... | ... |
@@ -9,7 +9,7 @@ Normalizes the sce object according to the input parameters} |
9 | 9 |
runScanpyNormalizeData( |
10 | 10 |
inSCE, |
11 | 11 |
useAssay, |
12 |
- targetSum = 1, |
|
12 |
+ targetSum = 10000, |
|
13 | 13 |
maxFraction = 0.05, |
14 | 14 |
normAssayName = "scanpyNormData" |
15 | 15 |
) |
... | ... |
@@ -21,7 +21,7 @@ runScanpyNormalizeData( |
21 | 21 |
|
22 | 22 |
\item{targetSum}{If NULL, after normalization, each observation (cell) has a |
23 | 23 |
total count equal to the median of total counts for observations (cells) |
24 |
-before normalization. Default \code{1}} |
|
24 |
+before normalization. Default \code{1e4}} |
|
25 | 25 |
|
26 | 26 |
\item{maxFraction}{Include cells that have more counts than max_fraction of |
27 | 27 |
the original total counts in at least one cell. Default \code{0.05}} |
... | ... |
@@ -39,6 +39,8 @@ Normalizes the sce object according to the input parameters |
39 | 39 |
} |
40 | 40 |
\examples{ |
41 | 41 |
data(scExample, package = "singleCellTK") |
42 |
+sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'") |
|
43 |
+rownames(sce) <- rowData(sce)$feature_name |
|
42 | 44 |
\dontrun{ |
43 | 45 |
sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
44 | 46 |
} |
... | ... |
@@ -9,9 +9,8 @@ Normalizes the sce object according to the input parameters} |
9 | 9 |
runScanpyNormalizeData( |
10 | 10 |
inSCE, |
11 | 11 |
useAssay, |
12 |
- countsPerCellAfter = 10000, |
|
13 |
- countsPerCell = NULL, |
|
14 |
- minCount = 0, |
|
12 |
+ targetSum = 1, |
|
13 |
+ maxFraction = 0.05, |
|
15 | 14 |
normAssayName = "scanpyNormData" |
16 | 15 |
) |
17 | 16 |
} |
... | ... |
@@ -20,13 +19,12 @@ runScanpyNormalizeData( |
20 | 19 |
|
21 | 20 |
\item{useAssay}{Assay containing raw counts to use for normalization.} |
22 | 21 |
|
23 |
-\item{countsPerCellAfter}{If None, after normalization, each cell has a total |
|
24 |
-count equal to the median of the counts_per_cell before normalization.} |
|
22 |
+\item{targetSum}{If NULL, after normalization, each observation (cell) has a |
|
23 |
+total count equal to the median of total counts for observations (cells) |
|
24 |
+before normalization. Default \code{1}} |
|
25 | 25 |
|
26 |
-\item{countsPerCell}{Precomputed counts per cell.} |
|
27 |
- |
|
28 |
-\item{minCount}{Cells with counts less than min_counts are filtered out |
|
29 |
-during normalization.} |
|
26 |
+\item{maxFraction}{Include cells that have more counts than max_fraction of |
|
27 |
+the original total counts in at least one cell. Default \code{0.05}} |
|
30 | 28 |
|
31 | 29 |
\item{normAssayName}{Name of new assay containing normalized data. Default |
32 | 30 |
\code{scanpyNormData}.} |
... | ... |
@@ -9,8 +9,10 @@ Normalizes the sce object according to the input parameters} |
9 | 9 |
runScanpyNormalizeData( |
10 | 10 |
inSCE, |
11 | 11 |
useAssay, |
12 |
- normAssayName = "scanpyNormData", |
|
13 |
- normalizationMethod = "LogNormalize" |
|
12 |
+ countsPerCellAfter = 10000, |
|
13 |
+ countsPerCell = NULL, |
|
14 |
+ minCount = 0, |
|
15 |
+ normAssayName = "scanpyNormData" |
|
14 | 16 |
) |
15 | 17 |
} |
16 | 18 |
\arguments{ |
... | ... |
@@ -18,11 +20,16 @@ runScanpyNormalizeData( |
18 | 20 |
|
19 | 21 |
\item{useAssay}{Assay containing raw counts to use for normalization.} |
20 | 22 |
|
23 |
+\item{countsPerCellAfter}{If None, after normalization, each cell has a total |
|
24 |
+count equal to the median of the counts_per_cell before normalization.} |
|
25 |
+ |
|
26 |
+\item{countsPerCell}{Precomputed counts per cell.} |
|
27 |
+ |
|
28 |
+\item{minCount}{Cells with counts less than min_counts are filtered out |
|
29 |
+during normalization.} |
|
30 |
+ |
|
21 | 31 |
\item{normAssayName}{Name of new assay containing normalized data. Default |
22 | 32 |
\code{scanpyNormData}.} |
23 |
- |
|
24 |
-\item{normalizationMethod}{selected normalization method. Default |
|
25 |
-\code{"LogNormalize"}.} |
|
26 | 33 |
} |
27 | 34 |
\value{ |
28 | 35 |
Normalized \code{SingleCellExperiment} object |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{runScanpyNormalizeData} |
5 | 5 |
\title{runScanpyNormalizeData |
6 | 6 |
Wrapper for NormalizeData() function from scanpy library |
7 |
-Normalizes the sce object according to the input parameters provided.} |
|
7 |
+Normalizes the sce object according to the input parameters} |
|
8 | 8 |
\usage{ |
9 | 9 |
runScanpyNormalizeData( |
10 | 10 |
inSCE, |
... | ... |
@@ -30,7 +30,7 @@ Normalized \code{SingleCellExperiment} object |
30 | 30 |
\description{ |
31 | 31 |
runScanpyNormalizeData |
32 | 32 |
Wrapper for NormalizeData() function from scanpy library |
33 |
-Normalizes the sce object according to the input parameters provided. |
|
33 |
+Normalizes the sce object according to the input parameters |
|
34 | 34 |
} |
35 | 35 |
\examples{ |
36 | 36 |
data(scExample, package = "singleCellTK") |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{runScanpyNormalizeData} |
5 | 5 |
\title{runScanpyNormalizeData |
6 | 6 |
Wrapper for NormalizeData() function from scanpy library |
7 |
-Normalizes the sce object according to the input parameters} |
|
7 |
+Normalizes the sce object according to the input parameters provided.} |
|
8 | 8 |
\usage{ |
9 | 9 |
runScanpyNormalizeData( |
10 | 10 |
inSCE, |
... | ... |
@@ -30,7 +30,7 @@ Normalized \code{SingleCellExperiment} object |
30 | 30 |
\description{ |
31 | 31 |
runScanpyNormalizeData |
32 | 32 |
Wrapper for NormalizeData() function from scanpy library |
33 |
-Normalizes the sce object according to the input parameters |
|
33 |
+Normalizes the sce object according to the input parameters provided. |
|
34 | 34 |
} |
35 | 35 |
\examples{ |
36 | 36 |
data(scExample, package = "singleCellTK") |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,40 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/scanpyFunctions.R |
|
3 |
+\name{runScanpyNormalizeData} |
|
4 |
+\alias{runScanpyNormalizeData} |
|
5 |
+\title{runScanpyNormalizeData |
|
6 |
+Wrapper for NormalizeData() function from scanpy library |
|
7 |
+Normalizes the sce object according to the input parameters} |
|
8 |
+\usage{ |
|
9 |
+runScanpyNormalizeData( |
|
10 |
+ inSCE, |
|
11 |
+ useAssay, |
|
12 |
+ normAssayName = "scanpyNormData", |
|
13 |
+ normalizationMethod = "LogNormalize" |
|
14 |
+) |
|
15 |
+} |
|
16 |
+\arguments{ |
|
17 |
+\item{inSCE}{(sce) object to normalize} |
|
18 |
+ |
|
19 |
+\item{useAssay}{Assay containing raw counts to use for normalization.} |
|
20 |
+ |
|
21 |
+\item{normAssayName}{Name of new assay containing normalized data. Default |
|
22 |
+\code{scanpyNormData}.} |
|
23 |
+ |
|
24 |
+\item{normalizationMethod}{selected normalization method. Default |
|
25 |
+\code{"LogNormalize"}.} |
|
26 |
+} |
|
27 |
+\value{ |
|
28 |
+Normalized \code{SingleCellExperiment} object |
|
29 |
+} |
|
30 |
+\description{ |
|
31 |
+runScanpyNormalizeData |
|
32 |
+Wrapper for NormalizeData() function from scanpy library |
|
33 |
+Normalizes the sce object according to the input parameters |
|
34 |
+} |
|
35 |
+\examples{ |
|
36 |
+data(scExample, package = "singleCellTK") |
|
37 |
+\dontrun{ |
|
38 |
+sce <- runScanpyNormalizeData(sce, useAssay = "counts") |
|
39 |
+} |
|
40 |
+} |