... | ... |
@@ -69,10 +69,10 @@ plotScanpyMarkerGenesMatrixPlot |
69 | 69 |
data(scExample, package = "singleCellTK") |
70 | 70 |
\dontrun{ |
71 | 71 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
72 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyNormData", method = "seurat") |
|
72 | 73 |
sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
73 |
-sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
74 |
-sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
|
75 |
-sce <- runScanpyFindClusters(sce, useAssay = "counts") |
|
74 |
+sce <- runScanpyPCA(sce, useAssay = "scanpyScaledData") |
|
75 |
+sce <- runScanpyFindClusters(sce, useReducedDim = "scanpyPCA") |
|
76 | 76 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
77 | 77 |
plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_louvain_1') |
78 | 78 |
} |
... | ... |
@@ -69,6 +69,8 @@ plotScanpyMarkerGenesMatrixPlot |
69 | 69 |
data(scExample, package = "singleCellTK") |
70 | 70 |
\dontrun{ |
71 | 71 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
72 |
+sce <- runScanpyScaleData(sce, useAssay = "scanpyNormData") |
|
73 |
+sce <- runScanpyFindHVG(sce, useAssay = "scanpyScaledData", method = "seurat") |
|
72 | 74 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
73 | 75 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
74 | 76 |
sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
... | ... |
@@ -71,7 +71,7 @@ data(scExample, package = "singleCellTK") |
71 | 71 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
72 | 72 |
sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
73 | 73 |
sce <- runScanpyFindClusters(sce, useAssay = "counts") |
74 |
-sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain" ) |
|
75 |
-plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_louvain') |
|
74 |
+sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain_1" ) |
|
75 |
+plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_louvain_1') |
|
76 | 76 |
} |
77 | 77 |
} |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,77 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/scanpyFunctions.R |
|
3 |
+\name{plotScanpyMarkerGenesMatrixPlot} |
|
4 |
+\alias{plotScanpyMarkerGenesMatrixPlot} |
|
5 |
+\title{plotScanpyMarkerGenesMatrixPlot} |
|
6 |
+\usage{ |
|
7 |
+plotScanpyMarkerGenesMatrixPlot( |
|
8 |
+ inSCE, |
|
9 |
+ groups = NULL, |
|
10 |
+ nGenes = 10, |
|
11 |
+ groupBy, |
|
12 |
+ log2fcThreshold = NULL, |
|
13 |
+ parameters = "logfoldchanges", |
|
14 |
+ standardScale = "var", |
|
15 |
+ features = NULL, |
|
16 |
+ title = "", |
|
17 |
+ vmin = NULL, |
|
18 |
+ vmax = NULL, |
|
19 |
+ colorBarTitle = "log fold change" |
|
20 |
+) |
|
21 |
+} |
|
22 |
+\arguments{ |
|
23 |
+\item{inSCE}{Input \code{SingleCellExperiment} object.} |
|
24 |
+ |
|
25 |
+\item{groups}{The groups for which to show the gene ranking. Default \code{NULL} |
|
26 |
+means that all groups will be considered.} |
|
27 |
+ |
|
28 |
+\item{nGenes}{Number of genes to show. Default \code{10}} |
|
29 |
+ |
|
30 |
+\item{groupBy}{The key of the observation grouping to consider. By default, |
|
31 |
+the groupby is chosen from the rank genes groups parameter.} |
|
32 |
+ |
|
33 |
+\item{log2fcThreshold}{Only output DEGs with the absolute values of log2FC |
|
34 |
+larger than this value. Default \code{NULL}.} |
|
35 |
+ |
|
36 |
+\item{parameters}{The options for marker genes results to plot are: |
|
37 |
+‘scores’, ‘logfoldchanges’, ‘pvals’, ‘pvals_adj’, ‘log10_pvals’, ‘log10_pvals_adj’. |
|
38 |
+If NULL provided then it uses mean gene value to plot.} |
|
39 |
+ |
|
40 |
+\item{standardScale}{Whether or not to standardize the given dimension |
|
41 |
+between 0 and 1, meaning for each variable or group, subtract the minimum and |
|
42 |
+divide each by its maximum. Default \code{NULL} means that it doesn't perform |
|
43 |
+any scaling.} |
|
44 |
+ |
|
45 |
+\item{features}{Genes to plot. Sometimes is useful to pass a specific list of |
|
46 |
+var names (e.g. genes) to check their fold changes or p-values, instead of |
|
47 |
+the top/bottom genes. The var_names could be a dictionary or a list. |
|
48 |
+Default \code{NULL}} |
|
49 |
+ |
|
50 |
+\item{title}{Provide title for the figure.} |
|
51 |
+ |
|
52 |
+\item{vmin}{The value representing the lower limit of the color scale. |
|
53 |
+Values smaller than vmin are plotted with the same color as vmin. |
|
54 |
+Default \code{NULL}} |
|
55 |
+ |
|
56 |
+\item{vmax}{The value representing the upper limit of the color scale. |
|
57 |
+Values larger than vmax are plotted with the same color as vmax. |
|
58 |
+Default \code{NULL}} |
|
59 |
+ |
|
60 |
+\item{colorBarTitle}{Title for the color bar.} |
|
61 |
+} |
|
62 |
+\value{ |
|
63 |
+plot object |
|
64 |
+} |
|
65 |
+\description{ |
|
66 |
+plotScanpyMarkerGenesMatrixPlot |
|
67 |
+} |
|
68 |
+\examples{ |
|
69 |
+data(scExample, package = "singleCellTK") |
|
70 |
+\dontrun{ |
|
71 |
+sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
|
72 |
+sce <- runScanpyPCA(sce, useAssay = "scanpyNormData") |
|
73 |
+sce <- runScanpyFindClusters(sce, useAssay = "counts") |
|
74 |
+sce <- runScanpyFindMarkers(sce, colDataName = "Scanpy_louvain" ) |
|
75 |
+plotScanpyMarkerGenesMatrixPlot(sce, groupBy = 'Scanpy_louvain') |
|
76 |
+} |
|
77 |
+} |