... | ... |
@@ -13,7 +13,7 @@ log_transform = function(base=10,...) { |
13 | 13 |
|
14 | 14 |
.log_transform<-setClass( |
15 | 15 |
"log_transform", |
16 |
- contains = c('model','stato'), |
|
16 |
+ contains = c('model'), |
|
17 | 17 |
slots=c(base='entity', |
18 | 18 |
transformed='entity' |
19 | 19 |
), |
... | ... |
@@ -24,7 +24,7 @@ log_transform = function(base=10,...) { |
24 | 24 |
predicted = 'transformed', |
25 | 25 |
.params=c('base'), |
26 | 26 |
.outputs=c('transformed'), |
27 |
- stato_id = 'OBI:0200094', |
|
27 |
+ ontology = 'OBI:0200094', |
|
28 | 28 |
base=entity(name = 'Logarithm base', |
29 | 29 |
description = 'The base of the logarithm used for the transform.', |
30 | 30 |
value = 10, |
* fix base=10 regardless of input (see #15)
class constructor was always setting base to 10 instead of the input value
* merge bug fix 1.01 into dev (#19)
* bug fix issue #7
Correctly re-order the sample_meta column for colouring samples in the dendrogram plot
* version bump
bug fix issue #7
* fix for https://github.com/computational-metabolomics/structToolbox/issues/18 (#20)
correctly reorder the factor labels so that the control group always ends up in the denominator for the fold change calculation.
* fix for https://github.com/computational-metabolomics/structToolbox/issues/18
fixed incorrect length check on matching class labels.
* Issue 17 ttest factor (#21)
* convert to factor if not one already
fix for issue #17
* update roxygen version
* fix for issue #9 (#22)
changed from lapply to vapply and used drop=FALSE to ensure compatibility with a single factor.
* allow user to set lambda (#24)
- lambda changed to input parameter. NULL = uses pmp optimisation
- model_predict now uses the set value of lambda, or lambda_opt if used.
- documentation updated
* Feature non parametric fold change (#26)
* add "median" method
based on DOI: 10.1080/00949650212140 can now calcuate fold changes equivalent to using medians and corresponding confidence intervals
* update documentation
* update median method
now correctly calculates ratio of medians
* use wilcox for paired median intervals
make use of wilcox.test to estimate intervals for the median when using median for paired samples
* Issue 23 filter by name (#27)
* fix for #23
moved all model_apply functionality to model_predict so that model_train and model_predict can be used as well as model_apply
* update documentation
* Update mean_of_medians.R (#29)
fix for #28
- correctly loop over all levels in the named factor
* Feature documentation 3 12 (#31)
* update documentation
Description and inputs now pulled from the object definitions for consistency.
* fix definition of label_features
allows NULL and description updated
* replace non ascii characters
* export mixed_effect object
* use correct object name to generate documentation
* export mixed_effect object
* remove non ascii characters
* update tests with new object name
* add import for capture.output
* add import for capture.output
* use pca_biplot in tests
chart was renamed
* add utils import
* update struct dependency version
* update documentation
* update news, version bump
... | ... |
@@ -1,15 +1,11 @@ |
1 |
-#' log transform |
|
2 |
-#' |
|
3 |
-#' Applies a log transform to the input data |
|
4 |
-#' @param base The base of the logarithm. Default is 10, resulting in a log10 transformation of the data. |
|
5 |
-#' @param ... additional slots and values passed to struct_class |
|
1 |
+#' @eval get_description('log_transform') |
|
6 | 2 |
#' @return struct object |
7 | 3 |
#' @export log_transform |
8 | 4 |
#' @examples |
9 | 5 |
#' M = log_transform() |
10 | 6 |
log_transform = function(base=10,...) { |
11 | 7 |
out=struct::new_struct('log_transform', |
12 |
- base=10, |
|
8 |
+ base=base, |
|
13 | 9 |
...) |
14 | 10 |
return(out) |
15 | 11 |
} |
... | ... |
@@ -17,24 +13,24 @@ log_transform = function(base=10,...) { |
17 | 13 |
|
18 | 14 |
.log_transform<-setClass( |
19 | 15 |
"log_transform", |
20 |
- contains = c('model'), |
|
16 |
+ contains = c('model','stato'), |
|
21 | 17 |
slots=c(base='entity', |
22 | 18 |
transformed='entity' |
23 | 19 |
), |
24 | 20 |
|
25 | 21 |
prototype=list(name = 'logarithm transform', |
26 |
- description = 'applies a log tranform to the data.', |
|
22 |
+ description = 'A logarithmic transform is applied to all values in the data matrix.', |
|
27 | 23 |
type = 'transform', |
28 | 24 |
predicted = 'transformed', |
29 | 25 |
.params=c('base'), |
30 | 26 |
.outputs=c('transformed'), |
31 |
- |
|
32 |
- base=entity(name = 'logarithm base', |
|
33 |
- description = 'The base of the logarithm used for the tranform.', |
|
27 |
+ stato_id = 'OBI:0200094', |
|
28 |
+ base=entity(name = 'Logarithm base', |
|
29 |
+ description = 'The base of the logarithm used for the transform.', |
|
34 | 30 |
value = 10, |
35 | 31 |
type='numeric'), |
36 | 32 |
|
37 |
- transformed=entity(name = 'log transformed DatasetExperiment', |
|
33 |
+ transformed=entity(name = 'Log transformed DatasetExperiment', |
|
38 | 34 |
description = 'A DatasetExperiment object containing the log transformed data.', |
39 | 35 |
type='DatasetExperiment', |
40 | 36 |
value=DatasetExperiment() |
... | ... |
@@ -1,14 +1,16 @@ |
1 | 1 |
#' log transform |
2 | 2 |
#' |
3 |
-#' applies a log transform to the input data |
|
3 |
+#' Applies a log transform to the input data |
|
4 |
+#' @param base The base of the logarithm. Default is 10, resulting in a log10 transformation of the data. |
|
4 | 5 |
#' @param ... additional slots and values passed to struct_class |
5 | 6 |
#' @return struct object |
6 | 7 |
#' @export log_transform |
7 | 8 |
#' @examples |
8 | 9 |
#' M = log_transform() |
9 |
-log_transform = function(...) { |
|
10 |
- out=.log_transform() |
|
11 |
- out=struct::new_struct(out,...) |
|
10 |
+log_transform = function(base=10,...) { |
|
11 |
+ out=struct::new_struct('log_transform', |
|
12 |
+ base=10, |
|
13 |
+ ...) |
|
12 | 14 |
return(out) |
13 | 15 |
} |
14 | 16 |
|
... | ... |
@@ -24,6 +26,8 @@ log_transform = function(...) { |
24 | 26 |
description = 'applies a log tranform to the data.', |
25 | 27 |
type = 'transform', |
26 | 28 |
predicted = 'transformed', |
29 |
+ .params=c('base'), |
|
30 |
+ .outputs=c('transformed'), |
|
27 | 31 |
|
28 | 32 |
base=entity(name = 'logarithm base', |
29 | 33 |
description = 'The base of the logarithm used for the tranform.', |
... | ... |
@@ -38,7 +42,6 @@ log_transform = function(...) { |
38 | 42 |
) |
39 | 43 |
) |
40 | 44 |
|
41 |
-#' @param ... additional slots and values passed to struct_class |
|
42 | 45 |
#' @export |
43 | 46 |
#' @template model_apply |
44 | 47 |
setMethod(f="model_apply", |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#' log transform |
2 | 2 |
#' |
3 | 3 |
#' applies a log transform to the input data |
4 |
-#' @param ... slots and values for the new object |
|
4 |
+#' @param ... additional slots and values passed to struct_class |
|
5 | 5 |
#' @return struct object |
6 | 6 |
#' @export log_transform |
7 | 7 |
#' @examples |
... | ... |
@@ -38,7 +38,7 @@ log_transform = function(...) { |
38 | 38 |
) |
39 | 39 |
) |
40 | 40 |
|
41 |
-#' @param ... slots and values for the new object |
|
41 |
+#' @param ... additional slots and values passed to struct_class |
|
42 | 42 |
#' @export |
43 | 43 |
#' @template model_apply |
44 | 44 |
setMethod(f="model_apply", |
also fix resulting duplicate slot name 'type' for mixed_effects
... | ... |
@@ -8,7 +8,7 @@ |
8 | 8 |
#' M = log_transform() |
9 | 9 |
log_transform = function(...) { |
10 | 10 |
out=.log_transform() |
11 |
- out=struct::.initialize_struct_class(out,...) |
|
11 |
+ out=struct::new_struct(out,...) |
|
12 | 12 |
return(out) |
13 | 13 |
} |
14 | 14 |
|
... | ... |
@@ -16,8 +16,8 @@ log_transform = function(...) { |
16 | 16 |
.log_transform<-setClass( |
17 | 17 |
"log_transform", |
18 | 18 |
contains = c('model'), |
19 |
- slots=c(params_base='entity', |
|
20 |
- outputs_transformed='entity' |
|
19 |
+ slots=c(base='entity', |
|
20 |
+ transformed='entity' |
|
21 | 21 |
), |
22 | 22 |
|
23 | 23 |
prototype=list(name = 'logarithm transform', |
... | ... |
@@ -25,12 +25,12 @@ log_transform = function(...) { |
25 | 25 |
type = 'transform', |
26 | 26 |
predicted = 'transformed', |
27 | 27 |
|
28 |
- params_base=entity(name = 'logarithm base', |
|
28 |
+ base=entity(name = 'logarithm base', |
|
29 | 29 |
description = 'The base of the logarithm used for the tranform.', |
30 | 30 |
value = 10, |
31 | 31 |
type='numeric'), |
32 | 32 |
|
33 |
- outputs_transformed=entity(name = 'log transformed DatasetExperiment', |
|
33 |
+ transformed=entity(name = 'log transformed DatasetExperiment', |
|
34 | 34 |
description = 'A DatasetExperiment object containing the log transformed data.', |
35 | 35 |
type='DatasetExperiment', |
36 | 36 |
value=DatasetExperiment() |
...update some documentation
... | ... |
@@ -1,6 +1,7 @@ |
1 | 1 |
#' log transform |
2 | 2 |
#' |
3 | 3 |
#' applies a log transform to the input data |
4 |
+#' @param ... slots and values for the new object |
|
4 | 5 |
#' @export log_transform |
5 | 6 |
#' @examples |
6 | 7 |
#' M = log_transform() |
... | ... |
@@ -36,6 +37,7 @@ log_transform = function(...) { |
36 | 37 |
) |
37 | 38 |
) |
38 | 39 |
|
40 |
+#' @param ... slots and values for the new object |
|
39 | 41 |
#' @export |
40 | 42 |
#' @template model_apply |
41 | 43 |
setMethod(f="model_apply", |
...rename all function with dot to underscore
replace dataset with DatasetExperiment
... | ... |
@@ -4,11 +4,18 @@ |
4 | 4 |
#' @export log_transform |
5 | 5 |
#' @examples |
6 | 6 |
#' M = log_transform() |
7 |
-log_transform<-setClass( |
|
7 |
+log_transform = function(...) { |
|
8 |
+ out=.log_transform() |
|
9 |
+ out=struct::.initialize_struct_class(out,...) |
|
10 |
+ return(out) |
|
11 |
+} |
|
12 |
+ |
|
13 |
+ |
|
14 |
+.log_transform<-setClass( |
|
8 | 15 |
"log_transform", |
9 | 16 |
contains = c('model'), |
10 |
- slots=c(params.base='entity', |
|
11 |
- outputs.transformed='entity' |
|
17 |
+ slots=c(params_base='entity', |
|
18 |
+ outputs_transformed='entity' |
|
12 | 19 |
), |
13 | 20 |
|
14 | 21 |
prototype=list(name = 'logarithm transform', |
... | ... |
@@ -16,34 +23,34 @@ log_transform<-setClass( |
16 | 23 |
type = 'transform', |
17 | 24 |
predicted = 'transformed', |
18 | 25 |
|
19 |
- params.base=entity(name = 'logarithm base', |
|
26 |
+ params_base=entity(name = 'logarithm base', |
|
20 | 27 |
description = 'The base of the logarithm used for the tranform.', |
21 | 28 |
value = 10, |
22 | 29 |
type='numeric'), |
23 | 30 |
|
24 |
- outputs.transformed=entity(name = 'log transformed dataset', |
|
25 |
- description = 'A dataset object containing the log transformed data.', |
|
26 |
- type='dataset', |
|
27 |
- value=dataset() |
|
31 |
+ outputs_transformed=entity(name = 'log transformed DatasetExperiment', |
|
32 |
+ description = 'A DatasetExperiment object containing the log transformed data.', |
|
33 |
+ type='DatasetExperiment', |
|
34 |
+ value=DatasetExperiment() |
|
28 | 35 |
) |
29 | 36 |
) |
30 | 37 |
) |
31 | 38 |
|
32 | 39 |
#' @export |
33 | 40 |
#' @template model_apply |
34 |
-setMethod(f="model.apply", |
|
35 |
- signature=c("log_transform","dataset"), |
|
41 |
+setMethod(f="model_apply", |
|
42 |
+ signature=c("log_transform","DatasetExperiment"), |
|
36 | 43 |
definition=function(M,D) |
37 | 44 |
{ |
38 |
- opt=param.list(M) |
|
45 |
+ opt=param_list(M) |
|
39 | 46 |
|
40 |
- smeta=dataset.sample_meta(D) |
|
41 |
- x=dataset.data(D) |
|
47 |
+ smeta=D$sample_meta |
|
48 |
+ x=D$data |
|
42 | 49 |
|
43 | 50 |
out = log(x,base = opt$base) |
44 |
- dataset.data(D) = as.data.frame(out) |
|
51 |
+ D$data = as.data.frame(out) |
|
45 | 52 |
|
46 |
- output.value(M,'transformed') = D |
|
53 |
+ output_value(M,'transformed') = D |
|
47 | 54 |
|
48 | 55 |
return(M) |
49 | 56 |
} |
update due to removal of methods class from struct base
due to changes in base package struct
... | ... |
@@ -6,7 +6,7 @@ |
6 | 6 |
#' M = log_transform() |
7 | 7 |
log_transform<-setClass( |
8 | 8 |
"log_transform", |
9 |
- contains = c('method'), |
|
9 |
+ contains = c('model'), |
|
10 | 10 |
slots=c(params.base='entity', |
11 | 11 |
outputs.transformed='entity' |
12 | 12 |
), |
... | ... |
@@ -31,7 +31,7 @@ log_transform<-setClass( |
31 | 31 |
|
32 | 32 |
#' @export |
33 | 33 |
#' @template method_apply |
34 |
-setMethod(f="method.apply", |
|
34 |
+setMethod(f="model.apply", |
|
35 | 35 |
signature=c("log_transform","dataset"), |
36 | 36 |
definition=function(M,D) |
37 | 37 |
{ |
... | ... |
@@ -3,45 +3,45 @@ |
3 | 3 |
#' applies a log transform to the input data |
4 | 4 |
#' @export log_transform |
5 | 5 |
log_transform<-setClass( |
6 |
- "log_transform", |
|
7 |
- contains = c('method'), |
|
8 |
- slots=c(params.base='entity', |
|
9 |
- outputs.transformed='entity' |
|
10 |
- ), |
|
11 |
- |
|
12 |
- prototype=list(name = 'logarithm transform', |
|
13 |
- description = 'applies a log tranform to the data.', |
|
14 |
- type = 'transform', |
|
15 |
- predicted = 'transformed', |
|
16 |
- |
|
17 |
- params.base=entity(name = 'logarithm base', |
|
18 |
- description = 'The base of the logarithm used for the tranform.', |
|
19 |
- value = 10, |
|
20 |
- type='numeric'), |
|
21 |
- |
|
22 |
- outputs.transformed=entity(name = 'log transformed dataset', |
|
23 |
- description = 'A dataset object containing the log transformed data.', |
|
24 |
- type='dataset', |
|
25 |
- value=dataset() |
|
26 |
- ) |
|
27 |
- ) |
|
6 |
+ "log_transform", |
|
7 |
+ contains = c('method'), |
|
8 |
+ slots=c(params.base='entity', |
|
9 |
+ outputs.transformed='entity' |
|
10 |
+ ), |
|
11 |
+ |
|
12 |
+ prototype=list(name = 'logarithm transform', |
|
13 |
+ description = 'applies a log tranform to the data.', |
|
14 |
+ type = 'transform', |
|
15 |
+ predicted = 'transformed', |
|
16 |
+ |
|
17 |
+ params.base=entity(name = 'logarithm base', |
|
18 |
+ description = 'The base of the logarithm used for the tranform.', |
|
19 |
+ value = 10, |
|
20 |
+ type='numeric'), |
|
21 |
+ |
|
22 |
+ outputs.transformed=entity(name = 'log transformed dataset', |
|
23 |
+ description = 'A dataset object containing the log transformed data.', |
|
24 |
+ type='dataset', |
|
25 |
+ value=dataset() |
|
26 |
+ ) |
|
27 |
+ ) |
|
28 | 28 |
) |
29 | 29 |
|
30 | 30 |
#' @export |
31 | 31 |
setMethod(f="method.apply", |
32 |
- signature=c("log_transform","dataset"), |
|
33 |
- definition=function(M,D) |
|
34 |
- { |
|
35 |
- opt=param.list(M) |
|
32 |
+ signature=c("log_transform","dataset"), |
|
33 |
+ definition=function(M,D) |
|
34 |
+ { |
|
35 |
+ opt=param.list(M) |
|
36 | 36 |
|
37 |
- smeta=dataset.sample_meta(D) |
|
38 |
- x=dataset.data(D) |
|
37 |
+ smeta=dataset.sample_meta(D) |
|
38 |
+ x=dataset.data(D) |
|
39 | 39 |
|
40 |
- out = log(x,base = opt$base) |
|
41 |
- dataset.data(D) = as.data.frame(out) |
|
40 |
+ out = log(x,base = opt$base) |
|
41 |
+ dataset.data(D) = as.data.frame(out) |
|
42 | 42 |
|
43 |
- output.value(M,'transformed') = D |
|
43 |
+ output.value(M,'transformed') = D |
|
44 | 44 |
|
45 |
- return(M) |
|
46 |
- } |
|
45 |
+ return(M) |
|
46 |
+ } |
|
47 | 47 |
) |
... | ... |
@@ -14,7 +14,7 @@ log_transform<-setClass( |
14 | 14 |
type = 'transform', |
15 | 15 |
predicted = 'transformed', |
16 | 16 |
|
17 |
- params.qc_label=entity(name = 'logarithm base', |
|
17 |
+ params.base=entity(name = 'logarithm base', |
|
18 | 18 |
description = 'The base of the logarithm used for the tranform.', |
19 | 19 |
value = 10, |
20 | 20 |
type='numeric'), |
struct now searches for parameters labelled param. and output. so list of them no longer needed as a slot
... | ... |
@@ -13,8 +13,6 @@ log_transform<-setClass( |
13 | 13 |
description = 'applies a log tranform to the data.', |
14 | 14 |
type = 'transform', |
15 | 15 |
predicted = 'transformed', |
16 |
- params=c('base'), |
|
17 |
- outputs=c('transformed'), |
|
18 | 16 |
|
19 | 17 |
params.qc_label=entity(name = 'logarithm base', |
20 | 18 |
description = 'The base of the logarithm used for the tranform.', |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,49 @@ |
1 |
+#' log transform |
|
2 |
+#' |
|
3 |
+#' applies a log transform to the input data |
|
4 |
+#' @export log_transform |
|
5 |
+log_transform<-setClass( |
|
6 |
+ "log_transform", |
|
7 |
+ contains = c('method'), |
|
8 |
+ slots=c(params.base='entity', |
|
9 |
+ outputs.transformed='entity' |
|
10 |
+ ), |
|
11 |
+ |
|
12 |
+ prototype=list(name = 'logarithm transform', |
|
13 |
+ description = 'applies a log tranform to the data.', |
|
14 |
+ type = 'transform', |
|
15 |
+ predicted = 'transformed', |
|
16 |
+ params=c('base'), |
|
17 |
+ outputs=c('transformed'), |
|
18 |
+ |
|
19 |
+ params.qc_label=entity(name = 'logarithm base', |
|
20 |
+ description = 'The base of the logarithm used for the tranform.', |
|
21 |
+ value = 10, |
|
22 |
+ type='numeric'), |
|
23 |
+ |
|
24 |
+ outputs.transformed=entity(name = 'log transformed dataset', |
|
25 |
+ description = 'A dataset object containing the log transformed data.', |
|
26 |
+ type='dataset', |
|
27 |
+ value=dataset() |
|
28 |
+ ) |
|
29 |
+ ) |
|
30 |
+) |
|
31 |
+ |
|
32 |
+#' @export |
|
33 |
+setMethod(f="method.apply", |
|
34 |
+ signature=c("log_transform","dataset"), |
|
35 |
+ definition=function(M,D) |
|
36 |
+ { |
|
37 |
+ opt=param.list(M) |
|
38 |
+ |
|
39 |
+ smeta=dataset.sample_meta(D) |
|
40 |
+ x=dataset.data(D) |
|
41 |
+ |
|
42 |
+ out = log(x,base = opt$base) |
|
43 |
+ dataset.data(D) = as.data.frame(out) |
|
44 |
+ |
|
45 |
+ output.value(M,'transformed') = D |
|
46 |
+ |
|
47 |
+ return(M) |
|
48 |
+ } |
|
49 |
+) |