Browse code

added now function for biocondcutor and many fixes

Veit Schwammle authored on 23/09/2022 11:37:56
Showing 1 changed files
... ...
@@ -1,5 +1,5 @@
1 1
 % Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/HelperFuncs.R
2
+% Please edit documentation in R/RunClustering.R
3 3
 \name{determine_fuzz}
4 4
 \alias{determine_fuzz}
5 5
 \title{Determine individual fuzzifier values}
... ...
@@ -7,32 +7,42 @@
7 7
 determine_fuzz(dims, NClust, Sds = 1)
8 8
 }
9 9
 \arguments{
10
-\item{dims}{vector of two integers containing the dimensions of the data matrix for the clustering}
10
+\item{dims}{vector of two integers containing the dimensions of the data 
11
+matrix for the clustering}
11 12
 
12
-\item{NClust}{Number of cluster for running vsclust on (does no influence the calculation of `mm`)}
13
+\item{NClust}{Number of cluster for running vsclust on (does no influence the 
14
+calculation of `mm`)}
13 15
 
14 16
 \item{Sds}{individual standard deviations, set to 1 if not available}
15 17
 }
16 18
 \value{
17
-list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm
19
+list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm 
20
+clustering when not using vsclust algorithm
18 21
 }
19 22
 \description{
20
-This function calculated the values of the fuzzifier from a) the dimensions 
21
-of the considered data set and b) 
23
+This function calculated the values of the fuzzifier from a) the dimensions
24
+of the considered data set and b)
22 25
 from the individual feature standard deviations.
23 26
 }
24 27
 \examples{
25 28
 # Generate some random data
26
-data <- matrix(rnorm(1:1000), nrow=100)
29
+data <- matrix(rnorm(seq_len(1000)), nrow=100)
27 30
 # Estimate fuzzifiers
28 31
 fuzz_out <- determine_fuzz(dim(data), 1)
29 32
 # Run clustering
30 33
 clres <- vsclust_algorithm(data, centers=5, m=fuzz_out$mm)
31 34
 }
32 35
 \references{
33
-Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359.
36
+Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering 
37
+of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 
38
+10.1093/bioinformatics/bty224. PMID: 29635359.
34 39
 
35
-Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508.
40
+Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and 
41
+the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 
42
+2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508.
36 43
 
37
-Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. PMID: 20880957.
44
+Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters 
45
+for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;
46
+26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. 
47
+PMID: 20880957.
38 48
 }
Browse code

donttest to shiny call

veitveit authored on 17/08/2022 07:29:11
Showing 1 changed files
... ...
@@ -27,7 +27,7 @@ data <- matrix(rnorm(1:1000), nrow=100)
27 27
 # Estimate fuzzifiers
28 28
 fuzz_out <- determine_fuzz(dim(data), 1)
29 29
 # Run clustering
30
-clres <- vsclust_algorithm(data, centers=10, m=fuzz_out$mm)
30
+clres <- vsclust_algorithm(data, centers=5, m=fuzz_out$mm)
31 31
 }
32 32
 \references{
33 33
 Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359.
Browse code

removed example

veitveit authored on 17/08/2022 04:35:44
Showing 1 changed files
... ...
@@ -17,7 +17,8 @@ determine_fuzz(dims, NClust, Sds = 1)
17 17
 list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm
18 18
 }
19 19
 \description{
20
-This function calculated the values of the fuzzifier from a) the dimensions of the considered data set and b) 
20
+This function calculated the values of the fuzzifier from a) the dimensions 
21
+of the considered data set and b) 
21 22
 from the individual feature standard deviations.
22 23
 }
23 24
 \examples{
Browse code

ready for bioconductor

veitveit authored on 18/07/2022 11:59:30
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,37 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/HelperFuncs.R
3
+\name{determine_fuzz}
4
+\alias{determine_fuzz}
5
+\title{Determine individual fuzzifier values}
6
+\usage{
7
+determine_fuzz(dims, NClust, Sds = 1)
8
+}
9
+\arguments{
10
+\item{dims}{vector of two integers containing the dimensions of the data matrix for the clustering}
11
+
12
+\item{NClust}{Number of cluster for running vsclust on (does no influence the calculation of `mm`)}
13
+
14
+\item{Sds}{individual standard deviations, set to 1 if not available}
15
+}
16
+\value{
17
+list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm
18
+}
19
+\description{
20
+This function calculated the values of the fuzzifier from a) the dimensions of the considered data set and b) 
21
+from the individual feature standard deviations.
22
+}
23
+\examples{
24
+# Generate some random data
25
+data <- matrix(rnorm(1:1000), nrow=100)
26
+# Estimate fuzzifiers
27
+fuzz_out <- determine_fuzz(dim(data), 1)
28
+# Run clustering
29
+clres <- vsclust_algorithm(data, centers=10, m=fuzz_out$mm)
30
+}
31
+\references{
32
+Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359.
33
+
34
+Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508.
35
+
36
+Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. PMID: 20880957.
37
+}