Graph Search

These are slides | usually use for teaching Al, but they offer
another perspective on BFS, DFS, and Dijkstra’s algorithm.
lgnore mentions of a “problem” and simply consider that

the search starts at an initial node and that the expand-
nodes method returns the potential successor nodes.

Essentially, each of the three graph searches can be formed
by using the basic search algorithm (on the next slide) and
substituting in different types of queues:

BFS — standard FIFO queue

DES — LIFO stack
Dijkstra’s — Priority queue by path cost

State-space search algorithm

function general-search (problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

nodes = MAKE-QUEUE (MAKE-NODE (problem.INITIAL-STATE))

loop
i1f EMPTY (nodes) then return "failure"

node = REMOVE-FRONT (nodes)
1f problem.GOAL-TEST (node.STATE) succeeds

then return node
nodes = QUEUEING-FUNCTION (nodes, EXPAND (node,

problem.OPERATORS))

end
;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

Key procedures to be defined

* EXPAND

— Generate all successor nodes of a given node

* GOAL-TEST

— Test if state satisfies all goal conditions

* QUEUEING-FUNCTION

— Used to maintain a ranked list of nodes that are
candidates for expansion

Evaluating Search Strategies

Completeness
— Guarantees finding a solution whenever one exists
Time complexity

— How long (worst or average case) does it take to find a solution?
Usually measured in terms of the number of nodes expanded

Space complexity

— How much space is used by the alg‘prithmz Usually measured in
terms of the maximum size of the "nodes" list during the search

Optimality/Admissibility

— If a solution is found, is it guaranteed to be an optimal one?
That is, is it the one with minimum cost?

Example for illustrating uninformed search strategies

é\%/)

Breadth-First

Enqueue nodes in FIFO (first-in, first-out) order.
Complete

Optimal (i.e., admissible) if all operators have the same cost. Otherwise, not
optimal but finds solution with shortest path length.

Exponential time and space complexity, O(b¢), where d is the depth of the
solution and b is the branching factor (i.e., number of children) at each node

Will take a long time to find solutions with a large number of steps because
must look at all shorter length possibilities first

— A complete search tree of depth d where each non-leaf node has b children, has a
totalof 1+ b+ b2 +... + b4 = (b(®1) - 1)/(b-1) nodes

— Foracomplete search tree of depth 12, where every node at depths O, ..., 11 has 10
children and every node at depth 12 has O children, thereare 1 + 10 + 100 + 1000 + ...
+ 1012 = (1013 - 1)/9 = O(10%?) nodes in the complete search tree. If BFS expands 1000
nodes/sec and each node uses 100 bytes of storage, then BFS will take 35 years to
run in the worst case, and it will use 111 terabytes of memory!

Depth-First (DFS)

Engueue nodes in LIFO (last-in, first-out) order. That is, use a
stack data structure to order nodes

May not terminate without a depth bound,” i.e., cutting off
search below a fixed depth D (“depth- limited search’)

Not complete (with or without cycle detection, and with or
without a cutoff depth)

Exponential time, O(bY), but only linear space, O(bd)
Can find long solutions quickly if lucky (and short solutions
slowly if unlucky!)

When search hits a dead-end, can only back up one level at a

time even if the “problem” occurs because of a bad operator

ch0|ce near the top of the tree. Hence, only does
“chronological backtracking”

Uniform-Cost (UCS)

Engueue nodes by path cost. That is, let g(n) = cost of the path
from the start node to the current node n. Sort nodes by
increasing value of g.

Called “Dijkstra’s Algorithm ”in the algorithms literature and
similar to “Branch and Bound Algorithm ”in operations
research literature

Complete (*)
Optimal/Admissible (*)
Admissibility depends on the goal test being applied when a

node is removed from the nodes list, not when its parent node
is expanded and the node is first generated

Exponential time and space complexity, O(b¢)

