% Generated by roxygen2: do not edit by hand % Please edit documentation in R/aeh.R \name{spatialPatterns} \alias{spatialPatterns} \alias{spatialPatterns,matrix-method} \alias{spatialPatterns,SpatialExperiment-method} \title{Automatic expression histology in \strong{SpatialDE}} \usage{ spatialPatterns(x, de_results, ...) \S4method{spatialPatterns}{matrix}( x, de_results, coordinates, qval_thresh = 0.05, n_patterns, length, verbose = FALSE ) \S4method{spatialPatterns}{SpatialExperiment}( x, de_results, qval_thresh = 0.05, n_patterns, length, assay_type = "counts", verbose = FALSE ) } \arguments{ \item{x}{A numeric \code{matrix} of counts where genes are rows and cells are columns. Alternatively, a \linkS4class{SpatialExperiment} object.} \item{de_results}{\code{data.frame} resulting from \code{\link[=run]{run()}} or \code{\link[=spatialDE]{spatialDE()}}.} \item{...}{For the generic, arguments to pass to specific methods.} \item{coordinates}{A \code{data.frame} with sample coordinates. Each row is a sample, the columns with coordinates should be named 'x' and 'y'. For the \emph{SpatialExperiment} method, coordinates are taken from \code{spatialCoords(x)}.} \item{qval_thresh}{\code{numeric} scalar, specifying the q-value significance threshold to filter \code{de_results}. Only rows in \code{de_results} with \code{qval < qval_thresh} will be kept. To disable, set \code{qval_thresh = NULL}.} \item{n_patterns}{\code{integer} The number of spatial patterns} \item{length}{\code{numeric} The characteristic length scale of the clusters} \item{verbose}{A \code{logical} controlling the display of a progress bar from the Python package.} \item{assay_type}{A \code{character} string specifying the assay from \code{x} to use as input. Defaults to \code{"counts"}.} } \value{ A \code{list} of two \code{data.frame}s (pattern_results, patterns): \itemize{ \item \code{pattern_results}: \code{data.frame} with pattern membership information for each gene. \item \code{patterns} the posterior mean underlying expression from genes in given spatial patterns. } } \description{ Group spatially variable genes into spatial patterns using Automatic Expression Histology, using the \href{https://github.com/Teichlab/SpatialDE}{\strong{SpatialDE}} Python package. } \examples{ ## Mock up a SpatialExperiment object wit 100 cells, 200 genes set.seed(42) spe <- mockSVG(size = 10, tot_genes = 200, de_genes = 20, return_SPE = TRUE) ## Run spatialDE de_results <- spatialDE(spe) spatial_patterns <- spatialPatterns(spe, de_results = de_results, qval_thresh = NULL, n_patterns = 4L, length = 1.5, verbose = FALSE ) head(spatial_patterns$pattern_results) head(spatial_patterns$patterns) } \references{ Svensson, V., Teichmann, S. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat Methods 15, 343–346 (2018). \url{https://doi.org/10.1038/nmeth.4636} \href{https://pypi.org/project/SpatialDE/1.1.3/}{\strong{SpatialDE 1.1.3}}: the version of the Python package used under the hood. } \seealso{ The individual steps performed by this function: \code{\link[=stabilize]{stabilize()}}, \code{\link[=regress_out]{regress_out()}} and \code{\link[=spatial_patterns]{spatial_patterns()}}. } \author{ Davide Corso, Milan Malfait }