... | ... |
@@ -236,6 +236,7 @@ |
236 | 236 |
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object which combines all |
237 | 237 |
#' objects in sceList. The colData is merged. |
238 | 238 |
#' @examples |
239 |
+#' data(scExample, package = "singleCellTK") |
|
239 | 240 |
#' combinedsce <- combineSCE(list(sce,sce), by.r = NULL, by.c = NULL, combined = TRUE) |
240 | 241 |
#' @export |
241 | 242 |
|
... | ... |
@@ -12,6 +12,7 @@ |
12 | 12 |
#' @format SingleCellExperiment |
13 | 13 |
#' @source DOI: 10.1126/science.aaa1934 |
14 | 14 |
#' @keywords datasets |
15 |
+#' @usage data("mouseBrainSubsetSCE") |
|
15 | 16 |
#' @examples |
16 | 17 |
#' data("mouseBrainSubsetSCE") |
17 | 18 |
"mouseBrainSubsetSCE" |
... | ... |
@@ -30,6 +31,7 @@ |
30 | 31 |
#' @docType data |
31 | 32 |
#' @format A \link[SingleCellExperiment]{SingleCellExperiment} object. |
32 | 33 |
#' @keywords datasets |
34 |
+#' @usage data("scExample") |
|
33 | 35 |
#' @examples |
34 | 36 |
#' data("scExample") |
35 | 37 |
"sce" |
... | ... |
@@ -43,7 +45,7 @@ |
43 | 45 |
#' al., 2016, annotated as `'x'`. Two common cell types, `'alpha'` and |
44 | 46 |
#' `'beta'`, that could be found in both original studies with relatively |
45 | 47 |
#' large population were kept for cleaner demonstration. |
46 |
-#' data('sceBatches') |
|
48 |
+#' @usage data('sceBatches') |
|
47 | 49 |
"sceBatches" |
48 | 50 |
|
49 | 51 |
#' Stably Expressed Gene (SEG) list obect, with SEG sets for human and mouse. |
... | ... |
@@ -55,12 +57,13 @@ |
55 | 57 |
#' charactor vector. |
56 | 58 |
#' @source \code{data('segList', package='scMerge')} |
57 | 59 |
#' @keywords datasets |
60 |
+#' @usage data('SEG') |
|
58 | 61 |
#' @examples |
59 | 62 |
#' data('SEG') |
60 | 63 |
#' humanSEG <- SEG$human |
61 | 64 |
"SEG" |
62 | 65 |
|
63 |
-#' MSigDB gene get Cctegory table |
|
66 |
+#' MSigDB gene get Category table |
|
64 | 67 |
#' |
65 | 68 |
#' A table of gene set categories that can be download from MSigDB. The |
66 | 69 |
#' categories and descriptions can be found here: |
... | ... |
@@ -72,6 +75,7 @@ |
72 | 75 |
#' @docType data |
73 | 76 |
#' @format A data.frame. |
74 | 77 |
#' @keywords datasets |
78 |
+#' @usage data("msigdb_table") |
|
75 | 79 |
#' @examples |
76 | 80 |
#' data("msigdb_table") |
77 | 81 |
"msigdb_table" |
... | ... |
@@ -87,6 +91,7 @@ |
87 | 91 |
#' @docType data |
88 | 92 |
#' @format A list |
89 | 93 |
#' @keywords datasets |
94 |
+#' @usage data("MitoGenes") |
|
90 | 95 |
#' @examples |
91 | 96 |
#' data("MitoGenes") |
92 | 97 |
"MitoGenes" |
93 | 98 |
\ No newline at end of file |
... | ... |
@@ -11,6 +11,7 @@ |
11 | 11 |
#' the respective databases along with p-values, z-scores etc., |
12 | 12 |
#' @export |
13 | 13 |
#' @examples |
14 |
+#' data("mouseBrainSubsetSCE") |
|
14 | 15 |
#' enrichRSCE(mouseBrainSubsetSCE, "Cmtm5", "GO_Cellular_Component_2017") |
15 | 16 |
enrichRSCE <- function(inSCE, glist, db = NULL){ |
16 | 17 |
internetConnection <- suppressWarnings(Biobase::testBioCConnection()) |
... | ... |
@@ -13,6 +13,7 @@ |
13 | 13 |
#' @return getBiomarker(): A data.frame of expression values |
14 | 14 |
#' @export |
15 | 15 |
#' @examples |
16 |
+#' data("mouseBrainSubsetSCE") |
|
16 | 17 |
#' getBiomarker(mouseBrainSubsetSCE, gene="C1qa") |
17 | 18 |
#' |
18 | 19 |
getBiomarker <- function(inSCE, gene, binary="Binary", useAssay="counts", |
... | ... |
@@ -362,6 +362,7 @@ |
362 | 362 |
#' as the labels. If set to "none", no label will be plotted. |
363 | 363 |
#' @return a ggplot of the reduced dimension plot of coldata. |
364 | 364 |
#' @examples |
365 |
+#' data("mouseBrainSubsetSCE") |
|
365 | 366 |
#' plotSCEDimReduceColData( |
366 | 367 |
#' inSCE = mouseBrainSubsetSCE, colorBy = "tissue", |
367 | 368 |
#' shape = NULL, conditionClass = "factor", |
... | ... |
@@ -504,6 +505,7 @@ plotSCEDimReduceColData <- function(inSCE, |
504 | 505 |
#' as the labels. If set to "none", no label will be plotted. |
505 | 506 |
#' @return a ggplot of the reduced dimension plot of feature data. |
506 | 507 |
#' @examples |
508 |
+#' data("mouseBrainSubsetSCE") |
|
507 | 509 |
#' plotSCEDimReduceFeatures( |
508 | 510 |
#' inSCE = mouseBrainSubsetSCE, feature = "Apoe", |
509 | 511 |
#' shape = NULL, reducedDimName = "TSNE_counts", |
... | ... |
@@ -656,6 +658,7 @@ plotSCEDimReduceFeatures <- function(inSCE, |
656 | 658 |
#' as the labels. If set to "none", no label will be plotted. |
657 | 659 |
#' @return a ggplot of the reduced dimensions. |
658 | 660 |
#' @examples |
661 |
+#' data("mouseBrainSubsetSCE") |
|
659 | 662 |
#' plotSCEScatter( |
660 | 663 |
#' inSCE = mouseBrainSubsetSCE, legendTitle = NULL, |
661 | 664 |
#' slot = "assays", annotation = "counts", feature = "Apoe", |
... | ... |
@@ -972,6 +975,7 @@ plotSCEScatter <- function(inSCE, |
972 | 975 |
#' as the labels. If set to "none", no label will be plotted. |
973 | 976 |
#' @return a ggplot of the violin plot of coldata. |
974 | 977 |
#' @examples |
978 |
+#' data("mouseBrainSubsetSCE") |
|
975 | 979 |
#' plotSCEViolinColData( |
976 | 980 |
#' inSCE = mouseBrainSubsetSCE, |
977 | 981 |
#' coldata = "age", groupBy = "sex" |
... | ... |
@@ -1132,6 +1136,7 @@ plotSCEViolinColData <- function(inSCE, |
1132 | 1136 |
#' as the labels. If set to "none", no label will be plotted. |
1133 | 1137 |
#' @return a ggplot of the violin plot of assay data. |
1134 | 1138 |
#' @examples |
1139 |
+#' data("mouseBrainSubsetSCE") |
|
1135 | 1140 |
#' plotSCEViolinAssayData( |
1136 | 1141 |
#' inSCE = mouseBrainSubsetSCE, |
1137 | 1142 |
#' feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -1313,6 +1318,7 @@ plotSCEViolinAssayData <- function(inSCE, |
1313 | 1318 |
#' as the labels. If set to "none", no label will be plotted. |
1314 | 1319 |
#' @return a ggplot of the violin plot. |
1315 | 1320 |
#' @examples |
1321 |
+#' data("mouseBrainSubsetSCE") |
|
1316 | 1322 |
#' plotSCEViolin( |
1317 | 1323 |
#' inSCE = mouseBrainSubsetSCE, slotName = "assays", |
1318 | 1324 |
#' itemName = "counts", feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -1572,6 +1578,7 @@ plotSCEViolin <- function(inSCE, |
1572 | 1578 |
#' as the labels. If set to "none", no label will be plotted. |
1573 | 1579 |
#' @return a ggplot of the density plot of colData. |
1574 | 1580 |
#' @examples |
1581 |
+#' data("mouseBrainSubsetSCE") |
|
1575 | 1582 |
#' plotSCEDensityColData( |
1576 | 1583 |
#' inSCE = mouseBrainSubsetSCE, |
1577 | 1584 |
#' coldata = "age", groupBy = "sex" |
... | ... |
@@ -1707,6 +1714,7 @@ plotSCEDensityColData <- function(inSCE, |
1707 | 1714 |
#' as the labels. If set to "none", no label will be plotted. |
1708 | 1715 |
#' @return a ggplot of the density plot of assay data. |
1709 | 1716 |
#' @examples |
1717 |
+#' data("mouseBrainSubsetSCE") |
|
1710 | 1718 |
#' plotSCEDensityAssayData( |
1711 | 1719 |
#' inSCE = mouseBrainSubsetSCE, |
1712 | 1720 |
#' feature = "Apoe" |
... | ... |
@@ -1863,6 +1871,7 @@ plotSCEDensityAssayData <- function(inSCE, |
1863 | 1871 |
#' as the labels. If set to "none", no label will be plotted. |
1864 | 1872 |
#' @return a ggplot object of the density plot. |
1865 | 1873 |
#' @examples |
1874 |
+#' data("mouseBrainSubsetSCE") |
|
1866 | 1875 |
#' plotSCEDensity( |
1867 | 1876 |
#' inSCE = mouseBrainSubsetSCE, slotName = "assays", |
1868 | 1877 |
#' itemName = "counts", feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -2440,6 +2449,7 @@ plotBarcodeRankScatter <- function(inSCE, |
2440 | 2449 |
#' Default TRUE. |
2441 | 2450 |
#' @return a ggplot of the barplot of coldata. |
2442 | 2451 |
#' @examples |
2452 |
+#' data("mouseBrainSubsetSCE") |
|
2443 | 2453 |
#' plotSCEBarColData( |
2444 | 2454 |
#' inSCE = mouseBrainSubsetSCE, |
2445 | 2455 |
#' coldata = "age", groupBy = "sex" |
... | ... |
@@ -2546,6 +2556,7 @@ plotSCEBarColData <- function(inSCE, |
2546 | 2556 |
#' Default TRUE. |
2547 | 2557 |
#' @return a ggplot of the barplot of assay data. |
2548 | 2558 |
#' @examples |
2559 |
+#' data("mouseBrainSubsetSCE") |
|
2549 | 2560 |
#' plotSCEBarAssayData( |
2550 | 2561 |
#' inSCE = mouseBrainSubsetSCE, |
2551 | 2562 |
#' feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -93,6 +93,7 @@ |
93 | 93 |
#' \code{"reducedDim"}. |
94 | 94 |
#' @return An object of class \code{"gtable"}, combining four \code{ggplot}s. |
95 | 95 |
#' @examples |
96 |
+#' data("sceBatches") |
|
96 | 97 |
#' sceBatches <- scaterlogNormCounts(sceBatches, "logcounts") |
97 | 98 |
#' sceBatches <- runLimmaBC(sceBatches) |
98 | 99 |
#' plotBatchCorrCompare(sceBatches, "LIMMA", condition = "cell_type") |
... | ... |
@@ -30,5 +30,6 @@ objects in sceList. The colData is merged. |
30 | 30 |
Combine a list of SingleCellExperiment objects as one SingleCellExperiment object |
31 | 31 |
} |
32 | 32 |
\examples{ |
33 |
+data(scExample, package = "singleCellTK") |
|
33 | 34 |
combinedsce <- combineSCE(list(sce,sce), by.r = NULL, by.c = NULL, combined = TRUE) |
34 | 35 |
} |
... | ... |
@@ -3,12 +3,12 @@ |
3 | 3 |
\docType{data} |
4 | 4 |
\name{msigdb_table} |
5 | 5 |
\alias{msigdb_table} |
6 |
-\title{MSigDB gene get Cctegory table} |
|
6 |
+\title{MSigDB gene get Category table} |
|
7 | 7 |
\format{ |
8 | 8 |
A data.frame. |
9 | 9 |
} |
10 | 10 |
\usage{ |
11 |
-msigdb_table |
|
11 |
+data("msigdb_table") |
|
12 | 12 |
} |
13 | 13 |
\description{ |
14 | 14 |
A table of gene set categories that can be download from MSigDB. The |
... | ... |
@@ -55,6 +55,7 @@ necessary input. Otherwise, users can also customize the input. Future |
55 | 55 |
improvement might include solution to reduce redundant UMAP calculation. |
56 | 56 |
} |
57 | 57 |
\examples{ |
58 |
+data("sceBatches") |
|
58 | 59 |
sceBatches <- scaterlogNormCounts(sceBatches, "logcounts") |
59 | 60 |
sceBatches <- runLimmaBC(sceBatches) |
60 | 61 |
plotBatchCorrCompare(sceBatches, "LIMMA", condition = "cell_type") |
... | ... |
@@ -79,6 +79,7 @@ Visualizes values stored in any slot of a |
79 | 79 |
SingleCellExperiment object via a densityn plot. |
80 | 80 |
} |
81 | 81 |
\examples{ |
82 |
+data("mouseBrainSubsetSCE") |
|
82 | 83 |
plotSCEDensity( |
83 | 84 |
inSCE = mouseBrainSubsetSCE, slotName = "assays", |
84 | 85 |
itemName = "counts", feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -138,6 +138,7 @@ Plot results of reduced dimensions data and |
138 | 138 |
colors by annotation data stored in the colData slot. |
139 | 139 |
} |
140 | 140 |
\examples{ |
141 |
+data("mouseBrainSubsetSCE") |
|
141 | 142 |
plotSCEDimReduceColData( |
142 | 143 |
inSCE = mouseBrainSubsetSCE, colorBy = "tissue", |
143 | 144 |
shape = NULL, conditionClass = "factor", |
... | ... |
@@ -125,6 +125,7 @@ Plot results of reduced dimensions data and |
125 | 125 |
colors by feature data stored in the assays slot. |
126 | 126 |
} |
127 | 127 |
\examples{ |
128 |
+data("mouseBrainSubsetSCE") |
|
128 | 129 |
plotSCEDimReduceFeatures( |
129 | 130 |
inSCE = mouseBrainSubsetSCE, feature = "Apoe", |
130 | 131 |
shape = NULL, reducedDimName = "TSNE_counts", |
... | ... |
@@ -130,6 +130,7 @@ Plot results of reduced dimensions data of counts stored in any |
130 | 130 |
slot in the SingleCellExperiment object. |
131 | 131 |
} |
132 | 132 |
\examples{ |
133 |
+data("mouseBrainSubsetSCE") |
|
133 | 134 |
plotSCEScatter( |
134 | 135 |
inSCE = mouseBrainSubsetSCE, legendTitle = NULL, |
135 | 136 |
slot = "assays", annotation = "counts", feature = "Apoe", |
... | ... |
@@ -100,6 +100,7 @@ Visualizes values stored in any slot of a |
100 | 100 |
SingleCellExperiment object via a violin plot. |
101 | 101 |
} |
102 | 102 |
\examples{ |
103 |
+data("mouseBrainSubsetSCE") |
|
103 | 104 |
plotSCEViolin( |
104 | 105 |
inSCE = mouseBrainSubsetSCE, slotName = "assays", |
105 | 106 |
itemName = "counts", feature = "Apoe", groupBy = "sex" |
... | ... |
@@ -9,7 +9,7 @@ different batches annotated} |
9 | 9 |
An object of class \code{SingleCellExperiment} with 100 rows and 250 columns. |
10 | 10 |
} |
11 | 11 |
\usage{ |
12 |
-sceBatches |
|
12 |
+data('sceBatches') |
|
13 | 13 |
} |
14 | 14 |
\description{ |
15 | 15 |
Two batches of pancreas scRNAseq dataset are combined with their original |
... | ... |
@@ -18,6 +18,5 @@ Two batches came from Wang, et al., 2016, annotated as `'w'`; and Xin, et |
18 | 18 |
al., 2016, annotated as `'x'`. Two common cell types, `'alpha'` and |
19 | 19 |
`'beta'`, that could be found in both original studies with relatively |
20 | 20 |
large population were kept for cleaner demonstration. |
21 |
-data('sceBatches') |
|
22 | 21 |
} |
23 | 22 |
\keyword{datasets} |