... | ... |
@@ -61,7 +61,7 @@ |
61 | 61 |
#' @export |
62 | 62 |
seuratNormalizeData <- function(inSCE, useAssay, normAssayName = "seuratNormData", normalizationMethod = "LogNormalize", scaleFactor = 10000, verbose = TRUE) { |
63 | 63 |
if(missing(useAssay)){ |
64 |
- useAssay <- assayNames(inSCE)[1] |
|
64 |
+ useAssay <- SummarizedExperiment::assayNames(inSCE)[1] |
|
65 | 65 |
message("'useAssay' parameter missing. Using the first available assay instead: '", useAssay, "'") |
66 | 66 |
} |
67 | 67 |
seuratObject <- Seurat::NormalizeData(convertSCEToSeurat(inSCE, useAssay), normalization.method = normalizationMethod, scale.factor = scaleFactor, verbose = verbose) |
... | ... |
@@ -209,6 +209,10 @@ seuratICA <- function(inSCE, useAssay, reducedDimName = "seuratICA", nics = 20) |
209 | 209 |
#' @param inSCE (sce) object on which to compute and store jackstraw plot |
210 | 210 |
#' @param useAssay Assay containing scaled counts to use in JackStraw calculation. |
211 | 211 |
#' @param dims Number of components to test in Jackstraw. If \code{NULL}, then all components are used. Default \code{NULL}. |
212 |
+#' @param numReplicate Numeric value indicating the number of replicate samplings to perform. |
|
213 |
+#' Default value is \code{100}. |
|
214 |
+#' @param propFreq Numeric value indicating the proportion of data to randomly permute for each replicate. |
|
215 |
+#' Default value is \code{0.025}. |
|
212 | 216 |
#' @param externalReduction Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}. |
213 | 217 |
#' @examples |
214 | 218 |
#' data(scExample, package = "singleCellTK") |
... | ... |
@@ -221,7 +225,7 @@ seuratICA <- function(inSCE, useAssay, reducedDimName = "seuratICA", nics = 20) |
221 | 225 |
#' } |
222 | 226 |
#' @return Updated \code{SingleCellExperiment} object with jackstraw computations stored in it |
223 | 227 |
#' @export |
224 |
-seuratComputeJackStraw <- function(inSCE, useAssay, dims = NULL, externalReduction = NULL) { |
|
228 |
+seuratComputeJackStraw <- function(inSCE, useAssay, dims = NULL, numReplicate = 100, propFreq = 0.025, externalReduction = NULL) { |
|
225 | 229 |
seuratObject <- convertSCEToSeurat(inSCE, scaledAssay = useAssay) |
226 | 230 |
if(!is.null(externalReduction)){ |
227 | 231 |
#convert (_) to (-) as required by Seurat |
... | ... |
@@ -250,7 +254,7 @@ seuratComputeJackStraw <- function(inSCE, useAssay, dims = NULL, externalReducti |
250 | 254 |
if(is.null(dims)) { |
251 | 255 |
dims <- ncol(seuratObject@reductions[["pca"]]) |
252 | 256 |
} |
253 |
- seuratObject <- Seurat::JackStraw(seuratObject, dims = as.double(dims)) |
|
257 |
+ seuratObject <- Seurat::JackStraw(seuratObject, dims = as.double(dims), num.replicate = numReplicate, prop.freq = propFreq) |
|
254 | 258 |
seuratObject <- Seurat::ScoreJackStraw(seuratObject, dims = 1:dims) |
255 | 259 |
inSCE <- .addSeuratToMetaDataSCE(inSCE, seuratObject) |
256 | 260 |
return(inSCE) |
... | ... |
@@ -260,6 +264,8 @@ seuratComputeJackStraw <- function(inSCE, useAssay, dims = NULL, externalReducti |
260 | 264 |
#' Computes the plot object for jackstraw plot from the pca slot in the input sce object |
261 | 265 |
#' @param inSCE (sce) object from which to compute the jackstraw plot (pca should be computed) |
262 | 266 |
#' @param dims Number of components to plot in Jackstraw. If \code{NULL}, then all components are plotted Default \code{NULL}. |
267 |
+#' @param xmax X-axis maximum on each QQ plot. Default \code{0.1}. |
|
268 |
+#' @param ymax Y-axis maximum on each QQ plot. Default \code{0.3}. |
|
263 | 269 |
#' @param externalReduction Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}. |
264 | 270 |
#' @examples |
265 | 271 |
#' data(scExample, package = "singleCellTK") |
... | ... |
@@ -273,7 +279,7 @@ seuratComputeJackStraw <- function(inSCE, useAssay, dims = NULL, externalReducti |
273 | 279 |
#' } |
274 | 280 |
#' @return plot object |
275 | 281 |
#' @export |
276 |
-seuratJackStrawPlot <- function(inSCE, dims = NULL, externalReduction = NULL) { |
|
282 |
+seuratJackStrawPlot <- function(inSCE, dims = NULL, xmax = 0.1, ymax = 0.3, externalReduction = NULL) { |
|
277 | 283 |
seuratObject <- convertSCEToSeurat(inSCE) |
278 | 284 |
if(!is.null(externalReduction)){ |
279 | 285 |
seuratObject@reductions <- list(pca = externalReduction) |
... | ... |
@@ -284,7 +290,7 @@ seuratJackStrawPlot <- function(inSCE, dims = NULL, externalReduction = NULL) { |
284 | 290 |
if(is.null(dims)) { |
285 | 291 |
dims <- ncol(seuratObject@reductions[["pca"]]) |
286 | 292 |
} |
287 |
- return(Seurat::JackStrawPlot(seuratObject, dims = 1:dims)) |
|
293 |
+ return(Seurat::JackStrawPlot(seuratObject, dims = 1:dims, xmax = xmax, ymax = ymax)) |
|
288 | 294 |
} |
289 | 295 |
|
290 | 296 |
#' seuratPlotHVG |
... | ... |
@@ -375,6 +381,8 @@ seuratReductionPlot <- function(inSCE, useReduction = c("pca", "ica", "tsne", "u |
375 | 381 |
#' @param groupSingletons boolean if singletons should be grouped together or not. Default \code{TRUE}. |
376 | 382 |
#' @param resolution Set the resolution parameter to find larger (value above 1) or smaller (value below 1) number of communities. Default \code{0.8}. |
377 | 383 |
#' @param externalReduction Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}. |
384 |
+#' @param verbose Logical value indicating if informative messages should |
|
385 |
+#' be displayed. Default is \code{TRUE}. |
|
378 | 386 |
#' @examples |
379 | 387 |
#' data(scExample, package = "singleCellTK") |
380 | 388 |
#' \dontrun{ |
... | ... |
@@ -386,8 +394,16 @@ seuratReductionPlot <- function(inSCE, useReduction = c("pca", "ica", "tsne", "u |
386 | 394 |
#' } |
387 | 395 |
#' @return Updated sce object which now contains the computed clusters |
388 | 396 |
#' @export |
389 |
-seuratFindClusters <- function(inSCE, useAssay, useReduction = c("pca", "ica"), dims = 10, algorithm = c("louvain", "multilevel", "SLM"), groupSingletons = TRUE, resolution = 0.8, externalReduction = NULL) { |
|
390 |
- |
|
397 |
+seuratFindClusters <- function( |
|
398 |
+ inSCE, |
|
399 |
+ useAssay = "seuratScaledData", |
|
400 |
+ useReduction = c("pca", "ica"), |
|
401 |
+ dims = 10, |
|
402 |
+ algorithm = c("louvain", "multilevel", "SLM"), |
|
403 |
+ groupSingletons = TRUE, |
|
404 |
+ resolution = 0.8, |
|
405 |
+ externalReduction = NULL, |
|
406 |
+ verbose = TRUE) { |
|
391 | 407 |
|
392 | 408 |
algorithm <- match.arg(algorithm) |
393 | 409 |
useReduction <- match.arg(useReduction) |
... | ... |
@@ -398,7 +414,7 @@ seuratFindClusters <- function(inSCE, useAssay, useReduction = c("pca", "ica"), |
398 | 414 |
seuratObject@reductions <- list(pca = externalReduction) |
399 | 415 |
} |
400 | 416 |
|
401 |
- seuratObject <- Seurat::FindNeighbors(seuratObject, reduction = useReduction, dims = seq(dims)) |
|
417 |
+ seuratObject <- Seurat::FindNeighbors(seuratObject, reduction = useReduction, dims = seq(dims), verbose = verbose) |
|
402 | 418 |
no_algorithm <- 1 |
403 | 419 |
if (algorithm == "louvain") { |
404 | 420 |
no_algorithm = 1 |
... | ... |
@@ -407,7 +423,7 @@ seuratFindClusters <- function(inSCE, useAssay, useReduction = c("pca", "ica"), |
407 | 423 |
} else if (algorithm == "SLM") { |
408 | 424 |
no_algorithm = 3 |
409 | 425 |
} |
410 |
- seuratObject <- Seurat::FindClusters(seuratObject, algorithm = no_algorithm, group.singletons = groupSingletons, resolution = resolution) |
|
426 |
+ seuratObject <- Seurat::FindClusters(seuratObject, algorithm = no_algorithm, group.singletons = groupSingletons, resolution = resolution, verbose = verbose) |
|
411 | 427 |
inSCE <- .addSeuratToMetaDataSCE(inSCE, seuratObject) |
412 | 428 |
colData(inSCE)[[paste0("Seurat","_",algorithm,"_","Resolution",resolution)]] <- [email protected]$seurat_clusters |
413 | 429 |
S4Vectors::metadata(inSCE)$seurat$clusterName <- paste0("Seurat","_",algorithm,"_","Resolution",resolution) |
... | ... |
@@ -436,7 +452,6 @@ seuratRunTSNE <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
436 | 452 |
return(inSCE) |
437 | 453 |
} |
438 | 454 |
|
439 |
-#RunUMAP(seurat, reduction = "pca", dims = 1:10, min.dist = 0.4, n.neighbors = 40, spread = 20) |
|
440 | 455 |
#' seuratRunUMAP |
441 | 456 |
#' Computes UMAP from the given sce object and stores the UMAP computations back into the sce object |
442 | 457 |
#' @param inSCE (sce) object on which to compute the UMAP |
... | ... |
@@ -446,6 +461,8 @@ seuratRunTSNE <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
446 | 461 |
#' @param minDist Sets the \code{"min.dist"} parameter to the underlying UMAP call. See \link[Seurat]{RunUMAP} for more information. Default \code{0.3}. |
447 | 462 |
#' @param nNeighbors Sets the \code{"n.neighbors"} parameter to the underlying UMAP call. See \link[Seurat]{RunUMAP} for more information. Default \code{30L}. |
448 | 463 |
#' @param spread Sets the \code{"spread"} parameter to the underlying UMAP call. See \link[Seurat]{RunUMAP} for more information. Default \code{1}. |
464 |
+#' @param verbose Logical value indicating if informative messages should |
|
465 |
+#' be displayed. Default is \code{TRUE}. |
|
449 | 466 |
#' @examples |
450 | 467 |
#' data(scExample, package = "singleCellTK") |
451 | 468 |
#' \dontrun{ |
... | ... |
@@ -459,7 +476,7 @@ seuratRunTSNE <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
459 | 476 |
#' @return Updated sce object with UMAP computations stored |
460 | 477 |
#' @export |
461 | 478 |
#' @importFrom SingleCellExperiment reducedDim<- |
462 |
-seuratRunUMAP <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName = "seuratUMAP", dims = 10, minDist = 0.3, nNeighbors = 30L, spread = 1) { |
|
479 |
+seuratRunUMAP <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName = "seuratUMAP", dims = 10, minDist = 0.3, nNeighbors = 30L, spread = 1, verbose = TRUE) { |
|
463 | 480 |
useReduction <- match.arg(useReduction) |
464 | 481 |
seuratObject <- convertSCEToSeurat(inSCE) |
465 | 482 |
seuratObject <- Seurat::RunUMAP(seuratObject, |
... | ... |
@@ -467,7 +484,8 @@ seuratRunUMAP <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
467 | 484 |
dims = 1:dims, |
468 | 485 |
min.dist = minDist, |
469 | 486 |
n.neighbors = nNeighbors, |
470 |
- spread = spread) |
|
487 |
+ spread = spread, |
|
488 |
+ verbose = verbose) |
|
471 | 489 |
inSCE <- .addSeuratToMetaDataSCE(inSCE, seuratObject) |
472 | 490 |
|
473 | 491 |
temp <- seuratObject@[email protected] |
... | ... |
@@ -494,6 +512,7 @@ seuratRunUMAP <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
494 | 512 |
#' @param inSCE (sce) object from which to compute the elbow plot (pca should be computed) |
495 | 513 |
#' @param significantPC Number of significant principal components to plot. This is used to alter the color of the points for the corresponding PCs. If \code{NULL}, all points will be the same color. Default \code{NULL}. |
496 | 514 |
#' @param reduction Reduction to use for elbow plot generation. Either \code{"pca"} or \code{"ica"}. Default \code{"pca"}. |
515 |
+#' @param ndims Number of components to use. Default \code{20}. |
|
497 | 516 |
#' @param externalReduction Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}. |
498 | 517 |
#' @param interactive Logical value indicating if the returned object should |
499 | 518 |
#' be an interactive plotly object if \code{TRUE} or a ggplot object if |
... | ... |
@@ -512,13 +531,14 @@ seuratRunUMAP <- function(inSCE, useReduction = c("pca", "ica"), reducedDimName |
512 | 531 |
seuratElbowPlot <- function(inSCE, |
513 | 532 |
significantPC = NULL, |
514 | 533 |
reduction = "pca", |
534 |
+ ndims = 20, |
|
515 | 535 |
externalReduction = NULL, |
516 | 536 |
interactive = TRUE) { |
517 | 537 |
seuratObject <- convertSCEToSeurat(inSCE) |
518 | 538 |
if(!is.null(externalReduction)){ |
519 | 539 |
seuratObject@reductions <- list(pca = externalReduction) |
520 | 540 |
} |
521 |
- plot <- Seurat::ElbowPlot(seuratObject, reduction = reduction) |
|
541 |
+ plot <- Seurat::ElbowPlot(seuratObject, reduction = reduction, ndims = ndims) |
|
522 | 542 |
if(!is.null(significantPC)){ |
523 | 543 |
plot$data$Significant <- c(rep("Yes", significantPC), rep("No", length(rownames(plot$data)) - significantPC)) |
524 | 544 |
plot <- ggplot2::ggplot(data = plot$data, ggplot2::aes(x = plot$data$dims, y = plot$data$stdev, color = plot$data$Significant)) + ggplot2::geom_point() |
... | ... |
@@ -890,12 +910,14 @@ seuratIntegration <- function(inSCE, useAssay = "counts", batch, newAssayName = |
890 | 910 |
#' @param threshUse Numeric value indicating the logFC threshold value on |
891 | 911 |
#' which on average, at least X-fold difference (log-scale) between the |
892 | 912 |
#' two groups of cells exists. Default is \code{0.25}. |
913 |
+#' @param verbose Logical value indicating if informative messages should |
|
914 |
+#' be displayed. Default is \code{TRUE}. |
|
893 | 915 |
#' @return A \code{SingleCellExperiment} object that contains marker genes populated in a data.frame stored inside metadata slot. |
894 | 916 |
#' @export |
895 | 917 |
seuratFindMarkers <- function( |
896 | 918 |
inSCE, cells1 = NULL, cells2 = NULL, group1 = NULL, group2 = NULL, |
897 | 919 |
allGroup = NULL, conserved = FALSE, test = "wilcox", onlyPos = FALSE, |
898 |
- minPCT = 0.1, threshUse = 0.25){ |
|
920 |
+ minPCT = 0.1, threshUse = 0.25, verbose = TRUE){ |
|
899 | 921 |
seuratObject <- convertSCEToSeurat(inSCE) |
900 | 922 |
markerGenes <- NULL |
901 | 923 |
if(is.null(allGroup) |
... | ... |
@@ -953,7 +975,8 @@ seuratFindMarkers <- function( |
953 | 975 |
test.use = test, |
954 | 976 |
only.pos = onlyPos, |
955 | 977 |
logfc.threshold = threshUse, |
956 |
- min.pct = minPCT) |
|
978 |
+ min.pct = minPCT, |
|
979 |
+ verbose = verbose) |
|
957 | 980 |
gene.id <- markerGenes$gene |
958 | 981 |
markerGenes <- cbind(gene.id, markerGenes) |
959 | 982 |
markerGenes$gene <- NULL |
... | ... |
@@ -973,7 +996,8 @@ seuratFindMarkers <- function( |
973 | 996 |
test.use = test, |
974 | 997 |
only.pos = onlyPos, |
975 | 998 |
logfc.threshold = threshUse, |
976 |
- min.pct = minPCT) |
|
999 |
+ min.pct = minPCT, |
|
1000 |
+ verbose = verbose) |
|
977 | 1001 |
gene.id <- markerGenes$gene |
978 | 1002 |
markerGenes <- cbind(gene.id, markerGenes) |
979 | 1003 |
markerGenes$gene <- NULL |
... | ... |
@@ -1173,8 +1197,8 @@ seuratGenePlot <- function(inSCE, |
1173 | 1197 |
#' @return A list of variable feature names. |
1174 | 1198 |
#' @export |
1175 | 1199 |
seuratVariableFeatures <- function(inSCE){ |
1176 |
- if(!is.null(metadata(inSCE)$seurat$obj)){ |
|
1177 |
- return(Seurat::VariableFeatures(metadata(inSCE)$seurat$obj)) |
|
1200 |
+ if(!is.null(S4Vectors::metadata(inSCE)$seurat$obj)){ |
|
1201 |
+ return(Seurat::VariableFeatures(S4Vectors::metadata(inSCE)$seurat$obj)) |
|
1178 | 1202 |
} |
1179 | 1203 |
else{ |
1180 | 1204 |
return(NULL) |
... | ... |
@@ -5,7 +5,14 @@ |
5 | 5 |
\title{seuratComputeJackStraw |
6 | 6 |
Compute jackstraw plot and store the computations in the input sce object} |
7 | 7 |
\usage{ |
8 |
-seuratComputeJackStraw(inSCE, useAssay, dims = NULL, externalReduction = NULL) |
|
8 |
+seuratComputeJackStraw( |
|
9 |
+ inSCE, |
|
10 |
+ useAssay, |
|
11 |
+ dims = NULL, |
|
12 |
+ numReplicate = 100, |
|
13 |
+ propFreq = 0.025, |
|
14 |
+ externalReduction = NULL |
|
15 |
+) |
|
9 | 16 |
} |
10 | 17 |
\arguments{ |
11 | 18 |
\item{inSCE}{(sce) object on which to compute and store jackstraw plot} |
... | ... |
@@ -14,6 +21,12 @@ seuratComputeJackStraw(inSCE, useAssay, dims = NULL, externalReduction = NULL) |
14 | 21 |
|
15 | 22 |
\item{dims}{Number of components to test in Jackstraw. If \code{NULL}, then all components are used. Default \code{NULL}.} |
16 | 23 |
|
24 |
+\item{numReplicate}{Numeric value indicating the number of replicate samplings to perform. |
|
25 |
+Default value is \code{100}.} |
|
26 |
+ |
|
27 |
+\item{propFreq}{Numeric value indicating the proportion of data to randomly permute for each replicate. |
|
28 |
+Default value is \code{0.025}.} |
|
29 |
+ |
|
17 | 30 |
\item{externalReduction}{Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}.} |
18 | 31 |
} |
19 | 32 |
\value{ |
... | ... |
@@ -9,6 +9,7 @@ seuratElbowPlot( |
9 | 9 |
inSCE, |
10 | 10 |
significantPC = NULL, |
11 | 11 |
reduction = "pca", |
12 |
+ ndims = 20, |
|
12 | 13 |
externalReduction = NULL, |
13 | 14 |
interactive = TRUE |
14 | 15 |
) |
... | ... |
@@ -20,6 +21,8 @@ seuratElbowPlot( |
20 | 21 |
|
21 | 22 |
\item{reduction}{Reduction to use for elbow plot generation. Either \code{"pca"} or \code{"ica"}. Default \code{"pca"}.} |
22 | 23 |
|
24 |
+\item{ndims}{Number of components to use. Default \code{20}.} |
|
25 |
+ |
|
23 | 26 |
\item{externalReduction}{Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}.} |
24 | 27 |
|
25 | 28 |
\item{interactive}{Logical value indicating if the returned object should |
... | ... |
@@ -7,13 +7,14 @@ Computes the clusters from the input sce object and stores them back in sce obje |
7 | 7 |
\usage{ |
8 | 8 |
seuratFindClusters( |
9 | 9 |
inSCE, |
10 |
- useAssay, |
|
10 |
+ useAssay = "seuratScaledData", |
|
11 | 11 |
useReduction = c("pca", "ica"), |
12 | 12 |
dims = 10, |
13 | 13 |
algorithm = c("louvain", "multilevel", "SLM"), |
14 | 14 |
groupSingletons = TRUE, |
15 | 15 |
resolution = 0.8, |
16 |
- externalReduction = NULL |
|
16 |
+ externalReduction = NULL, |
|
17 |
+ verbose = TRUE |
|
17 | 18 |
) |
18 | 19 |
} |
19 | 20 |
\arguments{ |
... | ... |
@@ -32,6 +33,9 @@ seuratFindClusters( |
32 | 33 |
\item{resolution}{Set the resolution parameter to find larger (value above 1) or smaller (value below 1) number of communities. Default \code{0.8}.} |
33 | 34 |
|
34 | 35 |
\item{externalReduction}{Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}.} |
36 |
+ |
|
37 |
+\item{verbose}{Logical value indicating if informative messages should |
|
38 |
+be displayed. Default is \code{TRUE}.} |
|
35 | 39 |
} |
36 | 40 |
\value{ |
37 | 41 |
Updated sce object which now contains the computed clusters |
... | ... |
@@ -15,7 +15,8 @@ seuratFindMarkers( |
15 | 15 |
test = "wilcox", |
16 | 16 |
onlyPos = FALSE, |
17 | 17 |
minPCT = 0.1, |
18 |
- threshUse = 0.25 |
|
18 |
+ threshUse = 0.25, |
|
19 |
+ verbose = TRUE |
|
19 | 20 |
) |
20 | 21 |
} |
21 | 22 |
\arguments{ |
... | ... |
@@ -45,6 +46,9 @@ cells in which genes are detected. Default is \code{0.1}.} |
45 | 46 |
\item{threshUse}{Numeric value indicating the logFC threshold value on |
46 | 47 |
which on average, at least X-fold difference (log-scale) between the |
47 | 48 |
two groups of cells exists. Default is \code{0.25}.} |
49 |
+ |
|
50 |
+\item{verbose}{Logical value indicating if informative messages should |
|
51 |
+be displayed. Default is \code{TRUE}.} |
|
48 | 52 |
} |
49 | 53 |
\value{ |
50 | 54 |
A \code{SingleCellExperiment} object that contains marker genes populated in a data.frame stored inside metadata slot. |
... | ... |
@@ -5,13 +5,23 @@ |
5 | 5 |
\title{seuratJackStrawPlot |
6 | 6 |
Computes the plot object for jackstraw plot from the pca slot in the input sce object} |
7 | 7 |
\usage{ |
8 |
-seuratJackStrawPlot(inSCE, dims = NULL, externalReduction = NULL) |
|
8 |
+seuratJackStrawPlot( |
|
9 |
+ inSCE, |
|
10 |
+ dims = NULL, |
|
11 |
+ xmax = 0.1, |
|
12 |
+ ymax = 0.3, |
|
13 |
+ externalReduction = NULL |
|
14 |
+) |
|
9 | 15 |
} |
10 | 16 |
\arguments{ |
11 | 17 |
\item{inSCE}{(sce) object from which to compute the jackstraw plot (pca should be computed)} |
12 | 18 |
|
13 | 19 |
\item{dims}{Number of components to plot in Jackstraw. If \code{NULL}, then all components are plotted Default \code{NULL}.} |
14 | 20 |
|
21 |
+\item{xmax}{X-axis maximum on each QQ plot. Default \code{0.1}.} |
|
22 |
+ |
|
23 |
+\item{ymax}{Y-axis maximum on each QQ plot. Default \code{0.3}.} |
|
24 |
+ |
|
15 | 25 |
\item{externalReduction}{Pass DimReduc object if PCA/ICA computed through other libraries. Default \code{NULL}.} |
16 | 26 |
} |
17 | 27 |
\value{ |
... | ... |
@@ -12,7 +12,8 @@ seuratRunUMAP( |
12 | 12 |
dims = 10, |
13 | 13 |
minDist = 0.3, |
14 | 14 |
nNeighbors = 30L, |
15 |
- spread = 1 |
|
15 |
+ spread = 1, |
|
16 |
+ verbose = TRUE |
|
16 | 17 |
) |
17 | 18 |
} |
18 | 19 |
\arguments{ |
... | ... |
@@ -29,6 +30,9 @@ seuratRunUMAP( |
29 | 30 |
\item{nNeighbors}{Sets the \code{"n.neighbors"} parameter to the underlying UMAP call. See \link[Seurat]{RunUMAP} for more information. Default \code{30L}.} |
30 | 31 |
|
31 | 32 |
\item{spread}{Sets the \code{"spread"} parameter to the underlying UMAP call. See \link[Seurat]{RunUMAP} for more information. Default \code{1}.} |
33 |
+ |
|
34 |
+\item{verbose}{Logical value indicating if informative messages should |
|
35 |
+be displayed. Default is \code{TRUE}.} |
|
32 | 36 |
} |
33 | 37 |
\value{ |
34 | 38 |
Updated sce object with UMAP computations stored |