... | ... |
@@ -9,6 +9,7 @@ runClustWrapper( |
9 | 9 |
NClust, |
10 | 10 |
proteins = NULL, |
11 | 11 |
VSClust = TRUE, |
12 |
+ scaling = "standardize", |
|
12 | 13 |
cores, |
13 | 14 |
verbose = FALSE |
14 | 15 |
) |
... | ... |
@@ -24,6 +25,9 @@ to be added to the results} |
24 | 25 |
\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. |
25 | 26 |
Otherwise, the function will call standard fuzzy c-means clustering} |
26 | 27 |
|
28 |
+\item{scaling}{Either `standardize` (default), `center` or `none`. Standardized |
|
29 |
+features get mean 0 and standard deviation 1. Centered samples get mean 0.} |
|
30 |
+ |
|
27 | 31 |
\item{cores}{Number of threads for the parallelization} |
28 | 32 |
|
29 | 33 |
\item{verbose}{Show more information during execution} |
... | ... |
@@ -4,7 +4,14 @@ |
4 | 4 |
\alias{runClustWrapper} |
5 | 5 |
\title{Wrapper for running cluster analysis} |
6 | 6 |
\usage{ |
7 |
-runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores) |
|
7 |
+runClustWrapper( |
|
8 |
+ dat, |
|
9 |
+ NClust, |
|
10 |
+ proteins = NULL, |
|
11 |
+ VSClust = TRUE, |
|
12 |
+ cores, |
|
13 |
+ verbose = FALSE |
|
14 |
+) |
|
8 | 15 |
} |
9 | 16 |
\arguments{ |
10 | 17 |
\item{dat}{matrix or data frame with feature values for different conditions} |
... | ... |
@@ -18,6 +25,8 @@ to be added to the results} |
18 | 25 |
Otherwise, the function will call standard fuzzy c-means clustering} |
19 | 26 |
|
20 | 27 |
\item{cores}{Number of threads for the parallelization} |
28 |
+ |
|
29 |
+\item{verbose}{Show more information during execution} |
|
21 | 30 |
} |
22 | 31 |
\value{ |
23 | 32 |
list with the items `dat`(the original data), `Bestcl` clustering |
... | ... |
@@ -1,5 +1,5 @@ |
1 | 1 |
% Generated by roxygen2: do not edit by hand |
2 |
-% Please edit documentation in R/HelperFuncs.R |
|
2 |
+% Please edit documentation in R/WrapperFuncs.R |
|
3 | 3 |
\name{runClustWrapper} |
4 | 4 |
\alias{runClustWrapper} |
5 | 5 |
\title{Wrapper for running cluster analysis} |
... | ... |
@@ -11,21 +11,27 @@ runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores) |
11 | 11 |
|
12 | 12 |
\item{NClust}{Number of cluster for running the clustering} |
13 | 13 |
|
14 |
-\item{proteins}{vector with additional feature information (default is NULL) to be added to the results} |
|
14 |
+\item{proteins}{vector with additional feature information (default is NULL) |
|
15 |
+to be added to the results} |
|
15 | 16 |
|
16 |
-\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. Otherwise, the function will call standard fuzzy c-means clustering} |
|
17 |
+\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. |
|
18 |
+Otherwise, the function will call standard fuzzy c-means clustering} |
|
17 | 19 |
|
18 | 20 |
\item{cores}{Number of threads for the parallelization} |
19 | 21 |
} |
20 | 22 |
\value{ |
21 |
-list with the items `dat`(the original data), `Bestcl` clustering results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots), `outFileClust`(suitable matrix with complete information) , `ClustInd` (information about being member of any cluster, feature needs on membership values > 0.5) |
|
23 |
+list with the items `dat`(the original data), `Bestcl` clustering |
|
24 |
+results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots), |
|
25 |
+`outFileClust`(suitable matrix with complete information) , `ClustInd` |
|
26 |
+(information about being member of any cluster, feature needs on membership |
|
27 |
+values > 0.5) |
|
22 | 28 |
} |
23 | 29 |
\description{ |
24 | 30 |
This function runs the clustering and visualizes the results. |
25 | 31 |
} |
26 | 32 |
\examples{ |
27 | 33 |
data(iris) |
28 |
-data <- cbind(iris[,1:4],1) |
|
34 |
+data <- cbind(iris[,seq_len(4)],1) |
|
29 | 35 |
clust_out <- runClustWrapper(data, NClust=3, cores=1) |
30 | 36 |
clust_out$p |
31 | 37 |
} |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{runClustWrapper} |
5 | 5 |
\title{Wrapper for running cluster analysis} |
6 | 6 |
\usage{ |
7 |
-runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores) |
|
7 |
+runClustWrapper(dat, NClust, proteins = NULL, VSClust = TRUE, cores) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{dat}{matrix or data frame with feature values for different conditions} |
... | ... |
@@ -2,10 +2,30 @@ |
2 | 2 |
% Please edit documentation in R/HelperFuncs.R |
3 | 3 |
\name{runClustWrapper} |
4 | 4 |
\alias{runClustWrapper} |
5 |
-\title{Wrapper for clustering} |
|
5 |
+\title{Wrapper for running cluster analysis} |
|
6 | 6 |
\usage{ |
7 | 7 |
runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores) |
8 | 8 |
} |
9 |
+\arguments{ |
|
10 |
+\item{dat}{matrix or data frame with feature values for different conditions} |
|
11 |
+ |
|
12 |
+\item{NClust}{Number of cluster for running the clustering} |
|
13 |
+ |
|
14 |
+\item{proteins}{vector with additional feature information (default is NULL) to be added to the results} |
|
15 |
+ |
|
16 |
+\item{VSClust}{boolean. TRUE for running the variance-sensitive clustering. Otherwise, the function will call standard fuzzy c-means clustering} |
|
17 |
+ |
|
18 |
+\item{cores}{Number of threads for the parallelization} |
|
19 |
+} |
|
20 |
+\value{ |
|
21 |
+list with the items `dat`(the original data), `Bestcl` clustering results (same as from vsclust_algorithm), `p` (plot object with mfuzz plots), `outFileClust`(suitable matrix with complete information) , `ClustInd` (information about being member of any cluster, feature needs on membership values > 0.5) |
|
22 |
+} |
|
9 | 23 |
\description{ |
10 |
-Wrapper for clustering |
|
24 |
+This function runs the clustering and visualizes the results. |
|
25 |
+} |
|
26 |
+\examples{ |
|
27 |
+data(iris) |
|
28 |
+data <- cbind(iris[,1:4],1) |
|
29 |
+clust_out <- runClustWrapper(data, NClust=3, cores=1) |
|
30 |
+clust_out$p |
|
11 | 31 |
} |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,11 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/HelperFuncs.R |
|
3 |
+\name{runClustWrapper} |
|
4 |
+\alias{runClustWrapper} |
|
5 |
+\title{Wrapper for clustering} |
|
6 |
+\usage{ |
|
7 |
+runClustWrapper(dat, NClust, proteins = NULL, VSClust = T, cores) |
|
8 |
+} |
|
9 |
+\description{ |
|
10 |
+Wrapper for clustering |
|
11 |
+} |