... | ... |
@@ -315,7 +315,8 @@ importGeneSetsFromCollection <- function(inSCE, geneSetCollection, |
315 | 315 |
#' @param inSCE Input \linkS4class{SingleCellExperiment} object. |
316 | 316 |
#' @param categoryIDs Character vector containing the MSigDB gene set ids. |
317 | 317 |
#' The column \code{ID} in the table returned by \code{getMSigDBTable()} shows |
318 |
-#' the list of possible gene set IDs that can be obtained. |
|
318 |
+#' the list of possible gene set IDs that can be obtained. |
|
319 |
+#' Default is \code{"H"}. |
|
319 | 320 |
#' @param species Character. Species available can be found using the function |
320 | 321 |
#' \code{\link[msigdbr]{msigdbr_show_species}}. Default \code{"Homo sapiens"}. |
321 | 322 |
#' @param mapping Character. One of "gene_symbol", "human_gene_symbol", or |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
#' and UMAP |
3 | 3 |
#' |
4 | 4 |
#' @param inSCE Input SCE object |
5 |
-#' @param useReduction Reduction to plot |
|
5 |
+#' @param useReduction Reduction to plot. Default is \code{"PCA"}. |
|
6 | 6 |
#' @param showLegend If legends should be plotted or not |
7 | 7 |
#' @param xDim Numeric value indicating the dimension to use for X-axis. |
8 | 8 |
#' Default is 1 (refers to PC1). |
... | ... |
@@ -8,9 +8,9 @@ |
8 | 8 |
#' name to store a logical index of selected features. Default \code{NULL}. See |
9 | 9 |
#' details. |
10 | 10 |
#' @param hvgNumber Specify the number of top genes to highlight in red. Default |
11 |
-#' \code{NULL}. See details. |
|
11 |
+#' \code{2000}. See details. |
|
12 | 12 |
#' @param labelsCount Specify the number of data points/genes to label. Should |
13 |
-#' be less than \code{hvgNumber}. Default \code{20}. See details. |
|
13 |
+#' be less than \code{hvgNumber}. Default \code{10}. See details. |
|
14 | 14 |
#' @param featureDisplay A character string for the \code{rowData} variable name |
15 | 15 |
#' to indicate what type of feature ID should be displayed. If set by |
16 | 16 |
#' \code{\link{setSCTKDisplayRow}}, will by default use it. If \code{NULL}, will |
... | ... |
@@ -6,7 +6,7 @@ |
6 | 6 |
#' @param inSCE A \linkS4class{SingleCellExperiment} object. |
7 | 7 |
#' @param useReducedDim A single \code{character}, specifying which |
8 | 8 |
#' low-dimension representation (\code{\link{reducedDim}}) |
9 |
-#' to perform the clustering algorithm on. Default \code{NULL}. |
|
9 |
+#' to perform the clustering algorithm on. Default \code{"PCA"}. |
|
10 | 10 |
#' @param useAssay A single \code{character}, specifying which |
11 | 11 |
#' \code{\link{assay}} to perform the clustering algorithm |
12 | 12 |
#' on. Default \code{NULL}. |
... | ... |
@@ -23,15 +23,15 @@ |
23 | 23 |
#' \code{NULL}. |
24 | 24 |
#' @param clusterName A single \code{character}, specifying the name to store |
25 | 25 |
#' the cluster label in \code{\link{colData}}. Default |
26 |
-#' \code{"scranSNN_cluster"}. |
|
26 |
+#' \code{"cluster"}. |
|
27 | 27 |
#' @param k An \code{integer}, the number of nearest neighbors used to construct |
28 | 28 |
#' the graph. Smaller value indicates higher resolution and larger number of |
29 |
-#' clusters. Default \code{8}. |
|
29 |
+#' clusters. Default \code{14}. |
|
30 | 30 |
#' @param nComp An \code{integer}. The number of components to use for graph |
31 | 31 |
#' construction. Default \code{10}. See Detail. |
32 | 32 |
#' @param weightType A single \code{character}, that specifies the edge weighing |
33 | 33 |
#' scheme when constructing the Shared Nearest-Neighbor (SNN) graph. Choose from |
34 |
-#' \code{"rank"}, \code{"number"}, \code{"jaccard"}. Default \code{"rank"}. |
|
34 |
+#' \code{"rank"}, \code{"number"}, \code{"jaccard"}. Default \code{"jaccard"}. |
|
35 | 35 |
#' @param algorithm A single \code{character}, that specifies the community |
36 | 36 |
#' detection algorithm to work on the SNN graph. Choose from \code{"leiden"}, |
37 | 37 |
#' \code{"louvain"}, \code{"walktrap"}, \code{"infomap"}, \code{"fastGreedy"}, |
... | ... |
@@ -205,16 +205,19 @@ |
205 | 205 |
#' compared with all other cells. Default \code{NULL}. |
206 | 206 |
#' @param class A vector/factor with \code{ncol(inSCE)} elements, or a character |
207 | 207 |
#' scalar that specifies a column name of \code{colData(inSCE)}. Default |
208 |
-#' \code{NULL}. |
|
208 |
+#' \code{"cluster"}. |
|
209 | 209 |
#' @param classGroup1 a vector specifying which "levels" given in \code{class} |
210 |
-#' are of interests. Default \code{NULL}. |
|
210 |
+#' are of interests. Default \code{c(1)}. |
|
211 | 211 |
#' @param classGroup2 a vector specifying which "levels" given in \code{class} |
212 | 212 |
#' is the control group against those specified by \code{classGroup1}. If |
213 | 213 |
#' \code{NULL} when using annotation specification, \code{classGroup1} cells |
214 |
-#' will be compared with all other cells. |
|
215 |
-#' @param analysisName A character scalar naming the DEG analysis. Required |
|
216 |
-#' @param groupName1 A character scalar naming the group of interests. Required. |
|
217 |
-#' @param groupName2 A character scalar naming the control group. Required. |
|
214 |
+#' will be compared with all other cells. Default \code{c(2)}. |
|
215 |
+#' @param analysisName A character scalar naming the DEG analysis. |
|
216 |
+#' Default \code{"cluster1_VS_2"}. |
|
217 |
+#' @param groupName1 A character scalar naming the group of interests. |
|
218 |
+#' Default \code{"cluster1"}. |
|
219 |
+#' @param groupName2 A character scalar naming the control group. |
|
220 |
+#' Default \code{"cluster2"}. |
|
218 | 221 |
#' @param covariates A character vector of additional covariates to use when |
219 | 222 |
#' building the model. All covariates must exist in |
220 | 223 |
#' \code{names(colData(inSCE))}. Default \code{NULL}. |
... | ... |
@@ -14,7 +14,7 @@ |
14 | 14 |
#' raw counts for \code{"vst"} method, or a normalized assay for other methods. |
15 | 15 |
#' @param method Specify the method to use for variable gene selection. |
16 | 16 |
#' Options include \code{"vst"}, \code{"mean.var.plot"} or \code{"dispersion"} |
17 |
-#' from Seurat and \code{"modelGeneVar"} from Scran. |
|
17 |
+#' from Seurat and \code{"modelGeneVar"} from Scran. Default \code{"modelGeneVar"} |
|
18 | 18 |
#' @return The input \linkS4class{SingleCellExperiment} object that contains |
19 | 19 |
#' the computed statistics in the \code{rowData} slot |
20 | 20 |
#' @seealso \code{\link{runModelGeneVar}}, \code{\link{runSeuratFindHVG}}, |
... | ... |
@@ -17,7 +17,7 @@ |
17 | 17 |
#' "mouse", "zeisel"}. See detail. Default \code{"hpca"}. |
18 | 18 |
#' @param level A string for cell type labeling level. Used only when using |
19 | 19 |
#' some of the SingleR built-in references. Choose from \code{"main", "fine", |
20 |
-#' "ont"}. Default \code{"main"}. |
|
20 |
+#' "ont"}. Default \code{"fine"}. |
|
21 | 21 |
#' @param featureType A string for whether to use gene symbols or Ensembl IDs |
22 | 22 |
#' when using a SingleR built-in reference. Should be set based on the type of |
23 | 23 |
#' \code{rownames} of \code{inSCE}. Choose from \code{"symbol", "ensembl"}. |
... | ... |
@@ -43,7 +43,7 @@ |
43 | 43 |
#' @param pca Logical. Whether to perform dimension reduction with PCA before |
44 | 44 |
#' UMAP. Ignored when using \code{useReducedDim}. Default \code{TRUE}. |
45 | 45 |
#' @param initialDims Number of dimensions from PCA to use as input in UMAP. |
46 |
-#' Default \code{25}. |
|
46 |
+#' Default \code{10}. |
|
47 | 47 |
#' @param nNeighbors The size of local neighborhood used for manifold |
48 | 48 |
#' approximation. Larger values result in more global views of the manifold, |
49 | 49 |
#' while smaller values result in more local data being preserved. Default |
... | ... |
@@ -7,9 +7,9 @@ |
7 | 7 |
#' as \link{importGeneSetsFromList} or \link{importGeneSetsFromMSigDB} |
8 | 8 |
#' @param inSCE Input \linkS4class{SingleCellExperiment} object. |
9 | 9 |
#' @param geneSetCollectionName Character. The name of the gene set collection |
10 |
-#' to use. |
|
10 |
+#' to use. Default \code{"H"}. |
|
11 | 11 |
#' @param useAssay Character. The name of the assay to use. This assay should |
12 |
-#' contain log normalized counts. |
|
12 |
+#' contain log normalized counts. Default \code{"logcounts"}. |
|
13 | 13 |
#' @param resultNamePrefix Character. Prefix to the name the VAM results which |
14 | 14 |
#' will be stored in the reducedDim slot of \code{inSCE}. The names of the |
15 | 15 |
#' output matrices will be \code{resultNamePrefix_Distance} and |
... | ... |
@@ -9,7 +9,7 @@ |
9 | 9 |
#' @param useFeatureSubset Subset of feature to use for dimension reduction. A |
10 | 10 |
#' character string indicating a \code{rowData} variable that stores the logical |
11 | 11 |
#' vector of HVG selection, or a vector that can subset the rows of |
12 |
-#' \code{inSCE}. Default \code{NULL}. |
|
12 |
+#' \code{inSCE}. Default \code{"hvg2000"}. |
|
13 | 13 |
#' @param scale Logical scalar, whether to standardize the expression values. |
14 | 14 |
#' Default \code{TRUE}. |
15 | 15 |
#' @param reducedDimName Name to use for the reduced output assay. Default |
... | ... |
@@ -7,12 +7,12 @@ |
7 | 7 |
\usage{ |
8 | 8 |
getFindMarkerTopTable( |
9 | 9 |
inSCE, |
10 |
- log2fcThreshold = 1, |
|
10 |
+ log2fcThreshold = 0, |
|
11 | 11 |
fdrThreshold = 0.05, |
12 |
- minClustExprPerc = 0.7, |
|
13 |
- maxCtrlExprPerc = 0.4, |
|
14 |
- minMeanExpr = 1, |
|
15 |
- topN = 10 |
|
12 |
+ minClustExprPerc = 0.5, |
|
13 |
+ maxCtrlExprPerc = 0.5, |
|
14 |
+ minMeanExpr = 0, |
|
15 |
+ topN = 1 |
|
16 | 16 |
) |
17 | 17 |
|
18 | 18 |
findMarkerTopTable( |
... | ... |
@@ -10,16 +10,15 @@ getTopHVG( |
10 | 10 |
method = c("vst", "dispersion", "mean.var.plot", "modelGeneVar", "seurat", "seurat_v3", |
11 | 11 |
"cell_ranger"), |
12 | 12 |
hvgNumber = 2000, |
13 |
- useFeatureSubset = NULL, |
|
13 |
+ useFeatureSubset = "hvg2000", |
|
14 | 14 |
featureDisplay = metadata(inSCE)$featureDisplay |
15 | 15 |
) |
16 | 16 |
|
17 | 17 |
setTopHVG( |
18 | 18 |
inSCE, |
19 |
- method = c("vst", "dispersion", "mean.var.plot", "modelGeneVar", "seurat", "seurat_v3", |
|
20 |
- "cell_ranger"), |
|
19 |
+ method = "modelGeneVar", |
|
21 | 20 |
hvgNumber = 2000, |
22 |
- featureSubsetName = NULL, |
|
21 |
+ featureSubsetName = "hvg2000", |
|
23 | 22 |
genes = NULL, |
24 | 23 |
genesBy = NULL, |
25 | 24 |
altExp = FALSE |
... | ... |
@@ -32,9 +32,6 @@ to "ridge", "violin", "feature", "dot" and "heatmap".} |
32 | 32 |
\item{groupVariable}{Specify the column name from the colData slot that |
33 | 33 |
should be used as grouping variable.} |
34 | 34 |
|
35 |
-\item{reducedDimName}{saved dimension reduction name in the |
|
36 |
-SingleCellExperiment object. Default \code{seuratUMAP}.} |
|
37 |
- |
|
38 | 35 |
\item{splitBy}{Specify the column name from the colData slot that should be |
39 | 36 |
used to split samples. |
40 | 37 |
Default is \code{NULL}.} |
... | ... |
@@ -6,10 +6,10 @@ |
6 | 6 |
\usage{ |
7 | 7 |
plotTopHVG( |
8 | 8 |
inSCE, |
9 |
- method = c("vst", "mean.var.plot", "dispersion", "modelGeneVar"), |
|
10 |
- hvgNumber = NULL, |
|
9 |
+ method = "modelGeneVar", |
|
10 |
+ hvgNumber = 2000, |
|
11 | 11 |
useFeatureSubset = NULL, |
12 |
- labelsCount = 20, |
|
12 |
+ labelsCount = 10, |
|
13 | 13 |
featureDisplay = metadata(inSCE)$featureDisplay, |
14 | 14 |
labelSize = 2, |
15 | 15 |
dotSize = 2, |
... | ... |
@@ -9,7 +9,7 @@ |
9 | 9 |
\alias{runWilcox} |
10 | 10 |
\title{Perform differential expression analysis on SCE object} |
11 | 11 |
\usage{ |
12 |
-runDEAnalysis(method = c("wilcox", "MAST", "DESeq2", "Limma", "ANOVA"), ...) |
|
12 |
+runDEAnalysis(inSCE, method = "wilcox", ...) |
|
13 | 13 |
|
14 | 14 |
runDESeq2( |
15 | 15 |
inSCE, |
... | ... |
@@ -115,12 +115,12 @@ runWilcox( |
115 | 115 |
useReducedDim = NULL, |
116 | 116 |
index1 = NULL, |
117 | 117 |
index2 = NULL, |
118 |
- class = NULL, |
|
119 |
- classGroup1 = NULL, |
|
120 |
- classGroup2 = NULL, |
|
121 |
- analysisName, |
|
122 |
- groupName1, |
|
123 |
- groupName2, |
|
118 |
+ class = "cluster", |
|
119 |
+ classGroup1 = c(1), |
|
120 |
+ classGroup2 = c(2), |
|
121 |
+ analysisName = "cluster1_VS_2", |
|
122 |
+ groupName1 = "cluster1", |
|
123 |
+ groupName2 = "cluster2", |
|
124 | 124 |
covariates = NULL, |
125 | 125 |
onlyPos = FALSE, |
126 | 126 |
log2fcThreshold = NULL, |
... | ... |
@@ -134,6 +134,8 @@ runWilcox( |
134 | 134 |
) |
135 | 135 |
} |
136 | 136 |
\arguments{ |
137 |
+\item{inSCE}{\linkS4class{SingleCellExperiment} inherited object.} |
|
138 |
+ |
|
137 | 139 |
\item{method}{Character. Specify which method to use when using |
138 | 140 |
\code{runDEAnalysis()}. Choose from \code{"wilcox"}, \code{"MAST"}, |
139 | 141 |
\code{"DESeq2"}, \code{"Limma"}, \code{"ANOVA"}. Default \code{"wilcox"}.} |
... | ... |
@@ -141,8 +143,6 @@ runWilcox( |
141 | 143 |
\item{...}{Arguments to pass to specific methods when using the generic |
142 | 144 |
\code{runDEAnalysis()}.} |
143 | 145 |
|
144 |
-\item{inSCE}{\linkS4class{SingleCellExperiment} inherited object.} |
|
145 |
- |
|
146 | 146 |
\item{useAssay}{character. A string specifying which assay to use for the |
147 | 147 |
DE regression. Ignored when \code{useReducedDim} is specified. Default |
148 | 148 |
\code{"counts"} for DESeq2, \code{"logcounts"} for other methods.} |
... | ... |
@@ -4,11 +4,7 @@ |
4 | 4 |
\alias{runFeatureSelection} |
5 | 5 |
\title{Run Variable Feature Detection Methods} |
6 | 6 |
\usage{ |
7 |
-runFeatureSelection( |
|
8 |
- inSCE, |
|
9 |
- useAssay, |
|
10 |
- method = c("vst", "mean.var.plot", "dispersion", "modelGeneVar", "cell_ranger") |
|
11 |
-) |
|
7 |
+runFeatureSelection(inSCE, useAssay, method = "modelGeneVar") |
|
12 | 8 |
} |
13 | 9 |
\arguments{ |
14 | 10 |
\item{inSCE}{Input \linkS4class{SingleCellExperiment} object.} |
... | ... |
@@ -6,15 +6,15 @@ |
6 | 6 |
\usage{ |
7 | 7 |
runScranSNN( |
8 | 8 |
inSCE, |
9 |
- useReducedDim = NULL, |
|
9 |
+ useReducedDim = "PCA", |
|
10 | 10 |
useAssay = NULL, |
11 | 11 |
useAltExp = NULL, |
12 | 12 |
altExpAssay = "counts", |
13 | 13 |
altExpRedDim = NULL, |
14 |
- clusterName = "scranSNN_cluster", |
|
15 |
- k = 8, |
|
14 |
+ clusterName = "cluster", |
|
15 |
+ k = 14, |
|
16 | 16 |
nComp = 10, |
17 |
- weightType = c("rank", "number", "jaccard"), |
|
17 |
+ weightType = "jaccard", |
|
18 | 18 |
algorithm = c("louvain", "leiden", "walktrap", "infomap", "fastGreedy", "labelProp", |
19 | 19 |
"leadingEigen"), |
20 | 20 |
BPPARAM = BiocParallel::SerialParam(), |
... | ... |
@@ -10,7 +10,7 @@ runSingleR( |
10 | 10 |
useSCERef = NULL, |
11 | 11 |
labelColName = NULL, |
12 | 12 |
useBltinRef = c("hpca", "bpe", "mp", "dice", "immgen", "mouse", "zeisel"), |
13 |
- level = c("main", "fine", "ont"), |
|
13 |
+ level = "fine", |
|
14 | 14 |
featureType = c("symbol", "ensembl"), |
15 | 15 |
labelByCluster = NULL |
16 | 16 |
) |