moved some dependencies into suggests and have struct check for packages on first use of object instead by populating the libraries slot of objects
... | ... |
@@ -77,7 +77,6 @@ Depends: struct |
77 | 77 |
Imports: ggplot2, |
78 | 78 |
pmp, |
79 | 79 |
gridExtra, |
80 |
- pls, |
|
81 | 80 |
sp, |
82 | 81 |
scales, |
83 | 82 |
stats, |
... | ... |
@@ -90,7 +89,6 @@ Imports: ggplot2, |
90 | 89 |
nlme, |
91 | 90 |
ggthemes, |
92 | 91 |
ggdendro, |
93 |
- Rtsne, |
|
94 | 92 |
datasets |
95 | 93 |
RoxygenNote: 6.1.1 |
96 | 94 |
Suggests: |
... | ... |
@@ -99,7 +97,9 @@ Suggests: |
99 | 97 |
knitr, |
100 | 98 |
rmarkdown, |
101 | 99 |
BiocStyle, |
102 |
- sbcms |
|
100 |
+ pls, |
|
101 |
+ sbcms, |
|
102 |
+ Rtsne |
|
103 | 103 |
Remotes: computational-metabolomics/pmp, |
104 | 104 |
computational-metabolomics/struct, |
105 | 105 |
computational-metabolomics/sbcms |
... | ... |
@@ -94,7 +94,6 @@ exportMethods(model.predict) |
94 | 94 |
exportMethods(model.reverse) |
95 | 95 |
exportMethods(model.train) |
96 | 96 |
exportMethods(run) |
97 |
-import(Rtsne) |
|
98 | 97 |
import(agricolae) |
99 | 98 |
import(car) |
100 | 99 |
import(datasets) |
... | ... |
@@ -111,7 +110,5 @@ import(reshape2) |
111 | 110 |
import(scales) |
112 | 111 |
import(stats) |
113 | 112 |
import(struct) |
114 |
-importFrom(pls,plsr) |
|
115 |
-importFrom(pls,scores) |
|
116 | 113 |
importFrom(scales,squish) |
117 | 114 |
importFrom(sp,point.in.polygon) |
... | ... |
@@ -23,6 +23,7 @@ plsda_scores_plot<-setClass( |
23 | 23 |
prototype = list(name='PLSDA scores plot', |
24 | 24 |
description='scatter plot of PLSDA component scores', |
25 | 25 |
type="scatter", |
26 |
+ libraries=c('pls','ggplot2'), |
|
26 | 27 |
params.components=entity(name='Components to plot', |
27 | 28 |
value=c(1,2), |
28 | 29 |
type='numeric', |
... | ... |
@@ -2,7 +2,6 @@ |
2 | 2 |
#' |
3 | 3 |
#' Partial least squares (PLS) discriminant analysis (DA) model class. This object can be used to train/apply PLS models. |
4 | 4 |
#' @export PLSDA |
5 |
-#' @importFrom pls plsr scores |
|
6 | 5 |
#' @examples |
7 | 6 |
#' M = PLSDA() |
8 | 7 |
PLSDA<-setClass( |
... | ... |
@@ -26,6 +25,7 @@ PLSDA<-setClass( |
26 | 25 |
prototype = list(name='Partial least squares discriminant analysis', |
27 | 26 |
type="classification", |
28 | 27 |
predicted='pred', |
28 |
+ libraries='pls', |
|
29 | 29 |
params.number_components=entity(value = 2, |
30 | 30 |
name = 'Number of PLS components', |
31 | 31 |
description = 'The number of PLS components to use', |
... | ... |
@@ -2,7 +2,6 @@ |
2 | 2 |
#' |
3 | 3 |
#' Partial least squares (PLS) fold change estimates |
4 | 4 |
#' @export PLSFC |
5 |
-#' @importFrom pls plsr scores |
|
6 | 5 |
#' @include fold_change_class.R |
7 | 6 |
#' @examples |
8 | 7 |
#' C = PLSFC() |
... | ... |
@@ -15,6 +14,7 @@ PLSFC<-setClass( |
15 | 14 |
prototype = list(name='Partial least squares discriminant analysis', |
16 | 15 |
type="classification", |
17 | 16 |
predicted='pred', |
17 |
+ libraries=c('pls'), |
|
18 | 18 |
params.number_components=entity(value = 2,name = 'Number of PLS components',description = 'The number of PLS components to use',type = 'numeric') |
19 | 19 |
) |
20 | 20 |
) |
... | ... |
@@ -2,7 +2,6 @@ |
2 | 2 |
#' |
3 | 3 |
#' Partial least squares (PLS) Regression model class. This object can be used to train/apply PLS models. |
4 | 4 |
#' @export PLSR |
5 |
-#' @importFrom pls plsr scores |
|
6 | 5 |
#' @examples |
7 | 6 |
#' M = PLSR() |
8 | 7 |
PLSR<-setClass( |
... | ... |
@@ -26,6 +25,7 @@ PLSR<-setClass( |
26 | 25 |
prototype = list(name='Partial least squares regression', |
27 | 26 |
type="regression", |
28 | 27 |
predicted='pred', |
28 |
+ libraries='pls', |
|
29 | 29 |
params.number_components=entity(value = 2,name = 'Number of PLS components',description = 'The number of PLS components to use',type = 'numeric'), |
30 | 30 |
params.factor_name=entity(name='Factor name', description='A vector of sample_meta column names to use') |
31 | 31 |
) |
... | ... |
@@ -2,7 +2,6 @@ |
2 | 2 |
#' |
3 | 3 |
#' t-Distributed Stochastic Neighbor Embedding (tSNE) class. This object can be used to train/apply tSNE models to dataset objects. |
4 | 4 |
#' |
5 |
-#' @import Rtsne |
|
6 | 5 |
#' @export tSNE |
7 | 6 |
#' @examples |
8 | 7 |
#' M = tSNE() |
... | ... |
@@ -28,7 +27,7 @@ tSNE<-setClass( |
28 | 27 |
description='t-Distributed Stochastic Neighbor Embedding.', |
29 | 28 |
type="preprocessing", |
30 | 29 |
predicted='tsne', |
31 |
- |
|
30 |
+ libraries='Rtsne', |
|
32 | 31 |
params.dims=2, |
33 | 32 |
params.perplexity=30, |
34 | 33 |
params.max_iter=1000, |
... | ... |
@@ -83,7 +82,8 @@ tSNE_scatter<-setClass( |
83 | 82 |
), |
84 | 83 |
prototype = list(name='Feature boxplot', |
85 | 84 |
description='plots the new representation of data after applying tSNE.', |
86 |
- type="scatter" |
|
85 |
+ type="scatter", |
|
86 |
+ libraries='Rtsne' |
|
87 | 87 |
|
88 | 88 |
) |
89 | 89 |
) |