Browse code

Fixed R CMD check issues

Irzam Sarfraz authored on 20/12/2021 22:24:01
Showing 27 changed files

... ...
@@ -236,6 +236,7 @@
236 236
 #' @return A \link[SingleCellExperiment]{SingleCellExperiment} object which combines all
237 237
 #' objects in sceList. The colData is merged.
238 238
 #' @examples
239
+#' data(scExample, package = "singleCellTK")
239 240
 #' combinedsce <- combineSCE(list(sce,sce), by.r = NULL, by.c = NULL, combined = TRUE)
240 241
 #' @export
241 242
 
... ...
@@ -12,6 +12,7 @@
12 12
 #' @format SingleCellExperiment
13 13
 #' @source DOI: 10.1126/science.aaa1934
14 14
 #' @keywords datasets
15
+#' @usage data("mouseBrainSubsetSCE")
15 16
 #' @examples
16 17
 #' data("mouseBrainSubsetSCE")
17 18
 "mouseBrainSubsetSCE"
... ...
@@ -30,6 +31,7 @@
30 31
 #' @docType data
31 32
 #' @format A \link[SingleCellExperiment]{SingleCellExperiment} object.
32 33
 #' @keywords datasets
34
+#' @usage data("scExample")
33 35
 #' @examples
34 36
 #' data("scExample")
35 37
 "sce"
... ...
@@ -43,7 +45,7 @@
43 45
 #' al., 2016, annotated as `'x'`. Two common cell types, `'alpha'` and
44 46
 #' `'beta'`, that could be found in both original studies with relatively
45 47
 #' large population were kept for cleaner demonstration.
46
-#' data('sceBatches')
48
+#' @usage data('sceBatches')
47 49
 "sceBatches"
48 50
 
49 51
 #' Stably Expressed Gene (SEG) list obect, with SEG sets for human and mouse.
... ...
@@ -55,12 +57,13 @@
55 57
 #' charactor vector.
56 58
 #' @source \code{data('segList', package='scMerge')}
57 59
 #' @keywords datasets
60
+#' @usage data('SEG')
58 61
 #' @examples
59 62
 #' data('SEG')
60 63
 #' humanSEG <- SEG$human
61 64
 "SEG"
62 65
 
63
-#' MSigDB gene get Cctegory table
66
+#' MSigDB gene get Category table
64 67
 #'
65 68
 #' A table of gene set categories that can be download from MSigDB. The
66 69
 #' categories and descriptions can be found here:
... ...
@@ -72,6 +75,7 @@
72 75
 #' @docType data
73 76
 #' @format A data.frame.
74 77
 #' @keywords datasets
78
+#' @usage data("msigdb_table")
75 79
 #' @examples
76 80
 #' data("msigdb_table")
77 81
 "msigdb_table"
... ...
@@ -87,6 +91,7 @@
87 91
 #' @docType data
88 92
 #' @format A list
89 93
 #' @keywords datasets
94
+#' @usage data("MitoGenes")
90 95
 #' @examples
91 96
 #' data("MitoGenes")
92 97
 "MitoGenes"
93 98
\ No newline at end of file
... ...
@@ -11,6 +11,7 @@
11 11
 #' the respective databases along with p-values, z-scores etc.,
12 12
 #' @export
13 13
 #' @examples
14
+#' data("mouseBrainSubsetSCE")
14 15
 #' enrichRSCE(mouseBrainSubsetSCE, "Cmtm5", "GO_Cellular_Component_2017")
15 16
 enrichRSCE <- function(inSCE, glist, db = NULL){
16 17
   internetConnection <- suppressWarnings(Biobase::testBioCConnection())
... ...
@@ -13,6 +13,7 @@
13 13
 #' @return getBiomarker(): A data.frame of expression values
14 14
 #' @export
15 15
 #' @examples
16
+#' data("mouseBrainSubsetSCE")
16 17
 #' getBiomarker(mouseBrainSubsetSCE, gene="C1qa")
17 18
 #'
18 19
 getBiomarker <- function(inSCE, gene, binary="Binary", useAssay="counts",
... ...
@@ -362,6 +362,7 @@
362 362
 #'  as the labels. If set to "none", no label will be plotted.
363 363
 #' @return a ggplot of the reduced dimension plot of coldata.
364 364
 #' @examples
365
+#' data("mouseBrainSubsetSCE")
365 366
 #' plotSCEDimReduceColData(
366 367
 #'   inSCE = mouseBrainSubsetSCE, colorBy = "tissue",
367 368
 #'   shape = NULL, conditionClass = "factor",
... ...
@@ -504,6 +505,7 @@ plotSCEDimReduceColData <- function(inSCE,
504 505
 #'  as the labels. If set to "none", no label will be plotted.
505 506
 #' @return a ggplot of the reduced dimension plot of feature data.
506 507
 #' @examples
508
+#' data("mouseBrainSubsetSCE")
507 509
 #' plotSCEDimReduceFeatures(
508 510
 #'   inSCE = mouseBrainSubsetSCE, feature = "Apoe",
509 511
 #'   shape = NULL, reducedDimName = "TSNE_counts",
... ...
@@ -656,6 +658,7 @@ plotSCEDimReduceFeatures <- function(inSCE,
656 658
 #'  as the labels. If set to "none", no label will be plotted.
657 659
 #' @return a ggplot of the reduced dimensions.
658 660
 #' @examples
661
+#' data("mouseBrainSubsetSCE")
659 662
 #' plotSCEScatter(
660 663
 #'   inSCE = mouseBrainSubsetSCE, legendTitle = NULL,
661 664
 #'   slot = "assays", annotation = "counts", feature = "Apoe",
... ...
@@ -972,6 +975,7 @@ plotSCEScatter <- function(inSCE,
972 975
 #'  as the labels. If set to "none", no label will be plotted.
973 976
 #' @return a ggplot of the violin plot of coldata.
974 977
 #' @examples
978
+#' data("mouseBrainSubsetSCE")
975 979
 #' plotSCEViolinColData(
976 980
 #'   inSCE = mouseBrainSubsetSCE,
977 981
 #'   coldata = "age", groupBy = "sex"
... ...
@@ -1132,6 +1136,7 @@ plotSCEViolinColData <- function(inSCE,
1132 1136
 #'  as the labels. If set to "none", no label will be plotted.
1133 1137
 #' @return a ggplot of the violin plot of assay data.
1134 1138
 #' @examples
1139
+#' data("mouseBrainSubsetSCE")
1135 1140
 #' plotSCEViolinAssayData(
1136 1141
 #'   inSCE = mouseBrainSubsetSCE,
1137 1142
 #'   feature = "Apoe", groupBy = "sex"
... ...
@@ -1313,6 +1318,7 @@ plotSCEViolinAssayData <- function(inSCE,
1313 1318
 #'  as the labels. If set to "none", no label will be plotted.
1314 1319
 #' @return a ggplot of the violin plot.
1315 1320
 #' @examples
1321
+#' data("mouseBrainSubsetSCE")
1316 1322
 #' plotSCEViolin(
1317 1323
 #'   inSCE = mouseBrainSubsetSCE, slotName = "assays",
1318 1324
 #'   itemName = "counts", feature = "Apoe", groupBy = "sex"
... ...
@@ -1572,6 +1578,7 @@ plotSCEViolin <- function(inSCE,
1572 1578
 #'  as the labels. If set to "none", no label will be plotted.
1573 1579
 #' @return a ggplot of the density plot of colData.
1574 1580
 #' @examples
1581
+#' data("mouseBrainSubsetSCE")
1575 1582
 #' plotSCEDensityColData(
1576 1583
 #'   inSCE = mouseBrainSubsetSCE,
1577 1584
 #'   coldata = "age", groupBy = "sex"
... ...
@@ -1707,6 +1714,7 @@ plotSCEDensityColData <- function(inSCE,
1707 1714
 #'  as the labels. If set to "none", no label will be plotted.
1708 1715
 #' @return a ggplot of the density plot of assay data.
1709 1716
 #' @examples
1717
+#' data("mouseBrainSubsetSCE")
1710 1718
 #' plotSCEDensityAssayData(
1711 1719
 #'   inSCE = mouseBrainSubsetSCE,
1712 1720
 #'   feature = "Apoe"
... ...
@@ -1863,6 +1871,7 @@ plotSCEDensityAssayData <- function(inSCE,
1863 1871
 #'  as the labels. If set to "none", no label will be plotted.
1864 1872
 #' @return a ggplot object of the density plot.
1865 1873
 #' @examples
1874
+#' data("mouseBrainSubsetSCE")
1866 1875
 #' plotSCEDensity(
1867 1876
 #'   inSCE = mouseBrainSubsetSCE, slotName = "assays",
1868 1877
 #'   itemName = "counts", feature = "Apoe", groupBy = "sex"
... ...
@@ -2440,6 +2449,7 @@ plotBarcodeRankScatter <- function(inSCE,
2440 2449
 #'  Default TRUE.
2441 2450
 #' @return a ggplot of the barplot of coldata.
2442 2451
 #' @examples
2452
+#' data("mouseBrainSubsetSCE")
2443 2453
 #' plotSCEBarColData(
2444 2454
 #'   inSCE = mouseBrainSubsetSCE,
2445 2455
 #'   coldata = "age", groupBy = "sex"
... ...
@@ -2546,6 +2556,7 @@ plotSCEBarColData <- function(inSCE,
2546 2556
 #'  Default TRUE.
2547 2557
 #' @return a ggplot of the barplot of assay data.
2548 2558
 #' @examples
2559
+#' data("mouseBrainSubsetSCE")
2549 2560
 #' plotSCEBarAssayData(
2550 2561
 #'   inSCE = mouseBrainSubsetSCE,
2551 2562
 #'   feature = "Apoe", groupBy = "sex"
... ...
@@ -93,6 +93,7 @@
93 93
 #' \code{"reducedDim"}.
94 94
 #' @return An object of class \code{"gtable"}, combining four \code{ggplot}s.
95 95
 #' @examples
96
+#' data("sceBatches")
96 97
 #' sceBatches <- scaterlogNormCounts(sceBatches, "logcounts")
97 98
 #' sceBatches <- runLimmaBC(sceBatches)
98 99
 #' plotBatchCorrCompare(sceBatches, "LIMMA", condition = "cell_type")
... ...
@@ -8,7 +8,7 @@
8 8
 A list
9 9
 }
10 10
 \usage{
11
-MitoGenes
11
+data("MitoGenes")
12 12
 }
13 13
 \description{
14 14
 A list of gene set that contains mitochondrial genes of multiple reference
... ...
@@ -12,7 +12,7 @@ charactor vector.
12 12
 \code{data('segList', package='scMerge')}
13 13
 }
14 14
 \usage{
15
-SEG
15
+data('SEG')
16 16
 }
17 17
 \description{
18 18
 The two gene sets came from dataset called `segList` of package `scMerge`.
... ...
@@ -30,5 +30,6 @@ objects in sceList. The colData is merged.
30 30
 Combine a list of SingleCellExperiment objects as one SingleCellExperiment object
31 31
 }
32 32
 \examples{
33
+data(scExample, package = "singleCellTK")
33 34
 combinedsce <- combineSCE(list(sce,sce), by.r = NULL, by.c = NULL, combined = TRUE)
34 35
 }
... ...
@@ -26,5 +26,6 @@ Given a list of genes this function runs the enrichR() to perform Gene
26 26
 enrichment
27 27
 }
28 28
 \examples{
29
+data("mouseBrainSubsetSCE")
29 30
 enrichRSCE(mouseBrainSubsetSCE, "Cmtm5", "GO_Cellular_Component_2017")
30 31
 }
... ...
@@ -37,6 +37,7 @@ Given a list of genes and a SingleCellExperiment object, return
37 37
 the binary or continuous expression of the genes.
38 38
 }
39 39
 \examples{
40
+data("mouseBrainSubsetSCE")
40 41
 getBiomarker(mouseBrainSubsetSCE, gene="C1qa")
41 42
 
42 43
 }
... ...
@@ -12,7 +12,7 @@ SingleCellExperiment
12 12
 DOI: 10.1126/science.aaa1934
13 13
 }
14 14
 \usage{
15
-mouseBrainSubsetSCE
15
+data("mouseBrainSubsetSCE")
16 16
 }
17 17
 \description{
18 18
 A subset of 30 cells from a single cell RNA-Seq experiment from Zeisel, et
... ...
@@ -3,12 +3,12 @@
3 3
 \docType{data}
4 4
 \name{msigdb_table}
5 5
 \alias{msigdb_table}
6
-\title{MSigDB gene get Cctegory table}
6
+\title{MSigDB gene get Category table}
7 7
 \format{
8 8
 A data.frame.
9 9
 }
10 10
 \usage{
11
-msigdb_table
11
+data("msigdb_table")
12 12
 }
13 13
 \description{
14 14
 A table of gene set categories that can be download from MSigDB. The
... ...
@@ -55,6 +55,7 @@ necessary input. Otherwise, users can also customize the input. Future
55 55
 improvement might include solution to reduce redundant UMAP calculation.
56 56
 }
57 57
 \examples{
58
+data("sceBatches")
58 59
 sceBatches <- scaterlogNormCounts(sceBatches, "logcounts")
59 60
 sceBatches <- runLimmaBC(sceBatches)
60 61
 plotBatchCorrCompare(sceBatches, "LIMMA", condition = "cell_type")
... ...
@@ -83,6 +83,7 @@ Visualizes values stored in the assay slot of a
83 83
  SingleCellExperiment object via a bar plot.
84 84
 }
85 85
 \examples{
86
+data("mouseBrainSubsetSCE")
86 87
 plotSCEBarAssayData(
87 88
   inSCE = mouseBrainSubsetSCE,
88 89
   feature = "Apoe", groupBy = "sex"
... ...
@@ -76,6 +76,7 @@ Visualizes values stored in the colData slot of a
76 76
  SingleCellExperiment object via a bar plot.
77 77
 }
78 78
 \examples{
79
+data("mouseBrainSubsetSCE")
79 80
 plotSCEBarColData(
80 81
   inSCE = mouseBrainSubsetSCE,
81 82
   coldata = "age", groupBy = "sex"
... ...
@@ -79,6 +79,7 @@ Visualizes values stored in any slot of a
79 79
  SingleCellExperiment object via a densityn plot.
80 80
 }
81 81
 \examples{
82
+data("mouseBrainSubsetSCE")
82 83
 plotSCEDensity(
83 84
   inSCE = mouseBrainSubsetSCE, slotName = "assays",
84 85
   itemName = "counts", feature = "Apoe", groupBy = "sex"
... ...
@@ -76,6 +76,7 @@ Visualizes values stored in the assay slot of a
76 76
  SingleCellExperiment object via a density plot.
77 77
 }
78 78
 \examples{
79
+data("mouseBrainSubsetSCE")
79 80
 plotSCEDensityAssayData(
80 81
   inSCE = mouseBrainSubsetSCE,
81 82
   feature = "Apoe"
... ...
@@ -70,6 +70,7 @@ Visualizes values stored in the colData slot of a
70 70
  SingleCellExperiment object via a density plot.
71 71
 }
72 72
 \examples{
73
+data("mouseBrainSubsetSCE")
73 74
 plotSCEDensityColData(
74 75
   inSCE = mouseBrainSubsetSCE,
75 76
   coldata = "age", groupBy = "sex"
... ...
@@ -138,6 +138,7 @@ Plot results of reduced dimensions data and
138 138
  colors by annotation data stored in the colData slot.
139 139
 }
140 140
 \examples{
141
+data("mouseBrainSubsetSCE")
141 142
 plotSCEDimReduceColData(
142 143
   inSCE = mouseBrainSubsetSCE, colorBy = "tissue",
143 144
   shape = NULL, conditionClass = "factor",
... ...
@@ -125,6 +125,7 @@ Plot results of reduced dimensions data and
125 125
  colors by feature data stored in the assays slot.
126 126
 }
127 127
 \examples{
128
+data("mouseBrainSubsetSCE")
128 129
 plotSCEDimReduceFeatures(
129 130
   inSCE = mouseBrainSubsetSCE, feature = "Apoe",
130 131
   shape = NULL, reducedDimName = "TSNE_counts",
... ...
@@ -130,6 +130,7 @@ Plot results of reduced dimensions data of counts stored in any
130 130
 slot in the SingleCellExperiment object.
131 131
 }
132 132
 \examples{
133
+data("mouseBrainSubsetSCE")
133 134
 plotSCEScatter(
134 135
   inSCE = mouseBrainSubsetSCE, legendTitle = NULL,
135 136
   slot = "assays", annotation = "counts", feature = "Apoe",
... ...
@@ -100,6 +100,7 @@ Visualizes values stored in any slot of a
100 100
  SingleCellExperiment object via a violin plot.
101 101
 }
102 102
 \examples{
103
+data("mouseBrainSubsetSCE")
103 104
 plotSCEViolin(
104 105
   inSCE = mouseBrainSubsetSCE, slotName = "assays",
105 106
   itemName = "counts", feature = "Apoe", groupBy = "sex"
... ...
@@ -97,6 +97,7 @@ Visualizes values stored in the assay slot of a
97 97
  SingleCellExperiment object via a violin plot.
98 98
 }
99 99
 \examples{
100
+data("mouseBrainSubsetSCE")
100 101
 plotSCEViolinAssayData(
101 102
   inSCE = mouseBrainSubsetSCE,
102 103
   feature = "Apoe", groupBy = "sex"
... ...
@@ -94,6 +94,7 @@ Visualizes values stored in the colData slot of a
94 94
  SingleCellExperiment object via a violin plot.
95 95
 }
96 96
 \examples{
97
+data("mouseBrainSubsetSCE")
97 98
 plotSCEViolinColData(
98 99
   inSCE = mouseBrainSubsetSCE,
99 100
   coldata = "age", groupBy = "sex"
... ...
@@ -16,7 +16,7 @@ drawing scientific conclusions.}
16 16
 A \link[SingleCellExperiment]{SingleCellExperiment} object.
17 17
 }
18 18
 \usage{
19
-sce
19
+data("scExample")
20 20
 }
21 21
 \description{
22 22
 Example Single Cell RNA-Seq data in SingleCellExperiment Object,
... ...
@@ -9,7 +9,7 @@ different batches annotated}
9 9
 An object of class \code{SingleCellExperiment} with 100 rows and 250 columns.
10 10
 }
11 11
 \usage{
12
-sceBatches
12
+data('sceBatches')
13 13
 }
14 14
 \description{
15 15
 Two batches of pancreas scRNAseq dataset are combined with their original
... ...
@@ -18,6 +18,5 @@ Two batches came from Wang, et al., 2016, annotated as `'w'`; and Xin, et
18 18
 al., 2016, annotated as `'x'`. Two common cell types, `'alpha'` and
19 19
 `'beta'`, that could be found in both original studies with relatively
20 20
 large population were kept for cleaner demonstration.
21
-data('sceBatches')
22 21
 }
23 22
 \keyword{datasets}