-    mergeall<-append(preClusterlist,clusterExclude)
178
-    names(mergeall)<-c(names(preClusterlist),clusterExclude)
179
-    cluster_new<-data.frame(do.call(cbind,mergeall)) %>% gather() %>% unique() %>% dplyr::rename(!!clusters:= "value", !!groups:= "key")
180
-
181
-    # adding cluster labels to phenodata
182
-    data %>% 
183
-      data.frame() %>%
184
-      rownames_to_column("row") %>%
185
-      left_join(cluster_new) %>%
186
-      transform(clusters = as.factor(clusters)) %>%
187
-      column_to_rownames("row") -> data
188
-    colData(inSCE)<- DataFrame(data)
189
-    
190
-    
191
-    prop_clust  = music_prop.cluster(bulk.mtx = bulkData, 
192
-                                     sc.sce = inSCE, 
193
-                                     group.markers = DEmarkers, 
194
-                                     clusters = clusters, 
195
-                                     groups = groups, 
196
-                                     samples = samples, 
197
-                                     clusters.type = preClusterlist,
198
-                                     iter.max = iterMax,
199
-                                     nu = nu,
200
-                                     eps = eps,
201
-                                     centered = centered,
202
-                                     normalize = normalize,)
203
-    
204
-    return(prop_clust)
205
-  }
206
-  
207
-  
208
-  #####################################################################
209
-  ## Run the tool
210
-  #####################################################################
211
-  
212
-  # Estimate cell type proportions
213
-  
214
-  if(analysisType == "EstCellProp"){
215
-    
216
-    temp_result<- .musicProp(bulkData, 
217
-                             inSCE, 
218
-                             analysisType, 
219
-                             markers, 
220
-                             clusters, 
221
-                             samples, 
222
-                             selectCt, 
223
-                             cellSize,
224
-                             ctCov,
225
-                             iterMax,
226
-                             nu,
227
-                             eps,
228
-                             centered,
229
-                             normalize)
230
-    temp_result$analysisType = analysisType
231
-  }
232
-  
233
-  # Clustering of single cell data 
234
-  
235
-  else if (analysisType == "SingleCellClust"){
236
-    
237
-    temp_result<- .musicBase(inSCE,
238
-                             clusters,
239
-                             samples, 
240
-                             markers,
241
-                             selectCt, 
242
-                             nonZero,
243
-                             cellSize,
244
-                             ctCov)
245
-    
246
-    temp_result$analysisType = analysisType
247
-    
248
-  }
249
-  
250
-  # Bulk tissue type estimation
251
-  
252
-  else if(analysisType == "PreGroupedClustProp") {
253
-    
254
-    if(class(preClusterlist) == "list"){
255
-      
256
-      temp_result = .musicPropCluster(bulk.mtx = bulkData, 
257
-                                      inSCE = inSCE, 
258
-                                      DEmarkers = IEmarkers, 
259
-                                      clusters = clusters, 
260
-                                      groups = groups, 
261
-                                      samples = samples, 
262
-                                      preClusterlist = preClusterlist,
263
-                                      iterMax = iterMax,
264
-                                      nu = nu,
265
-                                      eps = eps,
266
-                                      centered = centered,
267
-                                      normalize = normalize)
268
-      
269
-      temp_result$analysisType = analysisType
270
-      
271
-    }
272
-    
273
-    
274
-    
275
-  }
276
-  
277
-  
278
-  temp_result[["params"]]<-c(as.list(environment()))
279
-  
280
-  
281
-
282
- if(length(inSCE@metadata$sctk$music)>0){
283
-        getMusicResults(x = inSCE, y = analysisName) <- temp_result
284
-        # metadata(inSCE)$sctk$music[[analysisName]]<-temp_result
285
-    }
286
-  else{
287
-    new_list<-c()
288
-    metadata(inSCE)$sctk$music<-new_list
289
-   # metadata(inSCE)$sctk$music[[analysisName]]<-temp_result
290
-    getMusicResults(x = inSCE, y = analysisName)<-temp_result
291
-  }
292
-  
293
-
294
-  
295
-  return(inSCE)
296
-  
297
-}
298
-
299
-
300 0
deleted file mode 100644
301 1
Binary files a/data/Mouse.sce.rda and /dev/null differ
302 2
deleted file mode 100644
303 3
Binary files a/data/mouse_bulk.rda and /dev/null differ
304 4
deleted file mode 100644
... ...
@@ -1,72 +0,0 @@
1
-title: "Plotting MuSiC results"
2
-date: "`r format(Sys.time(), '%B %d, %Y')`"
3
-output:
4
-  html_document:
5
-    number_sections: yes
6
-    toc: yes
7
-    code_folding: hide
8
-
9
-# Larger report calling runMusic and plotMusic
10
-# 3 RMD - 
11
-#knitchild
12
-# Check seurat rmarkdown
13
-
14
-
15
-```{r MuSiC_library, message = FALSE, include = FALSE}
16
-require(singleCellTK)
17
-require(ggplot2)
18
-require(dplyr)
19
-```
20
-
21
-
22
-
23
-```{r MuSiC_params}
24
-sce <- params$object
25
-analysisName<-params$analysisName
26
-analysisType<-params$analysisType
27
-heatmapTitle<-params$heatmapTitle
28
-```
29
-
30
-
31
-
32
-```{r MuSiC_output, results = "asis", fig.align = "center"}
33
-
34
-results <- plotMusicResults(sce, analysisType = analysisType, analysisName =analysisName, heatmapTitle = heatmapTitle)
35
-
36
-
37
-  # Tab for tool results
38
-  cat(paste0('# Music Results', ' {.tabset} \n\n'))
39
-
40
-  # Subtab for a separate plot of the tool results
41
-  cat(paste0('## Heatmap \n\n'))
42
-  if (analysisType %in% c("EstCellProp","PreGroupedClustProp")){
43
-  metadata(results)$sctk$music[[analysisName]][["Heatmap"]]
44
-  }
45
-  
46
-  if(analysisType == "SingleCellClust"){
47
-  
48
-  cat(paste0('## Clusters \n\n'))
49
-  metadata(results)$sctk$music[[analysisName]][["clusters"]]
50
- #  getMusicPlots(sce,analysisName,"Clusters")
51
-  }
52
-  
53
-  # Final tab to display the parameters used
54
-  cat(paste0('## Parameters \n\n'))
55
-  print(params)
56
-```
57
-
58
-
59
-
60
-```{r MuSiC_description, include = FALSE, warning = FALSE, message = FALSE}
61
-description_toolName <- descMusic()
62
-
63
-# {.unlisted .unnumbered .toc-ignore}
64
-`r description_runMusic`
65
-```
66
-
67
-
68
-
69
-
70
-
71 0
deleted file mode 100644
... ...
@@ -1,54 +0,0 @@
1
-title: "Single Cell Deconvolution with MuSiC using singleCellTK package"
2
-author: "Amulya Shastry"
3
-date: "2022-10-25"
4
-output: html_document
5
-
6
-
7
-
8
-```{r MuSiC_library, message = FALSE, include = FALSE}
9
-require(singleCellTK)
10
-require(ggplot2)
11
-require(dplyr)
12
-```
13
-
14
-
15
-
16
-
17
-```{r}
18
-
19
-musicParams <- list(
20
-                   inSCE, 
21
-                   bulkData, 
22
-                   analysisName = "NULL",
23
-                   analysisType = c("EstCellProp","PreGroupedClustProp","SingleCellClust"), 
24
-                   markers = NULL, 
25
-                   clusters = "cellType", 
26
-                   samples = "sampleID", 
27
-                   preClusterlist = NULL,
28
-                   DEmarkers = NULL,
29
-                   groups = NULL, 
30
-                   selectCt = NULL, 
31
-                   cellSize = NULL, #same as cell_size 
32
-                   ctCov = FALSE, #same as ctCov
33
-                   verbose = TRUE,
34
-                   iterMax = 1000, #same as iter.max 
35
-                   nu = 1e-04,
36
-                   eps = 0.01,
37
-                   centered = FALSE,
38
-                   normalize = FALSE,
39
-                   nonZero = TRUE
40
-)
41
-
42
-
43
-sce <- do.call("runMusic", musicParams)
44
-
45
-```
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53 0
deleted file mode 100644
... ...
@@ -1,32 +0,0 @@
1
-% Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/plotMusicResults.R
3
-\name{plotMusicResults}
4
-\alias{plotMusicResults}
5
-\title{Plotting function of runMusic.R}
6
-\usage{
7
-plotMusicResults(
8
-  inSCE,
9
-  analysisType = c("EstCellProp", "PreGroupedClustProp", "SingleCellClust"),
10
-  heatmapTitle = NULL,
11
-  analysisName = NULL
12
-)
13
-}
14
-\arguments{
15
-\item{inSCE}{A \link[SingleCellExperiment]{SingleCellExperiment} object.}
16
-
17
-\item{analysisType}{Character. Specify which function to run 
18
-Available options are  "EstCellProp","PreGroupedClustProp","SingleCellClust"}
19
-
20
-\item{heatmapTitle}{Character. Title for heatmap; Default is NULL}
21
-
22
-\item{analysisName}{Character. User-defined analysis name.
23
-This will be used as the slot name and results can be stored and retrived from SCE object using this name}
24
-}
25
-\value{
26
-SingleCellExperiment object containing the outputs of the
27
- specified algorithms in the \link{colData}
28
-of \code{inSCE}.
29
-}
30
-\description{
31
-A wrapper that plots heatmap and cluster plots for results from runMusic.R
32
-}
33 0
deleted file mode 100644
... ...
@@ -1,151 +0,0 @@
1
-title: "MuSiC analysis"
2
-author: "Amulya Shastry"
3
-date: "2022-10-28"
4
-output: 
5
- html_document:
6
-    toc: true
7
-    toc_depth: 5
8
-bibliography: references.bib
9
-csl: ieee.csl
10
-
11
-```{r setup, include=FALSE}
12
-knitr::opts_chunk$set(echo = TRUE)
13
-
14
-library(singleCellTK)
15
-library(SingleCellExperiment)
16
-library(dplyr)
17
-library(S4Vectors)
18
-```
19
-
20
-````{=html}
21
-<head>
22
-<meta name="viewport" content="width=device-width, initial-scale=1">
23
-</head>
24
-<body>
25
-````
26
-
27
-
28
-
29
-## Introduction
30
-
31
-This section describes how to perform deconvolution of bulk data using single cell data with the package MuSiC under SingleCellTK
32
-
33
-To view detailed instructions on how to use these methods, please select 'Interactive Analysis' for shiny application or 'Console Analysis' for using these methods on R console from the tabs below: <br>
34
-
35
-## Workflow Guide
36
-
37
-````{=html}
38
-<div class="tab">
39
-  <button class="tablinks" onclick="openTab(event, 'interactive')" id="ia-button">Interactive Analysis</button>
40
-  <button class="tablinks" onclick="openTab(event, 'console')" id="console-button">Console Analysis</button>
41
-</div>
42
-
43
-<div id="interactive" class="tabcontent">
44
-````
45
-
46
-**Entry of The Panel**
47
-
48
-From anywhere of the UI, the panel for marker finding can be accessed from the top navigation panel at the circled tab shown below.  
49
-
50
-
51
-````{=html}
52
-</details>
53
-<br/>
54
-
55
-</div>
56
-
57
-<div id="console" class="tabcontent">
58
-````
59
-
60
-**Parameters**
61
-
62
-For MuSic we provide two inputs a) SCE objct b) bulk RNA data. ALong with this, we choose the type of analysis we want to perform. Currently MuSiC under SCKT supports deconvolution using bulk dataset. 
63
-
64
-
65
-```{R egCall, eval = FALSE}
66
-sce <- <-runMusic(inSCE = sce,Mouse.bulkeset,
67
-                  bulkData, 
68
-                   analysisName = "NULL",
69
-                   analysisType = c("EstCellProp","PreGroupedClustProp","SingleCellClust"), 
70
-                   markers = NULL, 
71
-                   clusters = "cellType", 
72
-                   samples = "sampleID", 
73
-                   preClusterlist = NULL,
74
-                   DEmarkers = NULL,
75
-                   groups = NULL, 
76
-                   selectCt = NULL, 
77
-                   cellSize = NULL, 
78
-                   ctCov = FALSE, 
79
-                   verbose = TRUE,
80
-                   iterMax = 1000, 
81
-                   nu = 1e-04,
82
-                   eps = 0.01,
83
-                   centered = FALSE,
84
-                   normalize = FALSE,
85
-                   nonZero = TRUE )
86
-```
87
-
88
-Here `inSCE` and `bulkData` are important for deconolution along with `analysisName` which is used to store the results and access them for plotting, `analysisType` defines one of the three music functions estimate cell type proportions, and estimate cell type proportions with pre-grouping of cells which has two steps i) Cluster single cell data ii) estimate bulk type proprotions.
89
-For estimating cell type proportions with pre-grouping of the cells, `DEmarkers` and `preClusterlist` is necessary. 
90
-
91
-The returned SCE object will contain the results in the `metadata` slot along with the analysisType 
92
-
93
-
94
-**Example**
95
-
96
-
97
-```{R example, eval = FALSE}
98
-library(singleCellTK)
99
-sce <- importExampleData("mouse.sce.rda")
100
-bulk <-importExampleData("mouse_bulk.rda")
101
-
102
-
103
-```
104
-
105
-
106
-```{r EstCellProp, eval = FALSE}
107
-
108
-# Estimation of cell type proportions
109
-sce <-runMusic(inSCE = sce,bulkData = bulk,analysisType ="EstCellProp", analysisName = "testEstCellProp")
110
-
111
-```
112
-
113
-
114
-```{R import_prep, include=FALSE}
115
-library(singleCellTK)
116
-sce <- R.filesets::loadRDS(file = "/Users/amulyashastry/Documents/Code/R/Rotation_campbell/Music_wrapper/AshastrySingleCellTk/singleCellTK/data/new_sce_with_music_basis.rds")
117
-```
118
-
119
-
120
-```{R }
121
-source("../../R/plotMusicResults.R")
122
-library(singleCellTK)
123
-library(SingleCellExperiment)
124
-library(dplyr)
125
-library(S4Vectors)
126
-plotMusicResults(sce,analysisType ="EstCellProp", analysisName = "testEstCellProp",useAssay = "Est.prop.allgene")
127
-
128
-```
129
-
130
-````{=html}
131
-</details>
132
-<br/>
133
-````
134
-
135
-
136
-````{=html} 
137
-</div>
138
-<script>
139
-document.getElementById("ia-button").click();
140
-</script>
141
-</body>
142
-````
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150 0
deleted file mode 100644
... ...
@@ -1,87 +0,0 @@
1
-title: "Music results"
2
-author: "Amulya Shastry"
3
-date: "2022-10-27"
4
-params:
5
-  object: object
6
-  analysisName: analysisName
7
-  analysisType: analysisType
8
-  heatmapTitle: heatmapTitle
9
-  bulkData: bulkData, 
10
-  analysisName: r! NULL,
11
-  analysisType: c("EstCellProp","PreGroupedClustProp","SingleCellClust"), 
12
-  markers: r!NULL, 
13
-  clusters: clusters, # not a default -- user input 
14
-  samples: "sampleID", #sample is the default and not sampleID but keeping this as sampleID for testing purpose
15
-  preClusterlist: NULL,
16
-  DEmarkers: NULL,
17
-  groups: NULL, 
18
-  selectCt: NULL, #same as select.ct
19
-  cellSize: NULL, #same as cell_size 
20
-  ctCov: FALSE, #same as ctCov
21
-  verbose: TRUE,
22
-  iterMax: 1000, #same as iter.max 
23
-  nu: 1e-04,
24
-  eps: 0.01,
25
-  centered: FALSE,
26
-  normalize: FALSE,
27
-  nonZero: TRUE
28
-output: html_document
29
-
30
-```{r setup, include=FALSE}
31
-knitr::opts_chunk$set(echo = TRUE)
32
-```
33
-
34
-
35
-```{r MuSiC_params}
36
-sce <- params$object
37
-analysisName<-params$analysisName
38
-analysisType<-params$analysisType
39
-heatmapTitle<-params$heatmapTitle
40
-```
41
-
42
-
43
-<!-- Music Run -->
44
-
45
-```{r, echo=FALSE, results='asis', warning=FALSE, message=FALSE}
46
-showSession <- FALSE
47
-musicRun <- knitr::knit_child('reportMusicRun.Rmd', quiet = TRUE, envir = environment())
48
-```
49
-
50
-<!-- Music Results -->
51
-
52
-```{r, echo=FALSE, results='asis', warning=FALSE, message=FALSE}
53
-showSession <- FALSE
54
-musicResults <- knitr::knit_child('reportMusicResults.Rmd', quiet = TRUE, envir = environment())
55
-```
56
-
57
-
58
-
59
-```{r, echo=FALSE, results='asis', warning=FALSE, message=FALSE}
60
-cat(musicRun, sep = '\n')
61
-cat(musicResults, sep = '\n')
62
-```
63
-
64
-
65
-
66
- 
67
-
68
-```{r, echo=FALSE}
69
-showSession <- params$showSession
70
-```
71
-
72
-
73
-
74
-```{r, results='asis', eval=showSession, echo=FALSE}
75
-cat("# Session Information\n\n")
76
-```
77
-
78
-
79
-```{r, results='markup', eval=showSession, echo=showSession}
80
-sessionInfo()
81
-```
82
-
83
-
84
-
85
-