1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* Unaligned memory access functionality.
Copyright (C) 2000, 2001, 2002 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>, 2000.
This program is Open Source software; you can redistribute it and/or
modify it under the terms of the Open Software License version 1.0 as
published by the Open Source Initiative.
You should have received a copy of the Open Software License along
with this program; if not, you may obtain a copy of the Open Software
License version 1.0 from http://www.opensource.org/licenses/osl.php or
by writing the Open Source Initiative c/o Lawrence Rosen, Esq.,
3001 King Ranch Road, Ukiah, CA 95482. */
#ifndef _MEMORY_ACCESS_H
#define _MEMORY_ACCESS_H 1
#include <byteswap.h>
#include <stdint.h>
/* Number decoding macros. See 7.6 Variable Length Data. */
#define get_uleb128(var, addr) \
do { \
Dwarf_Small __b = *addr++; \
var = __b & 0x7f; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 7; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 14; \
if (__b & 0x80) \
{ \
__b = *addr++; \
var |= (__b & 0x7f) << 21; \
if (__b & 0x80) \
/* Other implementation set VALUE to UINT_MAX in this \
case. So we better do this as well. */ \
var = UINT_MAX; \
} \
} \
} \
} while (0)
/* The signed case is a big more complicated. */
#define get_sleb128(var, addr) \
do { \
Dwarf_Small __b = *addr++; \
int32_t __res = __b & 0x7f; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffffff80; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 7; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffffc000; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 14; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xffe00000; \
} \
else \
{ \
__b = *addr++; \
__res |= (__b & 0x7f) << 21; \
if ((__b & 0x80) == 0) \
{ \
if (__b & 0x40) \
__res |= 0xf0000000; \
} \
else \
/* Other implementation set VALUE to INT_MAX in this \
case. So we better do this as well. */ \
__res = INT_MAX; \
} \
} \
} \
var = __res; \
} while (0)
/* We use simple memory access functions in case the hardware allows it.
The caller has to make sure we don't have alias problems. */
#if ALLOW_UNALIGNED
# define read_2ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_16 (*((uint16_t *) (Addr))) \
: *((uint16_t *) (Addr)))
# define read_2sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int16_t) bswap_16 (*((int16_t *) (Addr))) \
: *((int16_t *) (Addr)))
# define read_4ubyte_unaligned_noncvt(Addr) \
*((uint32_t *) (Addr))
# define read_4ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_32 (*((uint32_t *) (Addr))) \
: *((uint32_t *) (Addr)))
# define read_4sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int32_t) bswap_32 (*((int32_t *) (Addr))) \
: *((int32_t *) (Addr)))
# define read_8ubyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? bswap_64 (*((uint64_t *) (Addr))) \
: *((uint64_t *) (Addr)))
# define read_8sbyte_unaligned(Dbg, Addr) \
((Dbg)->other_byte_order \
? (int64_t) bswap_64 (*((int64_t *) (Addr))) \
: *((int64_t *) (Addr)))
#else
# if __GNUC__
union unaligned
{
void *p;
uint16_t u2;
uint32_t u4;
uint64_t u8;
int16_t s2;
int32_t s4;
int64_t s8;
} __attribute__ ((packed));
static inline uint16_t
read_2ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_16 (up->u2);
return up->u2;
}
static inline int16_t
read_2sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int16_t) bswap_16 (up->u2);
return up->s2;
}
static inline uint32_t
read_4ubyte_unaligned_noncvt (void *p)
{
union unaligned *up = p;
return up->u4;
}
static inline uint32_t
read_4ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_32 (up->u4);
return up->u4;
}
static inline int32_t
read_4sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int32_t) bswap_32 (up->u4);
return up->s4;
}
static inline uint64_t
read_8ubyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return bswap_64 (up->u8);
return up->u8;
}
static inline int64_t
read_8sbyte_unaligned (Dwarf_Debug dbg, void *p)
{
union unaligned *up = p;
if (dbg->other_byte_order)
return (int64_t) bswap_64 (up->u8);
return up->s8;
}
# else
# error "TODO"
# endif
#endif
#endif /* memory-access.h */
|