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Abstract

This chapter highlights the problems that structural methods and SVAR ap-
proaches have when estimating DSGE models and examining their ability to cap-
ture important features of the data. We show that structural methods are subject
to severe identification problems due, in large part, to the nature of DSGE models.
The problems can be patched up in a number of ways but solved only if DSGEs
are completely reparametrized or respecified. The potential misspecification of
the structural relationships give Bayesian methods an hedge over classical ones in
structural estimation. SVAR approaches may face invertibility problems but simple
diagnostics can help to detect and remedy these problems. A pragmatic empirical
approach ought to use the flexibility of SVARs against potential misspecification
of the structural relationships but must firmly tie SVARs to the class of DSGE
models which could have have generated the data.
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1 Introduction

The 1990’s have witnessed a remarkable development in the specification of stochas-

tic general equilibrium models. The literature has added considerable realism to the

popular workhorses of the 1980’s; a number of shocks and frictions have been intro-

duced into first generation RBC models driven by a single technological disturbance;

and our understanding of the propagation mechanism of structural shocks has been

considerably enhanced. Steps forward have also been made in comparing the quality

of the models’ approximation to the data. While a few years ago it was standard to

calibrate the parameters of a model and informally evaluate the quality of its fit to the

data, now full information likelihood-based estimation of the structural parameters has

become common practice (see e.g. Smets and Wouters (2003), Ireland (2004), Canova

(2004), Rubio and Rabanal (2005), Gali and Rabanal (2005)) and new techniques have

been introduced for model evaluation purposes (see Del Negro et. al. (2006)). Given

the complexities involved in estimating stochastic general equilibrium models and the

difficulties in designing criteria which are informative about their discrepancy with the

data, a portion of the literature has also considered less demanding limited information

methods and focused on whether a model matches the data only along certain dimen-

sions. For example, following Rotemberg and Woodford (1997), Christiano, et. al.

(2005), it is now common to estimate structural parameters by quantitatively match-

ing the conditional dynamics in response to certain structural shocks. Regardless of

the approach a researcher selects, the stochastic general equilibrium model one uses to

restrict the data is taken very seriously: in both estimation and testing, it is in fact

implicitly assumed that the model is the DGP of the actual data, up to a set of seri-

ally uncorrelated measurement errors. Despite the above mentioned progress, such an

assumption is probably still heroic to be credibly entertained. As a consequence, esti-

mates of the parameters may reflect this primitive misspecification and, as the sample

size grows, parameter estimates need not converge to those of the true DGP.

The 1990s have also witnessed an extraordinary development of VAR techniques:

from simple reduced form models, VARs have evolved into tools to analyze questions of

interest to academics and policymakers. Structural VARs have enjoyed an increasing

success in the profession for two reasons: they are easy to estimate and the computa-

tional complexities are of infinitesimal order relative to those of structural techniques;

structural inference can be performed without conditioning on a single, and possibly
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misspecified, model. Clearly, there is no free lunch and robustness against misspecifi-

cation comes at the cost of limiting the type of policy exercises one can entertain. One

additional advantage of structural VARs needs to be mentioned. While techniques to

deal with parameter variations are sufficiently well developed in this literature (see e.g.

Cogley and Sargent (2005), Primiceri (2005) or Canova and Gambetti (2007)), they

are still at an infant stage when it comes to structurally estimating time variations in

the parameters of a stochastic general equilibrium model (see Justiniano and Primiceri

(2006) or Fernandez Villaverde and Rubio Ramirez (2007)).

When addressing an empirical problem with a finite amount of data, one has there-

fore to take a stand on how much theory she wants to use to structure the available data

prior to estimation. If the former approach is taken (which we will call ”structural”

for simplicity), model based estimation can be performed but inference is valid only

to the extent that the model correctly represents the DGP of the data. If the latter

approach is taken (which we call ”SVAR” for simplicity), one can work with a class of

structural models, use implications which are common to the members of this class to

identify shocks and trace out their effects on the endogenous variables of the system

but can not say much about, e.g. preference or production function parameters, nor

conduct certain policy exercises which involve changes in expectation formation. The

choice between the two alternatives is easy in two extreme and unlikely situations: the

stochastic models one writes down is in fact the DGP of the actual data; the mapping

from structural models to reduced form ones is univocal. Under these two conditions,

direct (structural) or indirect (SVAR) estimation will give similar answers to a set of

core questions investigators like to study (transmission of certain disturbances, effects

of shocks to certain policy rules, etc.) and for these questions, accuracy and computa-

tional time become the most important factors that determine the choice of technique.

Unfortunately, the reality is far from the ideal and both approaches have impor-

tant shortcomings. Current dynamic stochastic general equilibrium (DSGE) models,

even in the large scale versions that are now used in central banks and international

institutions, are still too simple to capture the complexities of the macrodata. In addi-

tion, because they are highly non-linear in the structural parameters and the mapping

between structural parameters and the coefficients of the aggregate decision rules is

analytically unknown - the exact mapping is known only in a few but uninteresting

cases - the identification of the structural parameters from the data is far from clear.

Structural VAR estimation also faces identification problems. Identification restrictions
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researchers use are often conventional, have little economic content, and are not derived

from any class of models that macroeconomists use to interpret the results. Further-

more, there are DSGE models which do not admit a finite order VAR representation

and others which can not be recovered when the Wold decomposition is used to setup

a VAR. Omitted variables may play an important role in SVAR results and the use of

small scale systems may distort the conclusions one draws from the exercise. In both

cases, small samples, or samples which contain different regimes, may further compli-

cate the inferential problem. All in all, the issues of misspecification, of identification,

of low signal to noise ratio, of invertibility, of omitted variables and reduced number of

shocks, and last but not least, small samples, should always be in the back of the mind

of an investigator who is interested in studying an applied problem and/or suggest

policy recommendations from her analysis.

The scope of this chapter is to highlight the problems one faces when using either

of the two methodologies to conduct policy analyses, to address questions concerning

the validity of models and their ability to capture features of the data, and, in general,

empirical issues of interest to academics and to policymakers. In particular, we discuss

identification problems and problems connected with the potential non-representability

of the aggregate decision rules with VARs. The problems we describe do not have a

solution yet and standard approaches to deal with them may make the problems worse.

We provide a list of ”do and don’t” which applied investigators may want to keep in

mind in their work and outline a methodology, combining ideas from both types of

approaches, which can potentially avoid some of the problems we discuss and allow

useful inference on interesting economic questions. Nevertheless, it should be clearly

that asking too much from a model is equivalent to asking for trouble. One should use

theory as a flexible mechanism to organize the data and avoid questions that the data,

the nature of the model, or the estimation approach employed can not answer.

2 DSGE models

DSGE models are consistent theoretical laboratories where the preferences and the ob-

jective functions of the agents are fully specified, the general equilibrium interactions are

taken good care, the stochastic structure of the driving forces exactly defined, the ex-

pectations of the agents consistently treated and the equilibrium of the economy clearly

spelled out. The economic decisions of the agents are derived under the assumption
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that they maximize their objectives in a rational, forward looking manner. Individ-

ual optimality conditions are highly non-linear functions of the parameters of agents’

objective functions and constraints and of the variables which are predetermined and

exogenous to their actions. Given the complicated nature of these conditions, explicit

decision rules, expressing the choice variables as a function of the predetermined and

exogenous variables and the parameters, are not generally available in a closed form.

Hence, it is typical to use numerical procedures to approximate these functions, either

locally or globally. The solutions to the individual problem are then aggregated into

total demand and supply curves, the equilibrium for the economy is computed and

perturbations produced by selected disturbances are analyzed to understand both the

mechanics and the timing of the adjustments back to the original equilibrium.

Under regularity conditions, we know that a solution to agents’ optimization prob-

lems exists and is unique. Hence, one typically guesses the form of the solution, uses

a particular functional form to approximate the guess and calculates the coefficients of

the approximating function which, given the stationarity of the problem, must be the

same for every t. For most situations of interest, (log-)linear or second order approx-

imations, computed around a carefully selected pivotal point, suffice. The optimality

conditions of agent’s problems in (log)-linearized deviation from the steady state are

0 = Et[A(θ)xt+1 +B(θ)xt +C(θ)xt−1 +D(θ)zt+1 + F (θ)zt] (1)

0 = zt+1 −G(θ)zt − et (2)

where θ is a vector which includes the parameters of preferences, technologies, and poli-

cies; A(θ), B(θ), C(θ), D(θ), F (θ) are continuous and differentiable functions of θ, xt are

the endogenous variables of the model, and zt the uncontrollable driving forces, which

are typically assumed to follow an AR(1) with possibly contemporaneously correlated

errors. These approximate individual optimality conditions are numerically solved to

produce individual decisions rules which can be equivalently written in a restricted

state space format,

x1t = J(θ)x1t−1 +K(θ)et

x2t = G(θ)x1t (3)

where x1t are the predetermined and exogenous variables and x2t are the choice variables

of the agents, or in a restricted VAR format

A0(θ)xt = H1(θ)xt−1 +H2(θ)Et (4)
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where A0(θ) =
∙
I 0
I −G(θ)

¸
H1(θ) =

∙
J(θ) 0
0 0

¸
H2(θ) =

∙
K(θ) 0
0 0

¸
Et =

∙
et
0

¸
.

The solution of a log-linearized DSGE model has therefore the same format as

well known time series models and this makes it particularly attractive to applied

macroeconomists with some time series background. However, several unique features

of the individual decision rules produced by DSGE models need to be noted. First,

(3)-(4) are non-linear in the structural parameters θ, and it is θ and not J , K or G, that

a researcher is typically interested in. Second, the decision rules feature cross equation

restrictions, in the sense the θi, i = 1, 2, . . . may appear in several of the elements of the

matrices J , K and G. Third, the number of structural shocks is typically smaller than

the number of endogenous variables the model generates. This implies singularities in

the covariance of the xt’s, which are unlikely to hold in the data. Finally, H1 and H2

are of reduced rank. Note that if A0 is invertible (4) can be transformed into

xt =M1(θ)xt−1 + vt (5)

where M1(θ) = A0(θ)
−1H1(θ), vt = A0(θ)

−1H2(θ)Et and a (reduced form) VAR repre-

sentation for the theoretical model could be derived. As we will see, the non-linearity

in the mapping between the θ and the J,K,G makes identification and estimation dif-

ficult, even when cross equation restrictions are present. System singularity, on the

other hand, is typically avoided by adding measurement errors to the decision rules or

by considering only the implications of the model for a restricted number of variables -

in this case the number of variables is equal to the number of exogenous variables. Fi-

nally, rank failures are generally avoided integrating variables out of (4) and obtaining

a new representation featuring invertible matrices. As we will see, such an integra-

tion exercise is not harmless. In fact, this reduction process will in general produce a

VARMA representation for the individual decision rules of the DSGE model. Hence,

aggregate decision rules may not be always representable with a finite order VAR.

Given the linearity of (3) or (4) in the predeterminate and exogenous variables,

aggregate decision rules will also be linear in predetermined and exogenous variables.

Therefore, given values for the θ vector, time series can be easily simulated, responses

to exogenous impulses calculated and sources of business cycle fluctuations examined.

How does one select the θ vector used in simulation exercises? Until a few years

ago, it was common to calibrate θ so that selected statistics of the actual and simulated

data were close to each other. This informal selection process was justified by the fact

that DSGE models were too simple and stylized to be faced with rigorous statistical
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estimation. In recent years the complexity of models has increased; a number of frictions

have been introduced on the real, the monetary and, at times, the financial side of the

economy; a larger number of disturbances has been considered and a number of more

realistic features added. Therefore, it has become more common to attempt structural

estimation of the θ using limited information approaches, such as impulse response

matching exercises, or full information ones, such as likelihood based methods.

A clear precondition for any structural estimation approach to be successful is that

the parameters of interest are identifiable from the chosen objective function. In the

next subsection we discuss why parameter identifiability may be hard to obtain in the

context of DSGE models and why, perhaps, calibration was originally preferred by

DSGE modelers.

2.1 Identification

Identification problems can emerge in three distinct situations. First, a model may face

identification problems in population, that is, the mapping between the structural para-

meters and the parameters of the aggregate equilibrium decision rule is ill-conditioned.

We call this phenomena ”solution identification” problem. Since the objective functions

is typically a deterministic transformation of either (3) or (4), failure to identify the θ

from the entries of the aggregated versions of J(θ), K(θ), G(θ) matrices (or from the

aggregate versions of A0(θ),H1(θ),H2(θ) matrices) is sufficient for having population

identification problems for all possible choices of objective functions.

Second, it could be that identification pathologies emerge because the selected ob-

jective function neglects important model information - for example, the steady states

or the variance-covariance matrix of the shocks. In other words, one can conceive

situations where all the structural parameters are identifiable if the whole model is

considered, but some of them can not be recovered from, say, a subset of the equations

of the model or a subset of the responses to shocks. We call this phenomenon ”limited

information identification” problem. A trivial example of why this may happen is the

following. Suppose you have two variables, say output and inflation, and two shocks, say

technology and monetary shocks. Obviously, the responses to technology shocks carry

little information for the autoregressive parameter of the monetary shock. Hence, this

parameter is unlikely to be identified from the dynamics induced by technology shocks.

It should also be clear that limited information and solution identification problems are

independent of each other and therefore may appear in isolation or jointly.
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Finally, difficulties in identifying parameters may be the result of small samples.

That is to say, even if the mapping between the structural parameters and the parame-

ters of the aggregate decision rules is well behaved and even if the objective function

considers all the implications of the model, it may be difficult to recover structural para-

meters because the sample does not contain enough information to invert the mapping

from the J(θ), K(θ), and G(θ) or from the objective function to the θ. To understand

why this problem may emerge, consider the likelihood function of one parameter, for

a given data set. It is well known that, as the sample size increases, the shape of the

likelihood function changes becoming more sharply peaked around the mode. There-

fore, when the sample is small, the likelihood function may feature large flat areas in

a relevant portion of the parameter space and this may make it difficult to infer the

parameter vector which may have been generating the data.

Econometricians have been long concerned with identification problems (see e.g.

Liu (1960) or Sims (1980) among others). When models are linear in the parameters,

and no expectations are involved, it is relatively straightforward to check whether the

first two types of problems are present: it is sufficient to use rank and order conditions

and stare at the mapping between structural parameters and the aggregate decision

rules. It is also easy to measure the extent of small sample issues - the size of the

estimated standard errors or an ill-conditioned matrix of second order derivatives of

the objective function evaluated at parameter estimates give us an indication of the

importance of this problem. For DSGE models none of these diagnostic can really be

used. Since the mapping between the θ and the parameters of (3) or (4) is non-linear,

traditional rank and order conditions do not apply. Furthermore, the size of estimated

standard errors is insufficient to inform us about identification problems.

If identification problems are detected what can one do? While for the first type of

problems there is very little to be done, except going back to the drawing board and

respecifying or reparametrizing the model, the latter two problems could in principle

be alleviated by specifying a full information objective function and by adding external

information. If one insists in using a limited information criteria, one then needs

to experiment with the subset of the model’s implications to be used in estimation.

Such experimentation is far from straightforward because economic theory offers little

guidance in the search, and because certain variables produced by the model are non-

observable (e.g. effort) or non-measurable (e.g. capital) by the applied researcher.

Information from external sources may not be always available; it may be plagued by
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measurement errors or be not very informative about the parameters of interest (see

Boivin and Giannoni (2005)).

DSGE models face a large number of population identification problems. Canova

and Sala (2005) provide an exhaustive list of potentially interesting pathologies. To

summarize their taxonomy: a number of DSGE models, with potentially different eco-

nomic implications, may be observationally equivalent in the sense that the aggregate

decision rules they produce will be indistinguishable; they may be subject to under or

partial identification of their parameters, i.e. a set of parameters may disappear from

the aggregate decision rules or enter only in a particular functional form; and they

may face weak identification problems - the mapping between structural parameters

and the coefficients of the aggregate decision rules may display little curvature or be

asymmetric in some direction. All these problems could occur locally or globally in the

parameter space. However, given the common practice of obtaining estimates using

optimization routines which constrain the search of the maximum to an interval, we

will consider only local problems in what follows. Also, while the econometric literature

has often considered the latter as a small sample problem, weak identification problems

easily occur in population. In other words, while it is generally true that when the

sample size is small, the curvature of the mapping may not be sufficient to recover

the underlying vector of structural parameters from the coefficients of the aggregate

decision rules, there is nothing that ensures that such a mapping in DSGE models will

be better behaved with an infinitely large sample.

Next, we present two examples which show the pervasiveness of population identifi-

cation problems in standard DSGE models used. While the models are of small scale, it

should be remembered that most of the larger scale DSGE models used in the literature

feature the equations of these models as building blocks. Therefore, the problem we

highlight are likely to emerge also in more complex setups.

2.1.1 Example 1: Observational equivalence

Consider the following three equations:

yt =
1

λ2 + λ1
Etyt+1 +

λ1λ2
λ1 + λ2

yt−1 + vt (6)

yt = λ1yt−1 + wt (7)

yt =
1

λ1
Etyt+1 where yt+1 = Etyt+1 + et (8)
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where λ2 ≥ 1 ≥ λ1 ≥ 0 and vt, wt and et are iid processes with zero mean and

variance σ2v, σ
2
w, σ

2
e respectively. It is well known that the unique stable rational

expectations solution of (6) is yt = λ1yt−1 +
λ2+λ1
λ2

vt and that the stable solution of

(8) is yt = λ1yt−1 + et. Therefore, if σw = σe =
λ2+λ1
λ2

σv , a unitary impulse in the

three innovations will produce the same responses for yt+j, j = 0, 1, . . ., in the three

equations and these are given by [λ2+λ1λ2
, λ1

λ2+λ1
λ2

, λ21
λ2+λ1
λ2

, ...].

What makes the three processes equivalent in terms of impulse responses? Clearly,

the unstable root λ2 in (6) enters the solution only contemporaneously. Since the

variance of the shocks is not estimable from normalized impulse responses (any value

simply implies a proportional increase in all the elements of the impulse response func-

tion), it becomes a free parameter which we can arbitrarily select to capture the effects

of the unstable root. Turning things around, the dynamics produced by normalized

impulses to these three processes will be observationally equivalent because λ2 is left

underidentified in the exercise.

While equations (6)-(8) are stylized, it should be kept in mind that many refinements

of currently used DSGE models add some backward looking component to a standard

forward looking one, and that the current Great Moderation debate in the US hinges

on the existence of determinate vs. sunspot solutions (see e.g. Lubik and Schorfheide

(2004)). What this example suggests is that these features may be indistinguishable

when one just looks at normalized impulse responses.

How can one avoid observationally equivalence? Clearly, part of the problem

emerges because normalized impulse responses carry no information for the unstable

root λ2. However, the variance of the shocks does have this information and e.g. the

likelihood function of the first process will be different from those of the other two.

Hence, adding information could help limit the extent of observationally equivalence

problems. In the case one is not willing or can not use this information and only

employs the dynamics in response to normalized shocks to recover structural parame-

ters, information external to the models needs to be brought in to disentangle various

structural representations (as it is done e.g. in Boivin and Giannoni (2006)).

2.2 Example 2: Identification problems in a NK model

Throughout this subsection we assume that the investigator knows the correct model

and the restrictions needed to identify the shocks. Initially, we assume that she chooses

as objective function to be minimized the distance between the responses in the model
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and in the data. Later on, we examine how identification is affected when additional

information is brought into estimation process.

We consider a well known small scale New-Keynesian model, which has become

the workhorse in academic and policy discussions, and constitutes the building block

of larger scale models currently estimated in the literature. Several authors, including

Ma (2002), Beyer and Farmer (2004), Nason and Smith (2005) and Canova and Sala

(2005) have pointed out that such a structure is liable to identification problems. Here

we discuss where and how these problems emerge.

The log-linearized version of the model consists of the following three equations:

yt =
h

1 + h
yt−1 +

1

1 + h
Etyt+1 +

1

φ
(it − Etπt+1) + v1t (9)

πt =
ω

1 + ωβ
πt−1 +

β

1 + ωβ
Etπt+1 +

(φ+ ν)(1− ζβ)(1− ζ)

(1 + ωβ)ζ
yt + v2t (10)

it = λrit−1 + (1− λr)(λππt−1 + λyyt−1) + v3t (11)

where h is the degree of habit persistence, φ the relative risk aversion coefficient, β is

the discount factor, ω the degree of price indexation, ζ the degree of price stickiness, ν

the inverse elasticity of labor supply while λr, λπ, λy are monetary policy parameters.

The first two shocks follow an AR(1) process with parameters ρ1, ρ2, while v3t is iid.

The variances of the shocks are denoted by σ2i , i = 1, 2, 3. For the sake of presentation,

we assume that the shocks are contemporaneously uncorrelated even though, in theory,

some correlation must be allowed for.

Since the model features three shocks and three endogenous variables, we can con-

struct several limited information objective functions, obtained considering the dis-

tances of all the responses to only one type of shock, the distance of the responses of a

subset of the endogenous variables to all shocks, and the distance of the responses of

all variables to all shocks.

The model has 14 parameters: θ1 = (σ21, σ
2
2, σ

2
3) are under-identified from scaled

impulse responses, just as in the previous example, θ2 = (ν, ζ) can not be separately

identified - they enter only in the slope of the Phillips curve and in a multiplicative

fashion, while θ3 = (β, φ, h, ω, λr, λπ, λy, ρ1, ρ2) are the parameters of interest.

To construct aggregate decisions rules numerically, we set β = 0.985, φ = 2.0, ν =

1.0, ζ = 0.68, ω = 0.75, h = 0.85, λr = 0.2, λπ = 1.55, λy = 1.1, ρ1 = 0.65, ρ2 = 0.65.

With the aggregate decision rules we compute population responses and use twenty

equally weighted responses to construct the distance function. We explore the shape
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of the distance function in the neighborhood of this parameter vector, by tracing out

how it changes when we change either one or two parameters belonging to θ3 at the

time, keeping the others fixed at the chosen value. As we have mentioned, identification

problems could be due to solution or objective function pathologies. Here we convolute

the two mappings, and directly examine how the shape of the objective function varies

with θ, because the graphical presentation of these separate mappings is cumbersome.

Figure 1 plots the shape of the distance function when we vary β, φ, ω, h. Column

1 presents the distance function obtained using the responses of all three variables

to monetary shocks, column 2 the distance function obtained using the responses of

inflation to all shocks, column 3 the distance function obtained using the responses of

all variables to all the shocks. The range for the parameters considered is on the x-axis

while the height of the distance function for each parameter value is on the y-axis.
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Figure 1: Shape of the distance function

It is easy to see that monetary shocks have hard time to identify the four structural

parameters over the chosen intervals (the distance function is extremely flat in each of

the parameters), that considering the responses of inflation to all shocks still leaves the

coefficient of relative risk aversion pretty much underidentified, and that considering

all the responses to all the shocks makes the distance function much better behaved.

Still, asymmetries in the mapping between the risk aversion coefficient and the distance
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function remain even in this latter specification. Hence, taking a limited information

approach, either in the sense of considering the responses of all variables to one shock

or of one variable to all shock, is problematic from an identification point of view.

One may wonder if this behavior is due to the choice of the parameters around

which we map the distance function. The answer is negative. Canova and Sala (2005)

construct a concentration statistics, defined as Cθ0(i) =
R
j 6=i

g(θ)−g(θ0)dθ
(θ−θ0)dθ , i = 1, . . . , 9,

where g represents the distance function and θ0 the pivot point, and let θ0 vary over

a reasonable range. Such a statistic synthetically measures how the multidimensional

slope of the distance function change around the selected parameter vector (see Stock,

Wight and Yogo (2002)). Canova and Sala show that the minimum and maximum of

this statistics in the range of θ0 they consider varies very little, suggesting that the

problems present in figure 1 are not specific to the selected parameter vectors.
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Figure 2: Distance Function and Contour Plots

Since Figure 1 considers one dimension at the time, partial identification problems,

where only combinations of parameters are identifiable, can not be detected. Figure 2

shows that indeed ridges exist: for example, responses to monetary shocks carry little

information about the correct combination of λy and λπ ; IS shocks can not separately

identify the risk aversion coefficient φ and the habit persistence parameter h, while
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Phillips curve shocks have little information about the discount factor β. What is

interesting is that when the responses to all shocks are considered, some problems are

reduced. For example, there appear to be less difficulties in identifying the parameters of

the policy rule when all the responses to all shocks are considered - the distance function

is more bell shaped even though there is a significantly large flat area. However, even

in this case, the true values of β, φ and h are difficult to pin down.

This model, in addition to partial, weak and under-identification problems faces

generic observational equivalence problems. For example, it would be hard to detect

whether the data is generated by an indeterminate version of the model (which would

be the case if λπ < 1) or an determinate one (λπ > 1) so long as the other parameters

are allowed to be adjusted. The figure below, which is reproduced from Canova and

Gambetti (2007), shows that the shape and, in many cases, the size of the responses

at almost all horizons to the three shocks are similar in the two regimes. Hence, if this

were the only information available to the investigator, it would be difficult to detect

which regime has generated the data.
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Figure 3: Impulse responses: determinate vs indeterminate equilibrium

This latter problem is a special case of a general pathology that applied investigators
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often face when dealing with DSGE models: the objective functions that one constructs

from the aggregate decision rules may display multiple peaks, which may be clearly

separated (as is the case in the above example, see also Lubik and Schorfheide (2004)))

or not (see the example discussed in section 5 of Canova and Sala (2005)). Observation

equivalence, probably more than any other identification problem, prevents to attach

any meaningful economic interpretation to the outcomes of the estimation process and,

obviously, to conduct any meaningful policy analysis with the estimated model.

What generates the identification problems we have detected? All the nonlinear

transformations, which are necessary to go from the structural parameters to the dis-

tance function, contribute. For example, consider the case of the price indexation

parameter ω, which enters nonlinearly in the model and in several of the coefficients

of the aggregate decision rules, but always in combination with other parameters. The

coefficients of the restricted VAR solution are inverted to compute impulse responses

and their distance from the ”truth” is then squared and summed. One would guess

that it is just by chance that such a complex set of operations will allow the mapping

from ω to the objective function to be well behaved.

The standard answer to the problems shown in figures 1 and 2 is to fix parameters

with difficult identification features (after all it does not matter what value we select)

and estimate the remaining ones. While this approach is common, there is no insurance

that it will give meaningful answers to the questions of interest. In fact, while such

a mixed calibration-estimation approach will be successful, at least in population, if

the parameters which are treated as fixed are set at their true value, setting them

at values which are only slightly different from the true ones, may lead estimation

astray. Intuitively this happens because, for example, setting β to the wrong value

implies adjustments in parameters which enter jointly with β in the coefficients of

the aggregate decision rules and this may move the minimum of the function in a

somewhat unpredictable way. Canova and Sala (2005) show, in the context of a simple

RBC example, that these shifts may be significant and drive inference the wrong way.

What can one then do to conduct structural estimation? The distance function

we have employed can be obtained approximating the likelihood function of the model.

Therefore, the resulting estimators can be thought as quasi-ML estimators of the struc-

tural parameters. However, there is no reason to use such an approximation. Once the

decision rules are written in a state space format, the likelihood function can be eas-

ily and efficiently computed with the Kalman filter. Therefore, identification problems
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could be reduced if information about the covariance matrix of the shocks or the steady

states of the model - which are not used when normalized impulse response matching

is performed - are brought into the estimation. Figure 4, which plots the distance

function when all the shocks are considered and the likelihood function in β and ω,

and φ and h, indeed suggests that these parameters could be better identified from the

likelihood than from the distance function - the curvature of the latter is much larger

than the curvature of the former. Nevertheless, the problem with ridges remains. Since

the likelihood has all the information that the model delivers, one can conclude that

it is the solution mapping, rather than the objective function mapping, that induces

under and partial identification problems in this example.
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Figure 4: Distance function, Likelihood and Posterior plots

It has become quite common lately to estimate the parameters of a DSGE model by

Bayesian methods. Bayesian methods attempt to trace out the shape of the posterior

distribution of the structural parameters, which is proportional to the likelihood times

the prior. The use of prior information could add curvature to the likelihood function

therefore making identification problems apparently disappear. We show how this

can happen in the last column of figure 4. A sufficiently tight prior has given the

posterior a nice bell shape appearance with round contours in (β, ω). Clearly, the use
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of Bayesian methods is not the solution to identification problems we have highlighted in

this subsection - it could however help when identification problems are caused by small

samples. Achieving identification via prior restrictions, does not change the fact that

the likelihood function constructed through the lenses of the aggregate decision rules

of the model, has little information about the structural parameters. In this case the

shape of the posterior distribution will, to a large extent, mimic the shape of the prior so

that structural estimation is nothing more than sophisticated calibration - rather than

calibrating to a point we calibrate to an interval and within the interval we assume that

some parameters values are more likely than others. When population identification

problems exist and a researcher is interested in estimating the structural parameters,

it is necessary to reparametrize the model. If this is unfeasible or undesirable, then

informal calibration is one simple and internally consistent device to make the model

operative for inference and forecasting. The deep issue here is that DSGE models are

not typically designed with an eye to the estimation of its parameters and this is clearly

reflected in the identification problems they display.

Prior information on the parameters of macroeconomic models may come from

different sources. It may be accumulated knowledge about a phenomena repeatedly

studied in the literature (e.g. the properties of the transmission of monetary policy

shocks), evidence obtained from micro studies or from the experience of other countries.

All this information may be valuable to the applied investigator and should be formally

introduced in the structural estimation of the model, if available. However, if the

likelihood has little information about the structural parameters, and this additional

information were the only one available to identify the parameters, structural estimation

will not be particularly useful - it would resemble confirmatory analysis where prior

expectations are verified a-posteriori. In this situation, policy exercises are difficult

to interpret and the alternative of measuring the range of outcomes produced by the

model using a selected range of parameters, as suggested in Canova (1995), is a feasible

and more plausible approach.

What are the consequences of the identification problems we have described? For

the sake of presentation, we will focus on estimates obtained matching responses to

monetary policy shocks, which appear to produce the distance function with the worst

identification properties, and are those on which the literature has paid most of its

attention. In this exercise we still assume that shocks are correctly identified - in our

model reduced form interest rate innovations are the true monetary policy shocks. If
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this were not true, additional problems, as those discussed in e.g. Canova and Pina

(2005), are compounded with those discussed here. We consider different sample sizes

to highlight, on the one hand, some of the properties of the estimates of parameters

with problematic identification features and, on the other, examine whether additional

identification problems may emerge just because of small samples.

We simulate 200 time-series for interest rates, the output gap and inflation for

T = 120, 200, 1000, fixing ν = 1 and σ2i = 1.0 in all cases, we estimate an unrestricted

VAR(2), which is the correct empirical reduced form model to use in this case, compute

impulse responses and bootstrap confidence bands which are then used to build a

diagonal matrix of weights: the weights are inversely proportional to the uncertainty

in the estimates. Table 1 presents a summary of the estimation results. It reports the

true parameters, the mean estimate, the numerical standard errors computed across

replications (in parenthesis) and the percentage bias (in brackets).

Table 1: NK model. Matching monetary policy shocks
True T = 120 T = 200 T=1000

β 0.985 0.984( 0.007 )[ 0.6 ] 0.985 ( 0.007 ) [0.7 ] 0.986 ( 0.008 ) [ 0.7 ]
φ 2.00 2.39 ( 2.81 ) [ 95.2 ] 2.26 ( 2.17 ) [ 70.6] 1.41 ( 1.19 ) [ 48.6 ]
ζ 0.68 0.76 ( 0.14 ) [ 19.3 ] 0.76 ( 0.12 ) [ 17.5] 0.83 ( 0.10 ) [ 23.5 ]
λr 0.2 0.47 ( 0.29 ) [ 172.0 ] 0.43 ( 0.27 ) [152.6 ] 0.41 ( 0.24 ) [ 132.7 ]
λπ 1.55 2.60 ( 1.71 ) [ 98.7 ] 2.22 ( 1.51) [ 78.4 ] 2.18 ( 1.38 ) [ 74.5 ]
λy 1.1 2.82 ( 2.03 ) [ 201.6 ] 2.56 ( 2.01 )[ 176.5 ] 2.16 ( 1.68 ) [ 126.5 ]
ρ1 0.65 0.52 ( 0.20 ) [ 30.4 ] 0.49 ( 0.21 ) [34.3 ] 0.50 ( 0.19 ) [ 31.0 ]
ρ2 0.65 0.49 ( 0.20 ) [ 32.9 ] 0.48 ( 0.21 ) [34.8 ] 0.48 ( 0.21 ) [ 34.7 ]
ω 0.25 0.76 ( 0.39 ) [ 238.9 ] 0.73 ( 0.40 ) [232.3 ] 0.65 ( 0.38 ) [ 198.1 ]
h 0.85 0.79 ( 0.35 ) [ 30.9 ] 0.76 ( 0.37 ) [ 32.4 ] 0.90 ( 0.21 ) [ 21.3 ]

A few features of the table are worth commenting upon. First, biases are evident

in the estimates of the partially identified parameters (λπ , λy), the weakly identified

parameters (ζ, ω, h), and the under-identified parameters (ρ1, ρ2). Note that even

with 250 years of quarterly data major biases remain. Second, numerical standard

errors are large for the partially identified parameters and invariant to sample size for

the under-identified ones. Third, parameter estimates do not converge to population

values as T increases. Finally, and concentrating on T = 200, estimates suggest an

economic behavior which is somewhat different from the one characterizing the DGP.

For example, it appears that price stickiness is stronger and the Central Bank reaction

to the output gap and inflation is equally strong.

In sum, identification problems lead to biased estimates of certain structural pa-

rameters (see also Choi and Phillips (1992)), to inappropriate inference when conven-
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tional asymptotic theory is used to judge the significance of estimated parameters and,

possibly, to wrong economic interpretations. For unconditional forecasting, identifi-

cation problems are unimportant: as long as the fit and the forecasting performance

is the same, the true nature of the DGP does not matter. However, policy analyses

and conditional forecasting exercises conducted with estimated parameters may lead

to conclusions which are very different from those obtained with the true one. Hence,

it is generally unwise to attach any economic interpretation to the estimates or draw

conclusions about how the economy works from structural exercises which are plagued

by identification problems.

What is left to the applied investigator to do? Apart from attempting to repara-

metrize the model, not much. One interesting issue still unexplored in the literature is

to take population identification problems as being the norm rather than the exception

and try to find estimation techniques or objective functions which, given a sample size,

are able to minimize the distortions produced by identification pathologies. While some

progress has been made in the context of moment estimation (see Stock and Wright

(2000) or Rosen (2005)), these procedures are applicable only in restrictive situations

(the weighting matrix must be chosen in a particular way) and are awkward to use in

DSGE models, which are highly parametrized and non-linear.

How does one detect identification problems? The univariate and bivariate ex-

ploratory analysis we have presented e.g. in figures 1 and 2 can definitely help in

spotting potential problems and this analysis could be easily complemented with local

derivatives of the objective function in the dimensions of interest. Alternatively, nu-

merically computing the Hessian of the objective function around particular parameter

values and calculating the size of its eigenvalues can give more formal indications on

how flat or how information deficient the objective function is locally. For example,

if the rank of the Hessian is less than the number of structural parameters, one of its

eigenvalues is zero and at least one parameter is underidentified. If the rank of the

Hessian is close to be deficient, one or more of its eigenvalues are close to zero and

either weak or partial identification problems or both are likely to be present. Exper-

imentation with number of shocks used to construct the objective function and the

number of variables can also give useful information about what statistic may identify

a particular structural parameter, as is the experimentation with different objective

functions and with different features of the data (e.g. steady state vs. dynamics).

Clearly, diagnostics of this type have to be run prior to estimation, but such an
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exercise is not much more complicated or time consuming than the type of exercises

one performs to measure the sensitivity of the results to the selection of calibrated

parameters. In general, the following rules of thumb are useful to limit the extent

of identification problems: given a model, always choose a likelihood based objective

function, which has the highest informational content; given a model and the likelihood

function, and if it is the sample which is problematic, add information in the form of

additional data or prior restrictions, which synthetically reproduces it.

It is important to stress that looking at the minimized value of the objective func-

tion, at standard errors of the estimates or to the resulting impulse responses it is not

generally useful as an ex-post device to detect identification problems. The distance

function is within the tolerance level (10−7) for all the parameter combinations gener-

ating table 1 and the practice of blowing up the objective function, by appropriately

choosing the matrix of weights, will not change the fact that the gradient or the Hessian

display problematic features. Furthermore, it can be shown that population responses

fall within a 68 percent band centered around the estimates of the responses to mon-

etary shocks computed with the parameter estimates, even when the sample size is

T=120. Therefore, the practice of showing that model’s responses computed using the

estimated parameters lie within the confidence bands of the responses estimated from

the data is not particular informative as far as identification problems are concerned.

Large standard errors do emerge when identification failures exist but also when other

problems are present (e.g. very noisy data or regime switches). Hence, univocally

associating large standard error with identification issues is, in general, incorrect.

It is also important to stress that the addition of measurement errors for estimation

purposes can distort the identification properties of structural parameters. It is not

particularly difficult to conceive situations where a parameter which was identified by

certain features of the model becomes free to move and fit other properties of the data

it was not designed for, once measurement error is added. Therefore, while there is

some logic in adding measurement errors to link the model variables to the observables,

one should be careful and investigate the consequences that such a process has on the

identification properties of the parameters.
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3 Structural VARs

Structural VAR (SVAR) inference is typically perceived to be at the antipodes of struc-

tural model-based inference. SVAR models take a minimalist approach to the estima-

tion problem and consider only a very limited subset of the large number of restrictions

that DSGE models impose on the data. For example, the fact that the matrices H1

and H2 depend on θ is typically neglected and only a part of the information present

in A0(θ) is used. Furthermore, the singularity that the model imposes on the data

is completely disregarded. This minimalist approach has one obvious disadvantage:

if less structure is imposed on the data, fewer interesting economic questions can be

asked. However, such a limited information approach is advantageous when some of the

model’s restrictions are dubious, which would be the case if the model is misspecified in

some dimensions, or fragile, which would be the case if the restrictions depend on the

functional forms or the parameter values one specifies. In this case, neglecting these

restrictions, can robustify estimation and inference.

As we have mentioned in the introduction, and despite recent attempts to make

them more realistic, the current generation of DSGE models is still far from repro-

ducing the DGP of the actual data in many respects: models fail to capture, e.g., the

heterogeneities present in the actual world; important relationships are modeled with

black-box frictions; timing restrictions are used to make them compatible with the

dynamics observed in the data; and ad-hoc shocks are often employed to dynamically

span the probabilistic space of the data. Since mispecification is likely to be pervasive,

system wide and even limited information classical structural methods are problematic

even when identification problems are absent.

Bayesian methods have an hedge in structural estimation when model misspecifi-

cation is present. Inference in this context, in fact, does not require the asymptotic

correctedness of the model under the null. Furthermore, these methods can poten-

tially deal with model misspecification, for example, by imposing prior distributions

over models and weighting the posterior information contained in each of them by their

posterior probability. However, this potential advantage of Bayesian methods is often

unexpressed: except for Schorfheide (2000), it is very unusual for researchers to con-

sider an array of models, all of which can potentially be useful to answer the question of

interest. In this situation, one is often left wondering what posterior estimates obtained

from a misspecified model mean in practice and whether policymakers could and should
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trust these estimates when taking important policy decisions.

The difficulties of the current generation of DSGE models to represent the DGP

of the data have been highlighted by Del Negro et. al. (2006), who take a workhorse

model, popular among academics and central bankers, and show that it is possible to

improve its fit by considerably relaxing the cross equation restrictions that it imposes

on the matrices H1(θ) and H2(θ). Their approach, which uses a DSGE model as a prior

for a VAR, is useful to design a metric to assess the distance between the model and the

VAR of the data and represents a promising way to evaluate model fit, to suggest ways

to bring models in closer contact with the data and, in general, to conduct structural

inference in misspecified models.

If one takes the inherent misspecification that the current generation of DSGE

models display seriously and heavily weights inferential mistakes, one may then want

to proceed in a more agnostic way. Rather than conditioning on one model and at-

tempting to estimate its structural parameters, one could be much less demanding in

the estimation process, and employ a subset of the model restrictions, which are either

uncontroversial or likely to be shared by a class of economies with potentially different

features, to identify structural shocks. One way of doing this is precisely to neglect

the restrictions present in the matrices H1 and H2, which are often not robust, and

use some of those present in A0(θ), for which a large a-priori consensus can be found

in theory, and then trace out the dynamics of the variables of interest in response

to disturbances or measure the relative importance of each shock for business cycle

fluctuations. Therefore, with such an approach, most of the detailed cross equation

restrictions imposed by a model will be eschewed from the estimation process and only

constraints which are likely to hold in many models, are used to identify structural

shocks. Unfortunately, it has become common in the literature to employ constraints

which unrelated to any specific class of models or so generic that they lack economic

content. While 20 years ago researchers spent considerable time and effort justifying

their identification restrictions from a theoretical point of view (see e.g. Sims (1986) or

Bernanke (1986)), now it is often the case that these restrictions are not even spelled

out in details, and the only justification for them a reader can find is that they are used

because someone else in the literature has used them before. In general, delay type of

restrictions, which use the flow of information accrual to agents in the economy, and

place zeros in the impact matrix of shocks, are the preferred identification devices.

Canova and Pina (2005) have shown that delay type of restrictions do not naturally
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arise in general equilibrium models, are often inconsistent with their logic and one

has to work hard to cook up general equilibrium environments with such features (see

e.g. Rotemberg and Woodford (1997)). Long run restrictions have been hailed in the

past as the answer to these problem since restrictions of this type are common to a

variety of theories (e.g. money neutrality or the idea that technological progress explain

the long run path of variables are features which are shared by macro models with

different microfundations) and allow inference without tying one’s hand to a particular

specification for the short run dynamics around these long run paths. However, this

alternative identification approach is non-operative: long run restrictions are scarce

relative to the number of shocks researchers are interested in recovering. Therefore,

when four or five shocks need to be identified, one is forced to use a mixture of long

run and delay restrictions. Furthermore, as pointed out by Faust and Leeper (1997),

long run restrictions are weak and prone to observational equivalence problems.

The sign and shape approach, suggested in Canova and De Nicolo’ (2002) and Uhlig

(2005), we advocate in the next section, can bridge SVAR and DSGE models in a more

solid way and provide a constructive answer to the quest for identification restrictions.

Unfortunately, such an approach does not yet have a widespread use in the profession

(exceptions are, among others, Dedola and Neri (2007) and Pappa (2005)) and the

science of identification in SVARs is still very much the craft of finding restrictions

that would not bother anyone in the profession.

Apart from identification issues, which have received attention in the VAR literature

since, at least, Cooley and Leroy (1985), a number of authors have recently questioned

the ability of structural VARs to recover the true DGP of the data, even when an

appropriate identification approach is used. To see why this could be the case, con-

sider the following alternative restricted state space representation for the log-linearized

aggregate decision rules of a DSGE model

x1t = J(θ)x1t−1 +K(θ)et

x2t = N(θ)x1t−1 +M(θ)et (12)

where et ∼ iid(0,Σe). The questions we ask are the following: (i) does there exist a

VAR representation for a subset of the variables of the model, say x2t? (ii) Would

the resulting VAR be of finite order? (iii) What would happen to inference if only

a sample of limited size is available? We have already mentioned that if both x1

and x2 were observable (12) is simply a restricted, although reduced rank VAR(1).

23



However, this is not a very realistic setup: usually x1t includes non-observable variables;

furthermore, only a subset of the variables appearing in x2t may be of interest, could

be reasonably measured, or have relevant information for the exercises one may want

to conduct. Therefore, it is legitimate to ask what would the process of integrating out

non-observable, uninteresting or badly measured variables imply for the restricted time

series representation of the aggregate decision rules of the model.

3.1 Invertibility

IfM(θ) is a square matrix, and if J(θ)−K(θ)M(θ)−1N(θ) has all eigenvalues less than
1 in absolute value, it is easy to show that:

x2t = N(θ){[1− (J(θ)−K(θ)M(θ)−1N(θ)]−1K(θ)M(θ)−1}x2t−1 + ut (13)

where ut ∼ (0,M(θ)0ΣeM(θ)). Therefore, if only x2t is observable, the aggregate

decision rules have a restricted VAR(∞) representation. If instead N(θ) is a square

matrix, then:

x2t = N(θ)J(θ)N(θ)−1x2t−1 + (I + (N(θ)K(θ)M (θ)−1 −N(θ)J(θ)N(θ)−1)c)ut (14)

where c is the lag operator. Under this alternative assumption, the aggregate decision

rule for x2t has therefore a VARMA(1,1) representation.

Hence, if a reduced number of variables is considered, the aggregate decision rules

of the model have a much more complicated structure than a restricted VAR(1). The

question of interest is whether we can still use a VAR with a finite number of lags to

approximate the aggregate decision rules for x2t. Straightforward algebra can be used to

show that if the exogenous driving forces are AR(1) and if both the predetermined states

and x2t are observed, then the correct representation for the vector of predetermined

states and choice variables is a restricted VAR(2) with singular covariance matrix.

On the other hand, if only x2t is observable and the dimension of x2t is the same as

the dimension of et, Ravenna (2006) has shown that the aggregate decision rules for

x2t can be approximated with a finite order VAR if and only if the determinant of

{I − [J(θ)K(θ)M(θ)−1N(θ)]c} is of degree zero in c.

What does this all mean? It means that the aggregate decision rules for a subset of

the variables of the model can be represented with a finite order VAR only under a set

of restrictive conditions. These conditions include invertibility of the mapping between

structural shocks and the variables included in the VAR, a fundamentalness condition,
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which implies that the information contained in the observables is the same as the

information contained in disturbances of the model, and the condition that random

perturbations produce fluctuations around the steady state that are not too persistent.

Note that the condition we have used to derive (13), is never satisfied in practice.

One can think, at best, of four or five truly structural sources of disturbances and this

typically is much less than the size of vector x2t. Therefore, it is only after ad-hoc

disturbances and/or measurement errors are ex-post included that M (θ) is a square

matrix. Similarly, the restriction that N(θ) is a square matrix is difficult to be satisfied

in practice - the number of states is typically smaller than the number of endogenous

variables. The other conditions clearly depend on the structure of the model but,

for example, specifications in which agents react to news that may materialize in the

future fail to satisfy the first condition - the resulting MA representation of the model

is nonfundamental. Finally, the convergence of the economy to its steady state when

perturbed by shocks depends on the details of the specification. Therefore, it is difficult

to assess how important in practice this assumption is. Given that many DSGE models

have fairly weak internal propagation mechanism, and as long as the structural shocks

are stationary, such a condition is likely to be satisfied in practice.

In sum, one should not be surprised to find DSGE models featuring aggregate de-

cision rules for a subset of the variables which are not representable with a finite order

VAR (see e.g. Fernandez-Villaverde, et. al. (2005) for examples). Nevertheless, a large

class of models does have aggregate decision rules with these properties. To be sure

that SVAR inference is valid, one must preliminary select a class of models which could

have generated the data and check whether the required conditions are satisfied for

alternative parameterizations. While this requires a SVAR investigator to take much

more seriously a certain class of models before drawing any inference from her analysis,

it also makes SVAR estimation less straightforward and more time consuming since

the number of parameters, functional form and friction permutations that need to be

checked before the analysis is conducted is large. Furthermore, since bizarre counterex-

amples can always be found, it may become difficult for an applied macroeconomist to

assess in practice whether a finite order VAR is a good approximation to the class of

DSGE models one is interested in or not.

For the final question, Chari, et. al. (2006) have recently shown that one may be

led astray in evaluating the relevance of economic theories using SVAR simply because

with small samples, the population properties of the aggregate decision rules may be
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very poorly approximated with a VAR. That is to say, even when there exists a VAR

representation for the variables in x2t, when this representation is of finite order, and

when identification of shocks is properly performed, small sample biases in the estimates

of the reduced form parameters and the covariance matrix of the shocks may make

inference whimsical. For example, they show that a short sample of data simulated

from a RBC model driven by a neutral technology shock may lead a researcher to

believe that it could have been generated by a model with different microfundations

- in population hours worked increases in response to a technology shock; in small

samples hours may fall in response to the correctly identified technology shocks.

An applied investigator has to leave with small sample biases. Long samples, when

they are available, are rarely used because causal relationships are often subject to

important regime shifts and when regime shifts are absent, changes in the definition

or in the way the data is sampled or computed, make empirical analysis difficult.

Econometrics can help here: it is well known that in a variety of experimental designs

and with samples of about 100 observations, estimates of the AR(1) coefficient are

downward bias by up to 30 percent. While this type of analysis could be easily extended

to more realistic and interesting economic models - for example, measuring the size of

the bias in the largest autoregressive root of the aggregate decision rule (which roughly

determines the dynamics of the system) and in the eigenvalues of the covariance matrix

of reduced form shocks (which determines the size of the impact effects) - one needs to

consider models where the impact effect is fairly weak to have important sign reversals

in small samples. Therefore, while such an issue should be kept in mind, its practical

relevance appears to be limited.

There is another way of seeing these representation problems from a different and

probably more informative viewpoint - the one of omitted variables and shock mis-

aggregation, which have a long tradition in the VAR literature (see e.g. Braun and

Mittnik (1993), Faust and Leeper (1997)). Suppose the aggregate decision rules for the

endogenous variables of a DSGE model can be written as a VAR(1):∙
I −A11c A12c
A21c I −A22c

¸∙
y1t
y2t

¸
=

∙
B1
B2

¸
et

where y1t are the variables included and y2t the variables excluded from the empirical

model and these vectors do not necessarily coincide with those of the state variables

x1t and the choice variables x2t. Then the representation for y2t is

(I −A22c−A21A12(1−A11c)
−1c2)y2t = [B2 − (A21(1−A11c)

−1B1c]et ≡ υt (15)
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When y1t and y2t are of the same dimensions, simplifies to

[I − (A11 +A22)c+ (A11A22 −A21A12)c
2]y2t = [B2 + (A21B1 −A11B2)c]et ≡ υt (16)

What does this reduced system representation imply? First, it is easy to see that the

model for y2t is an ARMA(∞,∞) and the lagged effect of the disturbances mixes up the
contemporaneous effects of different structural shocks (B1et−1 has smaller dimension

than et−1). Furthermore, it is clear that even if et’s are contemporaneously and serially

uncorrelated, υt’s are contemporaneously and serially correlated and that two small

scale VARs featuring different y2t’s will have different υt’s. Finally, since υt is a linear

combination of current and past et, the timing of the innovations in y2t is not preserved

unless A11 and A21 are both identically equal to zero, which is true, e.g., if y2t includes

the states and y1t the controls of the problem.

In other words, (16) implies that shocks extracted from SVAR featuring a reduced

number of the model’s variables are likely to confound not only structural shocks of

different types, but also display time series properties which are different from those

of the true shocks to these variables. Hence, even if the correct identifying restrictions

are used, VAR models which are small relative to the universe of variables potentially

produced by a DSGE model are unlikely to be able to capture either its primitive

structural disturbances nor the dynamics they induce unless some strong, and not very

practically relevant conditions, hold.

Contrary to the previous representation of the invertibility problem which provides

little guideline on how to check for failures, this latter representation does give re-

searchers a way to measure the importance of potentially omitted variables. In fact, if

omitted variables are important, reduced form VAR residuals will be correlated with

them. Therefore, for any given set of variables included in the VAR, it is sufficient to

check whether variables potentially belonging to y1t display significant correlation with

the residuals. If so, they should be included in the VAR and estimation repeated; if

not they can be omitted without further ado.

To conclude, we present two examples illustrating the issues we have discussed in

this section. In the first example, non-invertibility emerges because the model has a

non-fundamental representation. In the second the MA of the model is invertible, but

the dynamics of the reduced system are different from those of the full one.
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3.1.1 Example 3: A Blanchard and Quah economy

The example we present belongs to the class of partial equilibrium models which was

popular in the late 1980s. While it is not difficult to build general equilibrium models

with the required features, the stark nature of this model clearly highlights how invert-

ibility problems could occur in practice. The model that Blanchard and Quah (1989)

consider has implications for four variables (GDP, inflation, hours and real wages) but

the solution is typically collapsed into two equations, one for GDP growth (∆GDP ),

the other for the unemployment rate (UNt) of the form

∆GDPt = �3t − �3t−1 + a(�1t − �1t−1) + �1t (17)

UNt = −�3t − a�1t (18)

where �1t is a supply shocks, �3t a money supply shock and a is a parameter measuring

the impact of supply shocks on aggregate demand. Hence, the aggregate decision rule

for these two variables is an VMA(1). It is easy to check that a finite order VAR may

approximate the theoretical dynamics of this model only if a > 1.
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Figure 5: Responses in the Blanchard and Quah model
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To see this, we set a = 0.1 and plot in figure 5 the theoretical responses of output

and unemployment to the two shocks and the responses obtained using a VAR(1) and

a VAR(4), where the econometrician uses the correct (but truncated) vector autore-

gressive representation of the model. Note that while the signs of the responses are

correct the dynamics are pretty different. Also, while there is some improvement in

moving from a VAR(1) to a VAR(4), some of the theoretical responses are very poorly

approximated even with a VAR(4). Since a VAR(q), q > 4, has responses which are

indistinguishable from those of a VAR(4) - matrices on longer VAR lags are all very

close to zero - no finite order VAR can capture (17) and (18).

What generates this result? When a < 1 the aggregate decision rules of the model

are non-fundamental, that is, innovations to output growth and unemployment do not

have the same information as the variables themselves. Therefore, there is no convergent

VAR representation for these two variables where the roots of the VAR are all less than

one in absolute value, and this is true even when a infinite lag length is allowed for.

3.2 Example 4: A RBC model

We work with the simplest version of the model since more complicated structures

do not bring additional insights into the problem. The social planner maximizes

E0
P∞

t=0 β
t c
1−φ
t
1−φ −ANt and the resource constraint is ct + kt + gt = kηt−1N

1−η
t zt + (1−

δ)kt−1, where ct is consumption and φ is the risk aversion coefficient, A is a constant

and Nt are hours worked; zt is a first order autoregressive process of with persistence ρz,

steady state value zss and variance σ2z; gt is a first order autoregressive process of with

persistence ρg, steady state value g
ss and variance σ2g, kt−1 is the current capital stock,

η is the share of capital in production and δ the depreciation rate of capital. Using

the method of undetermined coefficients and letting output be yt ≡ kηt−1N
1−η
t zt, and

investment be it = kt − (1− δ)kt−1 the aggregate decision rules for (kt, ct, Nt, yt, rt, it),

where rt is the real rate imply standard dynamics in response to the two shocks. In

particular, as zt increases hours, consumption, output, the real rate and investment in-

crease contemporaneously while the dynamics of the capital stock have a hump shaped

pattern. On the other hand, as gt increases, consumption falls, hours, output, the real

rate and investment increase contemporaneously and the capital stock has an hump

shaped pattern.

How would the dynamics induced by the two shocks in a system which includes only

the interest rate and investment look like? That is, what would happen if we integrate
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out the effect of the shocks on the other four variables? Figure 6 plots the responses

of the two variables of interest to the two shocks in the full and the reduced systems.

Clearly, while the impact effect is identical, lagged dynamics are pretty different.
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Figure 6: Dynamics in a RBC model

What is the reason for this result? Mechanically, since A11 and A21 are not small,

shocks last more than one period and persist for a number of periods. Notice that the

persistence in the reduced system is strong (see e.g. the effect of technology shocks on

the real rate) suggesting that the process of marginalizing part of the system has serious

consequences on the responses of the variables to shocks, at least in this example.

It goes without saying that it makes a lot of difference which of the two systems

one uses as a benchmark to represent the DSGE model and in trying to see whether

actual and simulated data are similar or not.

4 Some final thoughts

The previous two sections may have given the reader a rather pessimistic view about the

possibility of conducting meaningful inference with DSGE models and the impression

that not many alternatives are left to the applied investigator. If structural estimation

30



is pursued, misspecification of the structural relationships may make the interpretation

of estimates difficult; identification problems are likely to be widespread and even in

the unlikely case when they are not present, a number of additional statistical and

specification assumptions need to be made, making it very difficult to judge what is

causing what. The alternative of using SVARs seems to be equally problematic. While

VAR are less prone to misspecification of the structural relationships, identification

problems are still present and non-invertibility of the DSGE model aggregate decision

rules may also make SVARs analyses uninterpretable.

Chari, et. al. (2007) have suggested to use the so-called business accounting method

to evaluate DSGE models but the logic of the approach represents a step backward

relative to what we discuss here - only reduced form relationships are used to judge

what is missing from the model - and it is hard to avoid important observational

equivalence problems when judging different structural models of the business cycle.

What should then one do? No matter which approach one takes, one should be very

careful and learn how to interpret the information contained in the diagnostics obtained

experimenting with the structure of the model and investigating the properties of the

data. If structural estimation is performed, methods which allow for misspecification

should be preferred and extra information, in the form of micro data or data from other

countries, may help to break the deadlock of parameters identification when problems

are due to small samples. We have suggested that to solve population identification

problems it is necessary to reparametrize or respecify DSGE models, but obviously this

is a more longer term goal, since such an approach brings us back to the very basic

foundation of DSGE-based exercises. Nevertheless, if theorists would build models

having in mind that they will be estimated, certain issues could be completely avoided.

If SVAR analysis is preferred, one should link the empirical model to DSGE theories

much better than it has done so far, explicitly write down the class of models one will

employ to interpret its results (as it is done e.g. Canova and De Nicolo (2002)) and

perform the preliminary analysis necessary to check whether the aggregate decision

rules of such a class of models do have a finite order VAR format for the subset of

relevant variables used in the VAR. Identification should also be clearly linked to the

class of structural models of interest and artificial delay restrictions avoided. One way

of doing this is in Canova (2002), where robust restrictions on the sign of responses

to shocks derived from a class of models are used to identify shocks, and the results

of the analysis are discussed through the lenses of such models. Canova and Paustian
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(2007) show that such an approach has good size and power properties against local

alternatives and give reasonable results in inappropriately marginalized systems.

Integrating structural and VAR analyses, as suggested by Del Negro and Schorfheide

(2004), (2005) and (2006) also provides an interesting avenue for future research, where

structural models and empirical analyses can cross fertilize each other.

From the point of view of policymakers DSGE models are useful if they can forecast

well, since it is much easier to tell stories with estimates of their parameters than with

SVAR estimates or estimates of pure time series models. However, to forecast at least

as well as with more unrestricted models, the DSGE models popular in the academic

literature must produce restrictions which are not rejected in the data and this is

pretty hard to do when one considers, e.g., prices rather than quantities and financial

or monetary variables rather than real ones. In addition, to test the quality of these

restrictions one needs substantial ”cosmetic surgery” in the form of additional shocks,

frictions and other black-box jingles, which are difficult to justify from a theoretical

point of view and make any hypothesis a joint test of the restrictions and the chosen

adds on. Realizing these facts should probably lead academics and policymakers to

be less demanding of the models they write down and use. Typically, small models

forecast better than larger ones and different models can be used for different purposes.

Having an array of models at disposal, which are built to answer different economic

questions, and averaging their forecasting results may not only robustify the outcomes

of the investigation but also give an entirely different perspective on the reasons driving

certain economic phenomena.

While one can envision the disappearance of the ”model” of the economy as con-

ceived in the 1970s, constructed patching up pieces of theoretical structures and a lot

of empirical wisdom, and used to answer all possible questions policymakers may have,

it is very likely that smaller scale, more or less structurally oriented models will coexist

in the portfolio of research departments of central banks and international institutions

for a while, serving different purposes and different objectives.

To go back to the main question of this chapter, how much structure should there be

in an empirical model? The solomonic and, probably, obvious answer, is that it depends

on the scope of the analysis and the information available in the data. Different models

can have different structural content if they serve different purposes. Nevertheless, it

should be clear that certain policy exercises can be conducted only in models where

expectations and general equilibrium features are fully taken into account and that
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the predictive content of pure time series models is close to inexistent as the horizon

of the forecast surpasses one year. Small scale structural models that allow a large

number of policy exercises and at the same time offer some indications on the potential

developments one-two years ahead are probably the ones that will survive the dust of

time in the longer run.
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