% Generated by roxygen2: do not edit by hand % Please edit documentation in R/HelperFuncs.R \name{estimClust.plot} \alias{estimClust.plot} \title{Plotting results from estimating the cluster number} \usage{ estimClust.plot(ClustInd) } \arguments{ \item{ClustInd}{Matrix with values from validity indices} } \value{ Multiple panels showing expression profiles of clustered features passing the min.mem threshold } \description{ This function visualizes the output from estimClustNumber, and there particularly the two validity indices Minimum Centroid Distance and Xie Beni Index. } \examples{ data("artificial_clusters") dat <- averageCond(artificial_clusters, 5, 10) dat <- scale(dat) dat <- cbind(dat, 1) ClustInd <- estimClustNum(dat, 10) estimClust.plot(ClustInd) } \references{ Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359. Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508. Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. PMID: 20880957. }