... | ... |
@@ -84,7 +84,7 @@ runScanpyNormalizeData <- function(inSCE, |
84 | 84 |
.updateAssaySCEFromScanpy(inSCE, scanpyObject, normAssayName) |
85 | 85 |
metadata(inSCE)$scanpy$obj <- scanpyObject |
86 | 86 |
metadata(inSCE)$scanpy$normValues <- normValue$X |
87 |
- inSCE@metadata$scanpy$normAssay <- normAssayName |
|
87 |
+ metadata(inSCE)$scanpy$normAssay <- normAssayName |
|
88 | 88 |
colData(inSCE)$n_counts <- |
89 | 89 |
as.factor(unlist(metadata(inSCE)$scanpy$obj$obs['n_counts'])) |
90 | 90 |
|
... | ... |
@@ -217,11 +217,11 @@ runScanpyFindHVG <- function(inSCE, |
217 | 217 |
|
218 | 218 |
metadata(inSCE)$scanpy$hvg <- scanpyObject |
219 | 219 |
rowData(inSCE)$scanpy_variableFeatures_seurat_dispersion <- |
220 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions"]] |
|
220 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions"]] |
|
221 | 221 |
rowData(inSCE)$scanpy_variableFeatures_seurat_dispersionScaled <- |
222 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]] |
|
222 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]] |
|
223 | 223 |
rowData(inSCE)$scanpy_variableFeatures_seurat_mean <- |
224 |
- inSCE@metadata$scanpy$hvg["var"][["means"]] |
|
224 |
+ metadata(inSCE)$scanpy$hvg["var"][["means"]] |
|
225 | 225 |
|
226 | 226 |
metadata(inSCE)$sctk$runFeatureSelection$seurat <- |
227 | 227 |
list( |
... | ... |
@@ -247,22 +247,22 @@ runScanpyFindHVG <- function(inSCE, |
247 | 247 |
metadata(inSCE)$scanpy$hvg <- scanpyObject |
248 | 248 |
if (!altExp) { |
249 | 249 |
rowData(inSCE)$scanpy_variableFeatures_cr_dispersion <- |
250 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions"]] |
|
250 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions"]] |
|
251 | 251 |
rowData(inSCE)$scanpy_variableFeatures_cr_dispersionScaled <- |
252 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]] |
|
252 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]] |
|
253 | 253 |
rowData(inSCE)$scanpy_variableFeatures_cr_mean <- |
254 |
- inSCE@metadata$scanpy$hvg["var"][["means"]] |
|
254 |
+ metadata(inSCE)$scanpy$hvg["var"][["means"]] |
|
255 | 255 |
|
256 | 256 |
} |
257 | 257 |
else{ |
258 | 258 |
scanpyToSCE <- zellkonverter::AnnData2SCE(adata = scanpyObject) |
259 | 259 |
altExpRows <- match(rownames(inSCE), rownames(scanpyToSCE)) |
260 | 260 |
rowData(inSCE)$scanpy_variableFeatures_cr_dispersion <- |
261 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions"]][altExpRows] |
|
261 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions"]][altExpRows] |
|
262 | 262 |
rowData(inSCE)$scanpy_variableFeatures_cr_dispersionScaled <- |
263 |
- inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]] [altExpRows] |
|
263 |
+ metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]] [altExpRows] |
|
264 | 264 |
rowData(inSCE)$scanpy_variableFeatures_cr_mean <- |
265 |
- inSCE@metadata$scanpy$hvg["var"][["means"]][altExpRows] |
|
265 |
+ metadata(inSCE)$scanpy$hvg["var"][["means"]][altExpRows] |
|
266 | 266 |
} |
267 | 267 |
|
268 | 268 |
metadata(inSCE)$sctk$runFeatureSelection$cell_ranger <- |
... | ... |
@@ -287,11 +287,11 @@ runScanpyFindHVG <- function(inSCE, |
287 | 287 |
|
288 | 288 |
metadata(inSCE)$scanpy$hvg <- scanpyObject |
289 | 289 |
rowData(inSCE)$scanpy_variableFeatures_seuratv3_variances <- |
290 |
- inSCE@metadata$scanpy$hvg["var"][["variances"]] |
|
290 |
+ metadata(inSCE)$scanpy$hvg["var"][["variances"]] |
|
291 | 291 |
rowData(inSCE)$scanpy_variableFeatures_seuratv3_variancesScaled <- |
292 |
- inSCE@metadata$scanpy$hvg["var"][["variances_norm"]] |
|
292 |
+ metadata(inSCE)$scanpy$hvg["var"][["variances_norm"]] |
|
293 | 293 |
rowData(inSCE)$scanpy_variableFeatures_seuratv3_mean <- |
294 |
- inSCE@metadata$scanpy$hvg["var"][["means"]] |
|
294 |
+ metadata(inSCE)$scanpy$hvg["var"][["means"]] |
|
295 | 295 |
metadata(inSCE)$sctk$runFeatureSelection$seurat_v3 <- |
296 | 296 |
list( |
297 | 297 |
useAssay = useAssay, |
... | ... |
@@ -357,6 +357,8 @@ plotScanpyHVG <- function(inSCE, |
357 | 357 |
#' data(scExample, package = "singleCellTK") |
358 | 358 |
#' \dontrun{ |
359 | 359 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
360 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
361 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
360 | 362 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
361 | 363 |
#' } |
362 | 364 |
#' @return Updated \code{SingleCellExperiment} object which now contains the |
... | ... |
@@ -426,6 +428,8 @@ runScanpyPCA <- function(inSCE, |
426 | 428 |
#' data(scExample, package = "singleCellTK") |
427 | 429 |
#' \dontrun{ |
428 | 430 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
431 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
432 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
429 | 433 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
430 | 434 |
#' plotScanpyPCA(sce) |
431 | 435 |
#' } |
... | ... |
@@ -465,6 +469,8 @@ plotScanpyPCA <- function(inSCE, |
465 | 469 |
#' data(scExample, package = "singleCellTK") |
466 | 470 |
#' \dontrun{ |
467 | 471 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
472 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
473 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
468 | 474 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
469 | 475 |
#' plotScanpyPCAGeneRanking(sce) |
470 | 476 |
#' } |
... | ... |
@@ -490,6 +496,8 @@ plotScanpyPCAGeneRanking <- function(inSCE, |
490 | 496 |
#' data(scExample, package = "singleCellTK") |
491 | 497 |
#' \dontrun{ |
492 | 498 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
499 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
500 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
493 | 501 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
494 | 502 |
#' plotScanpyPCAVariance(sce) |
495 | 503 |
#' } |
... | ... |
@@ -544,6 +552,8 @@ plotScanpyPCAVariance <- function(inSCE, |
544 | 552 |
#' data(scExample, package = "singleCellTK") |
545 | 553 |
#' \dontrun{ |
546 | 554 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
555 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
556 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
547 | 557 |
#' sce <- runScanpyPCA(sce, useAssay = "counts") |
548 | 558 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
549 | 559 |
#' } |
... | ... |
@@ -641,6 +651,8 @@ runScanpyFindClusters <- function(inSCE, |
641 | 651 |
#' data(scExample, package = "singleCellTK") |
642 | 652 |
#' \dontrun{ |
643 | 653 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
654 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
655 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
644 | 656 |
#' sce <- runScanpyPCA(sce, useAssay = "counts") |
645 | 657 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
646 | 658 |
#' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
... | ... |
@@ -720,6 +732,16 @@ runScanpyUMAP <- function(inSCE, |
720 | 732 |
#' tSNE call. Default \code{15}. |
721 | 733 |
#' @param externalReduction Pass DimReduc object if PCA computed through |
722 | 734 |
#' other libraries. Default \code{NULL}. |
735 |
+#' @examples |
|
736 |
+#' data(scExample, package = "singleCellTK") |
|
737 |
+#' \dontrun{ |
|
738 |
+#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
|
739 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
740 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
741 |
+#' sce <- runScanpyPCA(sce, useAssay = "counts") |
|
742 |
+#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
|
743 |
+#' sce <- runScanpyTSNE(sce, useReduction = "scanpyPCA") |
|
744 |
+#' } |
|
723 | 745 |
#' @return Updated sce object with tSNE computations stored |
724 | 746 |
#' @export |
725 | 747 |
#' @importFrom SingleCellExperiment reducedDim<- |
... | ... |
@@ -782,6 +804,8 @@ runScanpyTSNE <- function(inSCE, |
782 | 804 |
#' data(scExample, package = "singleCellTK") |
783 | 805 |
#' \dontrun{ |
784 | 806 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
807 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
808 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
785 | 809 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
786 | 810 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
787 | 811 |
#' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
... | ... |
@@ -836,6 +860,7 @@ plotScanpyEmbedding <- function(inSCE, |
836 | 860 |
#' \dontrun{ |
837 | 861 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
838 | 862 |
#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
863 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
839 | 864 |
#' sce <- runScanpyPCA(sce, useAssay = "counts") |
840 | 865 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts", algorithm = "louvain") |
841 | 866 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -908,6 +933,8 @@ runScanpyFindMarkers <- function(inSCE, |
908 | 933 |
#' data(scExample, package = "singleCellTK") |
909 | 934 |
#' \dontrun{ |
910 | 935 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
936 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
937 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
911 | 938 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
912 | 939 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
913 | 940 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -921,7 +948,7 @@ plotScanpyMarkerGenes <- function(inSCE, |
921 | 948 |
nCols = 4, |
922 | 949 |
sharey = FALSE){ |
923 | 950 |
|
924 |
- if(is.null(inSCE@metadata[["findMarkerScanpyObject"]])){ |
|
951 |
+ if(is.null(metadata(inSCE)[["findMarkerScanpyObject"]])){ |
|
925 | 952 |
stop("marker genes not found. Kindly run runScanpyFindMarkers function first") |
926 | 953 |
} |
927 | 954 |
scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]] |
... | ... |
@@ -945,6 +972,8 @@ plotScanpyMarkerGenes <- function(inSCE, |
945 | 972 |
#' data(scExample, package = "singleCellTK") |
946 | 973 |
#' \dontrun{ |
947 | 974 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
975 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
976 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
948 | 977 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
949 | 978 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
950 | 979 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -957,7 +986,7 @@ plotScanpyMarkerGenesViolin <- function(inSCE, |
957 | 986 |
features = NULL, |
958 | 987 |
nGenes = 10){ |
959 | 988 |
|
960 |
- if(is.null(inSCE@metadata["findMarkerScanpyObject"])){ |
|
989 |
+ if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){ |
|
961 | 990 |
stop("marker genes not found. Kindly run runScanpyFindMarkers function first") |
962 | 991 |
} |
963 | 992 |
scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]] |
... | ... |
@@ -984,6 +1013,8 @@ plotScanpyMarkerGenesViolin <- function(inSCE, |
984 | 1013 |
#' data(scExample, package = "singleCellTK") |
985 | 1014 |
#' \dontrun{ |
986 | 1015 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1016 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1017 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
987 | 1018 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
988 | 1019 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
989 | 1020 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -998,7 +1029,7 @@ plotScanpyMarkerGenesHeatmap <- function(inSCE, |
998 | 1029 |
features = NULL, |
999 | 1030 |
log2fcThreshold = NULL){ |
1000 | 1031 |
|
1001 |
- if(is.null(inSCE@metadata["findMarkerScanpyObject"])){ |
|
1032 |
+ if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){ |
|
1002 | 1033 |
stop("marker genes not found. Kindly run runScanpyFindMarkers function first") |
1003 | 1034 |
} |
1004 | 1035 |
scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]] |
... | ... |
@@ -1058,6 +1089,8 @@ plotScanpyMarkerGenesHeatmap <- function(inSCE, |
1058 | 1089 |
#' data(scExample, package = "singleCellTK") |
1059 | 1090 |
#' \dontrun{ |
1060 | 1091 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1092 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1093 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
1061 | 1094 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
1062 | 1095 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
1063 | 1096 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -1078,7 +1111,7 @@ plotScanpyMarkerGenesDotPlot <- function(inSCE, |
1078 | 1111 |
vmax = NULL, |
1079 | 1112 |
colorBarTitle = "log fold change"){ |
1080 | 1113 |
|
1081 |
- if(is.null(inSCE@metadata["findMarkerScanpyObject"])){ |
|
1114 |
+ if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){ |
|
1082 | 1115 |
stop("marker genes not found. Kindly run runScanpyFindMarkers function first") |
1083 | 1116 |
} |
1084 | 1117 |
scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]] |
... | ... |
@@ -1151,6 +1184,8 @@ plotScanpyMarkerGenesDotPlot <- function(inSCE, |
1151 | 1184 |
#' data(scExample, package = "singleCellTK") |
1152 | 1185 |
#' \dontrun{ |
1153 | 1186 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1187 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1188 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
1154 | 1189 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
1155 | 1190 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
1156 | 1191 |
#' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -1171,7 +1206,7 @@ plotScanpyMarkerGenesMatrixPlot <- function(inSCE, |
1171 | 1206 |
vmax = NULL, |
1172 | 1207 |
colorBarTitle = "log fold change"){ |
1173 | 1208 |
|
1174 |
- if(is.null(inSCE@metadata["findMarkerScanpyObject"])){ |
|
1209 |
+ if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){ |
|
1175 | 1210 |
stop("marker genes not found. Kindly run runScanpyFindMarkers function first") |
1176 | 1211 |
} |
1177 | 1212 |
scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]] |
... | ... |
@@ -1236,6 +1271,8 @@ plotScanpyMarkerGenesMatrixPlot <- function(inSCE, |
1236 | 1271 |
#' data(scExample, package = "singleCellTK") |
1237 | 1272 |
#' \dontrun{ |
1238 | 1273 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1274 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1275 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
1239 | 1276 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
1240 | 1277 |
#' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
1241 | 1278 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -1294,6 +1331,8 @@ plotScanpyHeatmap <- function(inSCE, |
1294 | 1331 |
#' data(scExample, package = "singleCellTK") |
1295 | 1332 |
#' \dontrun{ |
1296 | 1333 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1334 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1335 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
1297 | 1336 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
1298 | 1337 |
#' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
1299 | 1338 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -1341,6 +1380,8 @@ plotScanpyDotPlot <- function(inSCE, |
1341 | 1380 |
#' data(scExample, package = "singleCellTK") |
1342 | 1381 |
#' \dontrun{ |
1343 | 1382 |
#' sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
1383 |
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
1384 |
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
1344 | 1385 |
#' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
1345 | 1386 |
#' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
1346 | 1387 |
#' sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -50,6 +50,8 @@ plotScanpyDotPlot |
50 | 50 |
data(scExample, package = "singleCellTK") |
51 | 51 |
\dontrun{ |
52 | 52 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
53 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
54 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
53 | 55 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
54 | 56 |
sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
55 | 57 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -35,6 +35,8 @@ plotScanpyEmbedding |
35 | 35 |
data(scExample, package = "singleCellTK") |
36 | 36 |
\dontrun{ |
37 | 37 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
38 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
39 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
38 | 40 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
39 | 41 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
40 | 42 |
sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
... | ... |
@@ -44,6 +44,8 @@ plotScanpyHeatmap |
44 | 44 |
data(scExample, package = "singleCellTK") |
45 | 45 |
\dontrun{ |
46 | 46 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
47 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
48 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
47 | 49 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
48 | 50 |
sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
49 | 51 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -35,6 +35,8 @@ plotScanpyMarkerGenes |
35 | 35 |
data(scExample, package = "singleCellTK") |
36 | 36 |
\dontrun{ |
37 | 37 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
38 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
39 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
38 | 40 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
39 | 41 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
40 | 42 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -69,6 +69,8 @@ plotScanpyMarkerGenesDotPlot |
69 | 69 |
data(scExample, package = "singleCellTK") |
70 | 70 |
\dontrun{ |
71 | 71 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
72 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
73 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
72 | 74 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
73 | 75 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
74 | 76 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -40,6 +40,8 @@ plotScanpyMarkerGenesHeatmap |
40 | 40 |
data(scExample, package = "singleCellTK") |
41 | 41 |
\dontrun{ |
42 | 42 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
43 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
44 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
43 | 45 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
44 | 46 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
45 | 47 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -69,6 +69,8 @@ plotScanpyMarkerGenesMatrixPlot |
69 | 69 |
data(scExample, package = "singleCellTK") |
70 | 70 |
\dontrun{ |
71 | 71 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
72 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
73 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
72 | 74 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
73 | 75 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
74 | 76 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -27,6 +27,8 @@ plotScanpyMarkerGenesViolin |
27 | 27 |
data(scExample, package = "singleCellTK") |
28 | 28 |
\dontrun{ |
29 | 29 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
30 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
31 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
30 | 32 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
31 | 33 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
32 | 34 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -34,6 +34,8 @@ plotScanpyPCA |
34 | 34 |
data(scExample, package = "singleCellTK") |
35 | 35 |
\dontrun{ |
36 | 36 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
37 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
38 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
37 | 39 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
38 | 40 |
plotScanpyPCA(sce) |
39 | 41 |
} |
... | ... |
@@ -25,6 +25,8 @@ plotScanpyPCAGeneRanking |
25 | 25 |
data(scExample, package = "singleCellTK") |
26 | 26 |
\dontrun{ |
27 | 27 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
28 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
29 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
28 | 30 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
29 | 31 |
plotScanpyPCAGeneRanking(sce) |
30 | 32 |
} |
... | ... |
@@ -23,6 +23,8 @@ plotScanpyPCAVariance |
23 | 23 |
data(scExample, package = "singleCellTK") |
24 | 24 |
\dontrun{ |
25 | 25 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
26 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
27 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
26 | 28 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
27 | 29 |
plotScanpyPCAVariance(sce) |
28 | 30 |
} |
... | ... |
@@ -29,6 +29,8 @@ plotScanpyViolin |
29 | 29 |
data(scExample, package = "singleCellTK") |
30 | 30 |
\dontrun{ |
31 | 31 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
32 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
33 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
32 | 34 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
33 | 35 |
sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
34 | 36 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
... | ... |
@@ -78,6 +78,8 @@ object |
78 | 78 |
data(scExample, package = "singleCellTK") |
79 | 79 |
\dontrun{ |
80 | 80 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
81 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
82 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
81 | 83 |
sce <- runScanpyPCA(sce, useAssay = "counts") |
82 | 84 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
83 | 85 |
} |
... | ... |
@@ -51,6 +51,7 @@ data(scExample, package = "singleCellTK") |
51 | 51 |
\dontrun{ |
52 | 52 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
53 | 53 |
sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
54 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
54 | 55 |
sce <- runScanpyPCA(sce, useAssay = "counts") |
55 | 56 |
sce <- runScanpyFindClusters(sce, useAssay = "counts", algorithm = "louvain") |
56 | 57 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -47,6 +47,8 @@ components within the sce object |
47 | 47 |
data(scExample, package = "singleCellTK") |
48 | 48 |
\dontrun{ |
49 | 49 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
50 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
51 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
50 | 52 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
51 | 53 |
} |
52 | 54 |
} |
... | ... |
@@ -45,3 +45,14 @@ runScanpyTSNE |
45 | 45 |
Computes tSNE from the given sce object and stores the tSNE computations back |
46 | 46 |
into the sce object |
47 | 47 |
} |
48 |
+\examples{ |
|
49 |
+data(scExample, package = "singleCellTK") |
|
50 |
+\dontrun{ |
|
51 |
+sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
|
52 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
53 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
54 |
+sce <- runScanpyPCA(sce, useAssay = "counts") |
|
55 |
+sce <- runScanpyFindClusters(sce, useAssay = "counts") |
|
56 |
+sce <- runScanpyTSNE(sce, useReduction = "scanpyPCA") |
|
57 |
+} |
|
58 |
+} |
... | ... |
@@ -65,6 +65,8 @@ into the sce object |
65 | 65 |
data(scExample, package = "singleCellTK") |
66 | 66 |
\dontrun{ |
67 | 67 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
68 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
69 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
68 | 70 |
sce <- runScanpyPCA(sce, useAssay = "counts") |
69 | 71 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
70 | 72 |
sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA") |
... | ... |
@@ -183,12 +183,12 @@ sce <- runScanpyTSNE(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = " |
183 | 183 |
``` |
184 | 184 |
|
185 | 185 |
```{r, warning=FALSE, message=FALSE} |
186 |
-# sce <- runScanpyUMAP(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = "scanpyUMAP") |
|
186 |
+sce <- runScanpyUMAP(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = "scanpyUMAP") |
|
187 | 187 |
``` |
188 | 188 |
|
189 | 189 |
```{r, warning=FALSE} |
190 | 190 |
plotScanpyEmbedding(sce, reducedDimName = "scanpyTSNE") |
191 |
-# plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP") |
|
191 |
+plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP") |
|
192 | 192 |
``` |
193 | 193 |
|
194 | 194 |
**6. Clustering** <br> |
... | ... |
@@ -201,7 +201,7 @@ sce <- runScanpyFindClusters(inSCE = sce, useAssay = "scanpyNormData", useReduct |
201 | 201 |
```{r "scanpy_cluster_plots", warning=FALSE, message=FALSE} |
202 | 202 |
plotScanpyEmbedding(sce, reducedDimName = "scanpyPCA", color = 'Scanpy_leiden_0.8') |
203 | 203 |
plotScanpyEmbedding(sce, reducedDimName = "scanpyTSNE", color = 'Scanpy_leiden_0.8') |
204 |
-# plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP", color = 'Scanpy_leiden_0.8') |
|
204 |
+plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP", color = 'Scanpy_leiden_0.8') |
|
205 | 205 |
``` |
206 | 206 |
|
207 | 207 |
**7. Find Markers** <br> |
... | ... |
@@ -218,8 +218,8 @@ The marker genes identified can be visualized through one of the available plots |
218 | 218 |
plotScanpyMarkerGenes(sce, groups = '0') |
219 | 219 |
plotScanpyMarkerGenesViolin(sce, groups = '0') |
220 | 220 |
plotScanpyMarkerGenesHeatmap(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10) |
221 |
-# plotScanpyMarkerGenesDotPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10) |
|
222 |
-# plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10) |
|
221 |
+plotScanpyMarkerGenesDotPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10) |
|
222 |
+plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10) |
|
223 | 223 |
``` |
224 | 224 |
|
225 | 225 |
````{=html} |