Browse code

fixes of all kinds for passing checks

veitveit authored on 13/11/2024 19:53:08
Showing 1 changed files
... ...
@@ -9,6 +9,7 @@ runClustWrapper(
9 9
   NClust,
10 10
   proteins = NULL,
11 11
   VSClust = TRUE,
12
+  scaling = "standardize",
12 13
   cores,
13 14
   verbose = FALSE
14 15
 )
... ...
@@ -24,6 +25,9 @@ to be added to the results}
24 25
 \item{VSClust}{boolean. TRUE for running the variance-sensitive clustering.
25 26
 Otherwise, the function will call standard fuzzy c-means clustering}
26 27
 
28
+\item{scaling}{Either `standardize` (default), `center` or `none`. Standardized 
29
+features get mean 0 and standard deviation 1. Centered samples get mean 0.}
30
+
27 31
 \item{cores}{Number of threads for the parallelization}
28 32
 
29 33
 \item{verbose}{Show more information during execution}
Browse code

speedup of algorithm

veitveit authored on 26/01/2023 08:06:40
Showing 1 changed files
... ...
@@ -4,7 +4,14 @@
4 4
 \alias{runClustWrapper}
5 5
 \title{Wrapper for running cluster analysis}
6 6
 \usage{
7
-runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores)
7
+runClustWrapper(
8
+  dat,
9
+  NClust,
10
+  proteins = NULL,
11
+  VSClust = TRUE,
12
+  cores,
13
+  verbose = FALSE
14
+)
8 15
 }
9 16
 \arguments{
10 17
 \item{dat}{matrix or data frame with feature values for different conditions}
... ...
@@ -18,6 +25,8 @@ to be added to the results}
18 25
 Otherwise, the function will call standard fuzzy c-means clustering}
19 26
 
20 27
 \item{cores}{Number of threads for the parallelization}
28
+
29
+\item{verbose}{Show more information during execution}
21 30
 }
22 31
 \value{
23 32
 list with the items `dat`(the original data), `Bestcl` clustering
Browse code

added now function for biocondcutor and many fixes

Veit Schwammle authored on 23/09/2022 11:37:56
Showing 1 changed files
... ...
@@ -1,5 +1,5 @@
1 1
 % Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/HelperFuncs.R
2
+% Please edit documentation in R/WrapperFuncs.R
3 3
 \name{runClustWrapper}
4 4
 \alias{runClustWrapper}
5 5
 \title{Wrapper for running cluster analysis}
... ...
@@ -11,21 +11,27 @@ runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores)
11 11
 
12 12
 \item{NClust}{Number of cluster for running the clustering}
13 13
 
14
-\item{proteins}{vector with additional feature information (default is NULL) to be added to the results}
14
+\item{proteins}{vector with additional feature information (default is NULL)
15
+to be added to the results}
15 16
 
16
-\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. Otherwise, the function will call standard fuzzy c-means clustering}
17
+\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering.
18
+Otherwise, the function will call standard fuzzy c-means clustering}
17 19
 
18 20
 \item{cores}{Number of threads for the parallelization}
19 21
 }
20 22
 \value{
21
-list with the items `dat`(the original data), `Bestcl` clustering results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots), `outFileClust`(suitable matrix with complete information) , `ClustInd` (information about being member of any cluster, feature needs on membership values > 0.5)
23
+list with the items `dat`(the original data), `Bestcl` clustering
24
+results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots),
25
+`outFileClust`(suitable matrix with complete information) , `ClustInd`
26
+(information about being member of any cluster, feature needs on membership
27
+values > 0.5)
22 28
 }
23 29
 \description{
24 30
 This function runs the clustering and visualizes the results.
25 31
 }
26 32
 \examples{
27 33
 data(iris)
28
-data <- cbind(iris[,1:4],1)
34
+data <- cbind(iris[,seq_len(4)],1)
29 35
 clust_out <- runClustWrapper(data, NClust=3, cores=1)
30 36
 clust_out$p
31 37
 }
Browse code

ready for bioconductor

veitveit authored on 18/07/2022 11:59:30
Showing 1 changed files
... ...
@@ -4,7 +4,7 @@
4 4
 \alias{runClustWrapper}
5 5
 \title{Wrapper for running cluster analysis}
6 6
 \usage{
7
-runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores)
7
+runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores)
8 8
 }
9 9
 \arguments{
10 10
 \item{dat}{matrix or data frame with feature values for different conditions}
Browse code

progressing

veitveit authored on 17/07/2022 08:25:08
Showing 1 changed files
... ...
@@ -2,10 +2,30 @@
2 2
 % Please edit documentation in R/HelperFuncs.R
3 3
 \name{runClustWrapper}
4 4
 \alias{runClustWrapper}
5
-\title{Wrapper for clustering}
5
+\title{Wrapper for running cluster analysis}
6 6
 \usage{
7 7
 runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores)
8 8
 }
9
+\arguments{
10
+\item{dat}{matrix or data frame with feature values for different conditions}
11
+
12
+\item{NClust}{Number of cluster for running the clustering}
13
+
14
+\item{proteins}{vector with additional feature information (default is NULL) to be added to the results}
15
+
16
+\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. Otherwise, the function will call standard fuzzy c-means clustering}
17
+
18
+\item{cores}{Number of threads for the parallelization}
19
+}
20
+\value{
21
+list with the items `dat`(the original data), `Bestcl` clustering results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots), `outFileClust`(suitable matrix with complete information) , `ClustInd` (information about being member of any cluster, feature needs on membership values > 0.5)
22
+}
9 23
 \description{
10
-Wrapper for clustering
24
+This function runs the clustering and visualizes the results.
25
+}
26
+\examples{
27
+data(iris)
28
+data <- cbind(iris[,1:4],1)
29
+clust_out <- runClustWrapper(data, NClust=3, cores=1)
30
+clust_out$p
11 31
 }
Browse code

now full R package

veitveit authored on 23/03/2022 18:24:24
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,11 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/HelperFuncs.R
3
+\name{runClustWrapper}
4
+\alias{runClustWrapper}
5
+\title{Wrapper for clustering}
6
+\usage{
7
+runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores)
8
+}
9
+\description{
10
+Wrapper for clustering
11
+}