... | ... |
@@ -1,5 +1,5 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 |
-% Please edit documentation in R/HelperFuncs.R |
|
2 |
+% Please edit documentation in R/RunClustering.R |
|
3 | 3 |
\name{determine_fuzz} |
4 | 4 |
\alias{determine_fuzz} |
5 | 5 |
\title{Determine individual fuzzifier values} |
... | ... |
@@ -7,32 +7,42 @@ |
7 | 7 |
determine_fuzz(dims, NClust, Sds = 1) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{dims}{vector of two integers containing the dimensions of the data matrix for the clustering} |
|
10 |
+\item{dims}{vector of two integers containing the dimensions of the data |
|
11 |
+matrix for the clustering} |
|
11 | 12 |
|
12 |
-\item{NClust}{Number of cluster for running vsclust on (does no influence the calculation of `mm`)} |
|
13 |
+\item{NClust}{Number of cluster for running vsclust on (does no influence the |
|
14 |
+calculation of `mm`)} |
|
13 | 15 |
|
14 | 16 |
\item{Sds}{individual standard deviations, set to 1 if not available} |
15 | 17 |
} |
16 | 18 |
\value{ |
17 |
-list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm |
|
19 |
+list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm |
|
20 |
+clustering when not using vsclust algorithm |
|
18 | 21 |
} |
19 | 22 |
\description{ |
20 |
-This function calculated the values of the fuzzifier from a) the dimensions |
|
21 |
-of the considered data set and b) |
|
23 |
+This function calculated the values of the fuzzifier from a) the dimensions |
|
24 |
+of the considered data set and b) |
|
22 | 25 |
from the individual feature standard deviations. |
23 | 26 |
} |
24 | 27 |
\examples{ |
25 | 28 |
# Generate some random data |
26 |
-data <- matrix(rnorm(1:1000), nrow=100) |
|
29 |
+data <- matrix(rnorm(seq_len(1000)), nrow=100) |
|
27 | 30 |
# Estimate fuzzifiers |
28 | 31 |
fuzz_out <- determine_fuzz(dim(data), 1) |
29 | 32 |
# Run clustering |
30 | 33 |
clres <- vsclust_algorithm(data, centers=5, m=fuzz_out$mm) |
31 | 34 |
} |
32 | 35 |
\references{ |
33 |
-Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359. |
|
36 |
+Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering |
|
37 |
+of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: |
|
38 |
+10.1093/bioinformatics/bty224. PMID: 29635359. |
|
34 | 39 |
|
35 |
-Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508. |
|
40 |
+Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and |
|
41 |
+the Quantitative Analysis of Protein Complexes. Methods Mol Biol. |
|
42 |
+2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508. |
|
36 | 43 |
|
37 |
-Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. PMID: 20880957. |
|
44 |
+Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters |
|
45 |
+for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15; |
|
46 |
+26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. |
|
47 |
+PMID: 20880957. |
|
38 | 48 |
} |
... | ... |
@@ -27,7 +27,7 @@ data <- matrix(rnorm(1:1000), nrow=100) |
27 | 27 |
# Estimate fuzzifiers |
28 | 28 |
fuzz_out <- determine_fuzz(dim(data), 1) |
29 | 29 |
# Run clustering |
30 |
-clres <- vsclust_algorithm(data, centers=10, m=fuzz_out$mm) |
|
30 |
+clres <- vsclust_algorithm(data, centers=5, m=fuzz_out$mm) |
|
31 | 31 |
} |
32 | 32 |
\references{ |
33 | 33 |
Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359. |
... | ... |
@@ -17,7 +17,8 @@ determine_fuzz(dims, NClust, Sds = 1) |
17 | 17 |
list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm |
18 | 18 |
} |
19 | 19 |
\description{ |
20 |
-This function calculated the values of the fuzzifier from a) the dimensions of the considered data set and b) |
|
20 |
+This function calculated the values of the fuzzifier from a) the dimensions |
|
21 |
+of the considered data set and b) |
|
21 | 22 |
from the individual feature standard deviations. |
22 | 23 |
} |
23 | 24 |
\examples{ |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,37 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/HelperFuncs.R |
|
3 |
+\name{determine_fuzz} |
|
4 |
+\alias{determine_fuzz} |
|
5 |
+\title{Determine individual fuzzifier values} |
|
6 |
+\usage{ |
|
7 |
+determine_fuzz(dims, NClust, Sds = 1) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{dims}{vector of two integers containing the dimensions of the data matrix for the clustering} |
|
11 |
+ |
|
12 |
+\item{NClust}{Number of cluster for running vsclust on (does no influence the calculation of `mm`)} |
|
13 |
+ |
|
14 |
+\item{Sds}{individual standard deviations, set to 1 if not available} |
|
15 |
+} |
|
16 |
+\value{ |
|
17 |
+list of `m`: individual fuzzifiers, `mm`: standard fuzzifier for fcm clustering when not using vsclust algorithm |
|
18 |
+} |
|
19 |
+\description{ |
|
20 |
+This function calculated the values of the fuzzifier from a) the dimensions of the considered data set and b) |
|
21 |
+from the individual feature standard deviations. |
|
22 |
+} |
|
23 |
+\examples{ |
|
24 |
+# Generate some random data |
|
25 |
+data <- matrix(rnorm(1:1000), nrow=100) |
|
26 |
+# Estimate fuzzifiers |
|
27 |
+fuzz_out <- determine_fuzz(dim(data), 1) |
|
28 |
+# Run clustering |
|
29 |
+clres <- vsclust_algorithm(data, centers=10, m=fuzz_out$mm) |
|
30 |
+} |
|
31 |
+\references{ |
|
32 |
+Schwaemmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics. 2018 Sep 1;34(17):2965-2972. doi: 10.1093/bioinformatics/bty224. PMID: 29635359. |
|
33 |
+ |
|
34 |
+Schwaemmle V, Hagensen CE. A Tutorial for Variance-Sensitive Clustering and the Quantitative Analysis of Protein Complexes. Methods Mol Biol. 2021;2228:433-451. doi: 10.1007/978-1-0716-1024-4_30. PMID: 33950508. |
|
35 |
+ |
|
36 |
+Schwaemmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics. 2010 Nov 15;26(22):2841-8. doi: 10.1093/bioinformatics/btq534. Epub 2010 Sep 29. PMID: 20880957. |
|
37 |
+} |