Browse code

Updated Scanpy Functions

nida pervaiz authored on 02/03/2023 14:41:23
Showing 1 changed files
... ...
@@ -9,7 +9,7 @@ Normalizes the sce object according to the input parameters}
9 9
 runScanpyNormalizeData(
10 10
   inSCE,
11 11
   useAssay,
12
-  targetSum = 1,
12
+  targetSum = 10000,
13 13
   maxFraction = 0.05,
14 14
   normAssayName = "scanpyNormData"
15 15
 )
... ...
@@ -21,7 +21,7 @@ runScanpyNormalizeData(
21 21
 
22 22
 \item{targetSum}{If NULL, after normalization, each observation (cell) has a 
23 23
 total count equal to the median of total counts for observations (cells) 
24
-before normalization. Default \code{1}}
24
+before normalization. Default \code{1e4}}
25 25
 
26 26
 \item{maxFraction}{Include cells that have more counts than max_fraction of 
27 27
 the original total counts in at least one cell. Default \code{0.05}}
Browse code

Bug fixes and documentation

npervaiz authored on 02/11/2022 12:13:26
Showing 1 changed files
... ...
@@ -39,6 +39,8 @@ Normalizes the sce object according to the input parameters
39 39
 }
40 40
 \examples{
41 41
 data(scExample, package = "singleCellTK")
42
+sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
43
+rownames(sce) <- rowData(sce)$feature_name
42 44
 \dontrun{
43 45
 sce <- runScanpyNormalizeData(sce, useAssay = "counts")
44 46
 }
Browse code

scanpyNormalizeData function changes

npervaiz authored on 05/10/2022 19:31:21
Showing 1 changed files
... ...
@@ -9,9 +9,8 @@ Normalizes the sce object according to the input parameters}
9 9
 runScanpyNormalizeData(
10 10
   inSCE,
11 11
   useAssay,
12
-  countsPerCellAfter = 10000,
13
-  countsPerCell = NULL,
14
-  minCount = 0,
12
+  targetSum = 1,
13
+  maxFraction = 0.05,
15 14
   normAssayName = "scanpyNormData"
16 15
 )
17 16
 }
... ...
@@ -20,13 +19,12 @@ runScanpyNormalizeData(
20 19
 
21 20
 \item{useAssay}{Assay containing raw counts to use for normalization.}
22 21
 
23
-\item{countsPerCellAfter}{If None, after normalization, each cell has a total
24
-count equal to the median of the counts_per_cell before normalization.}
22
+\item{targetSum}{If NULL, after normalization, each observation (cell) has a 
23
+total count equal to the median of total counts for observations (cells) 
24
+before normalization. Default \code{1}}
25 25
 
26
-\item{countsPerCell}{Precomputed counts per cell.}
27
-
28
-\item{minCount}{Cells with counts less than min_counts are filtered out 
29
-during normalization.}
26
+\item{maxFraction}{Include cells that have more counts than max_fraction of 
27
+the original total counts in at least one cell. Default \code{0.05}}
30 28
 
31 29
 \item{normAssayName}{Name of new assay containing normalized data. Default
32 30
 \code{scanpyNormData}.}
Browse code

[SCANPY] changes.

npervaiz authored on 04/10/2022 16:33:00
Showing 1 changed files
... ...
@@ -9,8 +9,10 @@ Normalizes the sce object according to the input parameters}
9 9
 runScanpyNormalizeData(
10 10
   inSCE,
11 11
   useAssay,
12
-  normAssayName = "scanpyNormData",
13
-  normalizationMethod = "LogNormalize"
12
+  countsPerCellAfter = 10000,
13
+  countsPerCell = NULL,
14
+  minCount = 0,
15
+  normAssayName = "scanpyNormData"
14 16
 )
15 17
 }
16 18
 \arguments{
... ...
@@ -18,11 +20,16 @@ runScanpyNormalizeData(
18 20
 
19 21
 \item{useAssay}{Assay containing raw counts to use for normalization.}
20 22
 
23
+\item{countsPerCellAfter}{If None, after normalization, each cell has a total
24
+count equal to the median of the counts_per_cell before normalization.}
25
+
26
+\item{countsPerCell}{Precomputed counts per cell.}
27
+
28
+\item{minCount}{Cells with counts less than min_counts are filtered out 
29
+during normalization.}
30
+
21 31
 \item{normAssayName}{Name of new assay containing normalized data. Default
22 32
 \code{scanpyNormData}.}
23
-
24
-\item{normalizationMethod}{selected normalization method. Default
25
-\code{"LogNormalize"}.}
26 33
 }
27 34
 \value{
28 35
 Normalized \code{SingleCellExperiment} object
Browse code

Updates to scanpy

Irzam Sarfraz authored on 04/10/2022 14:16:00
Showing 1 changed files
... ...
@@ -4,7 +4,7 @@
4 4
 \alias{runScanpyNormalizeData}
5 5
 \title{runScanpyNormalizeData
6 6
 Wrapper for NormalizeData() function from scanpy library
7
-Normalizes the sce object according to the input parameters provided.}
7
+Normalizes the sce object according to the input parameters}
8 8
 \usage{
9 9
 runScanpyNormalizeData(
10 10
   inSCE,
... ...
@@ -30,7 +30,7 @@ Normalized \code{SingleCellExperiment} object
30 30
 \description{
31 31
 runScanpyNormalizeData
32 32
 Wrapper for NormalizeData() function from scanpy library
33
-Normalizes the sce object according to the input parameters provided.
33
+Normalizes the sce object according to the input parameters
34 34
 }
35 35
 \examples{
36 36
 data(scExample, package = "singleCellTK")
Browse code

scanpyNormalizeData

nida pervaiz authored on 30/09/2022 14:12:22
Showing 1 changed files
... ...
@@ -4,7 +4,7 @@
4 4
 \alias{runScanpyNormalizeData}
5 5
 \title{runScanpyNormalizeData
6 6
 Wrapper for NormalizeData() function from scanpy library
7
-Normalizes the sce object according to the input parameters}
7
+Normalizes the sce object according to the input parameters provided.}
8 8
 \usage{
9 9
 runScanpyNormalizeData(
10 10
   inSCE,
... ...
@@ -30,7 +30,7 @@ Normalized \code{SingleCellExperiment} object
30 30
 \description{
31 31
 runScanpyNormalizeData
32 32
 Wrapper for NormalizeData() function from scanpy library
33
-Normalizes the sce object according to the input parameters
33
+Normalizes the sce object according to the input parameters provided.
34 34
 }
35 35
 \examples{
36 36
 data(scExample, package = "singleCellTK")
Browse code

scanpyNormalizeData function

nida pervaiz authored on 20/09/2022 12:56:20
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,40 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/scanpyFunctions.R
3
+\name{runScanpyNormalizeData}
4
+\alias{runScanpyNormalizeData}
5
+\title{runScanpyNormalizeData
6
+Wrapper for NormalizeData() function from scanpy library
7
+Normalizes the sce object according to the input parameters}
8
+\usage{
9
+runScanpyNormalizeData(
10
+  inSCE,
11
+  useAssay,
12
+  normAssayName = "scanpyNormData",
13
+  normalizationMethod = "LogNormalize"
14
+)
15
+}
16
+\arguments{
17
+\item{inSCE}{(sce) object to normalize}
18
+
19
+\item{useAssay}{Assay containing raw counts to use for normalization.}
20
+
21
+\item{normAssayName}{Name of new assay containing normalized data. Default
22
+\code{scanpyNormData}.}
23
+
24
+\item{normalizationMethod}{selected normalization method. Default
25
+\code{"LogNormalize"}.}
26
+}
27
+\value{
28
+Normalized \code{SingleCellExperiment} object
29
+}
30
+\description{
31
+runScanpyNormalizeData
32
+Wrapper for NormalizeData() function from scanpy library
33
+Normalizes the sce object according to the input parameters
34
+}
35
+\examples{
36
+data(scExample, package = "singleCellTK")
37
+\dontrun{
38
+sce <- runScanpyNormalizeData(sce, useAssay = "counts")
39
+}
40
+}