Browse code

Minor edits to scanpy functions

npervaiz authored on 22/12/2022 12:16:44
Showing 19 changed files

... ...
@@ -84,7 +84,7 @@ runScanpyNormalizeData <- function(inSCE,
84 84
     .updateAssaySCEFromScanpy(inSCE, scanpyObject, normAssayName)
85 85
   metadata(inSCE)$scanpy$obj <- scanpyObject
86 86
   metadata(inSCE)$scanpy$normValues <- normValue$X
87
-  inSCE@metadata$scanpy$normAssay <- normAssayName
87
+  metadata(inSCE)$scanpy$normAssay <- normAssayName
88 88
   colData(inSCE)$n_counts <- 
89 89
     as.factor(unlist(metadata(inSCE)$scanpy$obj$obs['n_counts']))
90 90
   
... ...
@@ -217,11 +217,11 @@ runScanpyFindHVG <- function(inSCE,
217 217
     
218 218
     metadata(inSCE)$scanpy$hvg <- scanpyObject
219 219
     rowData(inSCE)$scanpy_variableFeatures_seurat_dispersion <-
220
-      inSCE@metadata$scanpy$hvg["var"][["dispersions"]]
220
+      metadata(inSCE)$scanpy$hvg["var"][["dispersions"]]
221 221
     rowData(inSCE)$scanpy_variableFeatures_seurat_dispersionScaled <-
222
-      inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]]    
222
+      metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]]    
223 223
     rowData(inSCE)$scanpy_variableFeatures_seurat_mean <-
224
-      inSCE@metadata$scanpy$hvg["var"][["means"]]  
224
+      metadata(inSCE)$scanpy$hvg["var"][["means"]]  
225 225
     
226 226
     metadata(inSCE)$sctk$runFeatureSelection$seurat <-
227 227
       list(
... ...
@@ -247,22 +247,22 @@ runScanpyFindHVG <- function(inSCE,
247 247
     metadata(inSCE)$scanpy$hvg <- scanpyObject
248 248
     if (!altExp) {
249 249
       rowData(inSCE)$scanpy_variableFeatures_cr_dispersion <-
250
-        inSCE@metadata$scanpy$hvg["var"][["dispersions"]]
250
+        metadata(inSCE)$scanpy$hvg["var"][["dispersions"]]
251 251
       rowData(inSCE)$scanpy_variableFeatures_cr_dispersionScaled <-
252
-        inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]]    
252
+        metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]]    
253 253
       rowData(inSCE)$scanpy_variableFeatures_cr_mean <-
254
-        inSCE@metadata$scanpy$hvg["var"][["means"]] 
254
+        metadata(inSCE)$scanpy$hvg["var"][["means"]] 
255 255
       
256 256
     }
257 257
     else{
258 258
       scanpyToSCE <- zellkonverter::AnnData2SCE(adata = scanpyObject)
259 259
       altExpRows <- match(rownames(inSCE), rownames(scanpyToSCE))
260 260
       rowData(inSCE)$scanpy_variableFeatures_cr_dispersion <-
261
-        inSCE@metadata$scanpy$hvg["var"][["dispersions"]][altExpRows]
261
+        metadata(inSCE)$scanpy$hvg["var"][["dispersions"]][altExpRows]
262 262
       rowData(inSCE)$scanpy_variableFeatures_cr_dispersionScaled <-
263
-        inSCE@metadata$scanpy$hvg["var"][["dispersions_norm"]] [altExpRows]   
263
+        metadata(inSCE)$scanpy$hvg["var"][["dispersions_norm"]] [altExpRows]   
264 264
       rowData(inSCE)$scanpy_variableFeatures_cr_mean <-
265
-        inSCE@metadata$scanpy$hvg["var"][["means"]][altExpRows]
265
+        metadata(inSCE)$scanpy$hvg["var"][["means"]][altExpRows]
266 266
     }
267 267
     
268 268
     metadata(inSCE)$sctk$runFeatureSelection$cell_ranger <-
... ...
@@ -287,11 +287,11 @@ runScanpyFindHVG <- function(inSCE,
287 287
     
288 288
     metadata(inSCE)$scanpy$hvg <- scanpyObject
289 289
     rowData(inSCE)$scanpy_variableFeatures_seuratv3_variances <-
290
-      inSCE@metadata$scanpy$hvg["var"][["variances"]]
290
+      metadata(inSCE)$scanpy$hvg["var"][["variances"]]
291 291
     rowData(inSCE)$scanpy_variableFeatures_seuratv3_variancesScaled <-
292
-      inSCE@metadata$scanpy$hvg["var"][["variances_norm"]]    
292
+      metadata(inSCE)$scanpy$hvg["var"][["variances_norm"]]    
293 293
     rowData(inSCE)$scanpy_variableFeatures_seuratv3_mean <-
294
-      inSCE@metadata$scanpy$hvg["var"][["means"]]  
294
+      metadata(inSCE)$scanpy$hvg["var"][["means"]]  
295 295
     metadata(inSCE)$sctk$runFeatureSelection$seurat_v3 <-
296 296
       list(
297 297
         useAssay = useAssay,
... ...
@@ -357,6 +357,8 @@ plotScanpyHVG <- function(inSCE,
357 357
 #' data(scExample, package = "singleCellTK")
358 358
 #' \dontrun{
359 359
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
360
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
361
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
360 362
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
361 363
 #' }
362 364
 #' @return Updated \code{SingleCellExperiment} object which now contains the
... ...
@@ -426,6 +428,8 @@ runScanpyPCA <- function(inSCE,
426 428
 #' data(scExample, package = "singleCellTK")
427 429
 #' \dontrun{
428 430
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
431
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
432
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
429 433
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
430 434
 #' plotScanpyPCA(sce)
431 435
 #' }
... ...
@@ -465,6 +469,8 @@ plotScanpyPCA <- function(inSCE,
465 469
 #' data(scExample, package = "singleCellTK")
466 470
 #' \dontrun{
467 471
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
472
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
473
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
468 474
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
469 475
 #' plotScanpyPCAGeneRanking(sce)
470 476
 #' }
... ...
@@ -490,6 +496,8 @@ plotScanpyPCAGeneRanking <- function(inSCE,
490 496
 #' data(scExample, package = "singleCellTK")
491 497
 #' \dontrun{
492 498
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
499
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
500
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
493 501
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
494 502
 #' plotScanpyPCAVariance(sce)
495 503
 #' }
... ...
@@ -544,6 +552,8 @@ plotScanpyPCAVariance <- function(inSCE,
544 552
 #' data(scExample, package = "singleCellTK")
545 553
 #' \dontrun{
546 554
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
555
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
556
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
547 557
 #' sce <- runScanpyPCA(sce, useAssay = "counts")
548 558
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
549 559
 #' }
... ...
@@ -641,6 +651,8 @@ runScanpyFindClusters <- function(inSCE,
641 651
 #' data(scExample, package = "singleCellTK")
642 652
 #' \dontrun{
643 653
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
654
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
655
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
644 656
 #' sce <- runScanpyPCA(sce, useAssay = "counts")
645 657
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
646 658
 #' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
... ...
@@ -720,6 +732,16 @@ runScanpyUMAP <- function(inSCE,
720 732
 #' tSNE call. Default \code{15}.
721 733
 #' @param externalReduction Pass DimReduc object if PCA computed through
722 734
 #' other libraries. Default \code{NULL}.
735
+#' @examples
736
+#' data(scExample, package = "singleCellTK")
737
+#' \dontrun{
738
+#' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
739
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
740
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
741
+#' sce <- runScanpyPCA(sce, useAssay = "counts")
742
+#' sce <- runScanpyFindClusters(sce, useAssay = "counts")
743
+#' sce <- runScanpyTSNE(sce, useReduction = "scanpyPCA")
744
+#' }
723 745
 #' @return Updated sce object with tSNE computations stored
724 746
 #' @export
725 747
 #' @importFrom SingleCellExperiment reducedDim<-
... ...
@@ -782,6 +804,8 @@ runScanpyTSNE <- function(inSCE,
782 804
 #' data(scExample, package = "singleCellTK")
783 805
 #' \dontrun{
784 806
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
807
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
808
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
785 809
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
786 810
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
787 811
 #' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
... ...
@@ -836,6 +860,7 @@ plotScanpyEmbedding <- function(inSCE,
836 860
 #' \dontrun{
837 861
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
838 862
 #' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
863
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
839 864
 #' sce <- runScanpyPCA(sce, useAssay = "counts")
840 865
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts", algorithm = "louvain")
841 866
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -908,6 +933,8 @@ runScanpyFindMarkers <- function(inSCE,
908 933
 #' data(scExample, package = "singleCellTK")
909 934
 #' \dontrun{
910 935
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
936
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
937
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
911 938
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
912 939
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
913 940
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -921,7 +948,7 @@ plotScanpyMarkerGenes <- function(inSCE,
921 948
                                   nCols = 4,
922 949
                                   sharey = FALSE){
923 950
   
924
-  if(is.null(inSCE@metadata[["findMarkerScanpyObject"]])){
951
+  if(is.null(metadata(inSCE)[["findMarkerScanpyObject"]])){
925 952
     stop("marker genes not found. Kindly run runScanpyFindMarkers function first")
926 953
   }
927 954
   scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]]
... ...
@@ -945,6 +972,8 @@ plotScanpyMarkerGenes <- function(inSCE,
945 972
 #' data(scExample, package = "singleCellTK")
946 973
 #' \dontrun{
947 974
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
975
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
976
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
948 977
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
949 978
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
950 979
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -957,7 +986,7 @@ plotScanpyMarkerGenesViolin <- function(inSCE,
957 986
                                         features = NULL,
958 987
                                         nGenes = 10){
959 988
   
960
-  if(is.null(inSCE@metadata["findMarkerScanpyObject"])){
989
+  if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){
961 990
     stop("marker genes not found. Kindly run runScanpyFindMarkers function first")
962 991
   }
963 992
   scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]]
... ...
@@ -984,6 +1013,8 @@ plotScanpyMarkerGenesViolin <- function(inSCE,
984 1013
 #' data(scExample, package = "singleCellTK")
985 1014
 #' \dontrun{
986 1015
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1016
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1017
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
987 1018
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
988 1019
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
989 1020
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -998,7 +1029,7 @@ plotScanpyMarkerGenesHeatmap <- function(inSCE,
998 1029
                                          features = NULL,
999 1030
                                          log2fcThreshold = NULL){
1000 1031
   
1001
-  if(is.null(inSCE@metadata["findMarkerScanpyObject"])){
1032
+  if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){
1002 1033
     stop("marker genes not found. Kindly run runScanpyFindMarkers function first")
1003 1034
   }
1004 1035
   scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]]
... ...
@@ -1058,6 +1089,8 @@ plotScanpyMarkerGenesHeatmap <- function(inSCE,
1058 1089
 #' data(scExample, package = "singleCellTK")
1059 1090
 #' \dontrun{
1060 1091
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1092
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1093
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
1061 1094
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
1062 1095
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
1063 1096
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -1078,7 +1111,7 @@ plotScanpyMarkerGenesDotPlot <- function(inSCE,
1078 1111
                                          vmax = NULL,
1079 1112
                                          colorBarTitle = "log fold change"){
1080 1113
   
1081
-  if(is.null(inSCE@metadata["findMarkerScanpyObject"])){
1114
+  if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){
1082 1115
     stop("marker genes not found. Kindly run runScanpyFindMarkers function first")
1083 1116
   }
1084 1117
   scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]]
... ...
@@ -1151,6 +1184,8 @@ plotScanpyMarkerGenesDotPlot <- function(inSCE,
1151 1184
 #' data(scExample, package = "singleCellTK")
1152 1185
 #' \dontrun{
1153 1186
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1187
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1188
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
1154 1189
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
1155 1190
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
1156 1191
 #' sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -1171,7 +1206,7 @@ plotScanpyMarkerGenesMatrixPlot <- function(inSCE,
1171 1206
                                             vmax = NULL,
1172 1207
                                             colorBarTitle = "log fold change"){
1173 1208
   
1174
-  if(is.null(inSCE@metadata["findMarkerScanpyObject"])){
1209
+  if(is.null(metadata(inSCE)["findMarkerScanpyObject"])){
1175 1210
     stop("marker genes not found. Kindly run runScanpyFindMarkers function first")
1176 1211
   }
1177 1212
   scanpyObject <- metadata(inSCE)[["findMarkerScanpyObject"]]
... ...
@@ -1236,6 +1271,8 @@ plotScanpyMarkerGenesMatrixPlot <- function(inSCE,
1236 1271
 #' data(scExample, package = "singleCellTK")
1237 1272
 #' \dontrun{
1238 1273
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1274
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1275
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
1239 1276
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
1240 1277
 #' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
1241 1278
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -1294,6 +1331,8 @@ plotScanpyHeatmap <- function(inSCE,
1294 1331
 #' data(scExample, package = "singleCellTK")
1295 1332
 #' \dontrun{
1296 1333
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1334
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1335
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
1297 1336
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
1298 1337
 #' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
1299 1338
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -1341,6 +1380,8 @@ plotScanpyDotPlot <- function(inSCE,
1341 1380
 #' data(scExample, package = "singleCellTK")
1342 1381
 #' \dontrun{
1343 1382
 #' sce <- runScanpyNormalizeData(sce, useAssay = "counts")
1383
+#' sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
1384
+#' sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
1344 1385
 #' sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
1345 1386
 #' sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
1346 1387
 #' sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -50,6 +50,8 @@ plotScanpyDotPlot
50 50
 data(scExample, package = "singleCellTK")
51 51
 \dontrun{
52 52
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
53
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
54
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
53 55
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
54 56
 sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
55 57
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -35,6 +35,8 @@ plotScanpyEmbedding
35 35
 data(scExample, package = "singleCellTK")
36 36
 \dontrun{
37 37
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
38
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
39
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
38 40
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
39 41
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
40 42
 sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
... ...
@@ -44,6 +44,8 @@ plotScanpyHeatmap
44 44
 data(scExample, package = "singleCellTK")
45 45
 \dontrun{
46 46
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
47
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
48
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
47 49
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
48 50
 sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
49 51
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -35,6 +35,8 @@ plotScanpyMarkerGenes
35 35
 data(scExample, package = "singleCellTK")
36 36
 \dontrun{
37 37
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
38
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
39
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
38 40
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
39 41
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
40 42
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -69,6 +69,8 @@ plotScanpyMarkerGenesDotPlot
69 69
 data(scExample, package = "singleCellTK")
70 70
 \dontrun{
71 71
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
72
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
73
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
72 74
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
73 75
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
74 76
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -40,6 +40,8 @@ plotScanpyMarkerGenesHeatmap
40 40
 data(scExample, package = "singleCellTK")
41 41
 \dontrun{
42 42
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
43
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
44
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
43 45
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
44 46
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
45 47
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -69,6 +69,8 @@ plotScanpyMarkerGenesMatrixPlot
69 69
 data(scExample, package = "singleCellTK")
70 70
 \dontrun{
71 71
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
72
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
73
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
72 74
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
73 75
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
74 76
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -27,6 +27,8 @@ plotScanpyMarkerGenesViolin
27 27
 data(scExample, package = "singleCellTK")
28 28
 \dontrun{
29 29
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
30
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
31
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
30 32
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
31 33
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
32 34
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -34,6 +34,8 @@ plotScanpyPCA
34 34
 data(scExample, package = "singleCellTK")
35 35
 \dontrun{
36 36
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
37
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
38
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
37 39
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
38 40
 plotScanpyPCA(sce)
39 41
 }
... ...
@@ -25,6 +25,8 @@ plotScanpyPCAGeneRanking
25 25
 data(scExample, package = "singleCellTK")
26 26
 \dontrun{
27 27
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
28
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
29
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
28 30
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
29 31
 plotScanpyPCAGeneRanking(sce)
30 32
 }
... ...
@@ -23,6 +23,8 @@ plotScanpyPCAVariance
23 23
 data(scExample, package = "singleCellTK")
24 24
 \dontrun{
25 25
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
26
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
27
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
26 28
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
27 29
 plotScanpyPCAVariance(sce)
28 30
 }
... ...
@@ -29,6 +29,8 @@ plotScanpyViolin
29 29
 data(scExample, package = "singleCellTK")
30 30
 \dontrun{
31 31
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
32
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
33
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
32 34
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
33 35
 sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
34 36
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
... ...
@@ -78,6 +78,8 @@ object
78 78
 data(scExample, package = "singleCellTK")
79 79
 \dontrun{
80 80
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
81
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
82
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
81 83
 sce <- runScanpyPCA(sce, useAssay = "counts")
82 84
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
83 85
 }
... ...
@@ -51,6 +51,7 @@ data(scExample, package = "singleCellTK")
51 51
 \dontrun{
52 52
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
53 53
 sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
54
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
54 55
 sce <- runScanpyPCA(sce, useAssay = "counts")
55 56
 sce <- runScanpyFindClusters(sce, useAssay = "counts", algorithm = "louvain")
56 57
 sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" )
... ...
@@ -47,6 +47,8 @@ components within the sce object
47 47
 data(scExample, package = "singleCellTK")
48 48
 \dontrun{
49 49
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
50
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
51
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
50 52
 sce <- runScanpyPCA(sce, useAssay = "scanpyNormData")
51 53
 }
52 54
 }
... ...
@@ -45,3 +45,14 @@ runScanpyTSNE
45 45
 Computes tSNE from the given sce object and stores the tSNE computations back
46 46
 into the sce object
47 47
 }
48
+\examples{
49
+data(scExample, package = "singleCellTK")
50
+\dontrun{
51
+sce <- runScanpyNormalizeData(sce, useAssay = "counts")
52
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
53
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
54
+sce <- runScanpyPCA(sce, useAssay = "counts")
55
+sce <- runScanpyFindClusters(sce, useAssay = "counts")
56
+sce <- runScanpyTSNE(sce, useReduction = "scanpyPCA")
57
+}
58
+}
... ...
@@ -65,6 +65,8 @@ into the sce object
65 65
 data(scExample, package = "singleCellTK")
66 66
 \dontrun{
67 67
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
68
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData")
69
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat")
68 70
 sce <- runScanpyPCA(sce, useAssay = "counts")
69 71
 sce <- runScanpyFindClusters(sce, useAssay = "counts")
70 72
 sce <- runScanpyUMAP(sce, useReduction = "scanpyPCA")
... ...
@@ -183,12 +183,12 @@ sce <- runScanpyTSNE(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = "
183 183
 ```
184 184
 
185 185
 ```{r, warning=FALSE, message=FALSE}
186
-# sce <- runScanpyUMAP(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = "scanpyUMAP")
186
+sce <- runScanpyUMAP(inSCE = sce, useReduction = "scanpyPCA", reducedDimName = "scanpyUMAP")
187 187
 ```
188 188
 
189 189
 ```{r, warning=FALSE}
190 190
 plotScanpyEmbedding(sce, reducedDimName = "scanpyTSNE")
191
-# plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP")
191
+plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP")
192 192
 ```
193 193
 
194 194
 **6. Clustering** <br>
... ...
@@ -201,7 +201,7 @@ sce <- runScanpyFindClusters(inSCE = sce, useAssay = "scanpyNormData", useReduct
201 201
 ```{r "scanpy_cluster_plots", warning=FALSE, message=FALSE}
202 202
 plotScanpyEmbedding(sce, reducedDimName = "scanpyPCA", color = 'Scanpy_leiden_0.8')
203 203
 plotScanpyEmbedding(sce, reducedDimName = "scanpyTSNE", color = 'Scanpy_leiden_0.8')
204
-# plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP", color = 'Scanpy_leiden_0.8')
204
+plotScanpyEmbedding(sce, reducedDimName = "scanpyUMAP", color = 'Scanpy_leiden_0.8')
205 205
 ```
206 206
 
207 207
 **7. Find Markers** <br>
... ...
@@ -218,8 +218,8 @@ The marker genes identified can be visualized through one of the available plots
218 218
 plotScanpyMarkerGenes(sce, groups = '0')
219 219
 plotScanpyMarkerGenesViolin(sce, groups = '0')
220 220
 plotScanpyMarkerGenesHeatmap(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10)
221
-# plotScanpyMarkerGenesDotPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10)
222
-# plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10)
221
+plotScanpyMarkerGenesDotPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10)
222
+plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_leiden_0.8', nGenes = 10)
223 223
 ```
224 224
 
225 225
 ````{=html}