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Foundation Model Pretraining
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Text & KG offer complementary information

Text &
Pretrained Language Model (LM) Knowledge Graph (KG)
e Broad coverage (e.g. Gao+2020) e Latent, structured relations
e Captures rich context e Multihop reasoning (e.g. Yasunaga+2021)
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Goal: Combine text & KG for pretraining

Text Knowledge Graph (KG)
e Broad coverage (e.g. Gao+2020) Joint Pretraining e Latent, structured relations
e Captures rich context e Multihop reasoning
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Proposed Method: DRAGON
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Proposed Method: DRAGON
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(1) Text-KG Input

Motivation
e Informative pair of (text, local KG): rext corpus cowledge graph
Text can contextualize the KG Ly
KG can ground the text
O
Idea vy
e Given text corpus and KG, sample a text
segment and retrieve a relevant knowledge fortaic s cand " feiew]
subgraph by entity linking i
Text Local KG

= Aligned pairs of (text, local KG)



(2) Deep Bidirectional Cross-Modal Model

Idea

e Use the GreaseLM encoder
(Transformer+GNN)

e Fuse text tokens
& KG nodes
bidirectionally
for multiple
layers

Zhang et al. 2022
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https://arxiv.org/abs/2201.08860

(3) Bidirectional Self-Supervision

Idea: Pretrain with two self-supervised reasoning tasks

Masked LM KG Link Prediction
hair positive / negative link
f !
LM Head LinkPred Head
! ! ! ! ! ! Joint training I
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Proposed Method: DRAGON
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Experiments

General domain

Biomedical domain

Pretraining data

Text: BookCorpus (6GB)
KG: ConceptNet (800K nodes, 2M edges)

Text: PubMed (20GB)
KG: UMLS (300K nodes, 1M edges)

Downstream tasks

Commonsense reasoning
(OBQA, RiddleSense, CommonsenseQA,
CosmosQA, HellaSwag, PIQA, SIQA, aNLI, ARC)

Biomedical reasoning
(PubMedQA, BioASQ, MedQA-USMLE)

Baseline: LM

RoBERTa (Liu+2019)

BioLinkBERT (Yasunaga+2022)

Baseline: LM
finetuned with KG

RoBERTa + GreaselLM

BioLinkBERT + GreaselLM

Ours (DRAGON): LM pretrained with KG

N
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Performance

DRAGON makes consistent improvement across tasks and domains

Commonsense reasoning tasks
(e.g. OBQA, RiddleSense)

Effect of

retrainin
P ° /\ 75.1%

70.4%

69.0%

RoBERTa +Grease DRAGON

\ LM (Ours)

Effect of KG

Biomedical reasoning tasks

(e.g. PubMedQA, MedQA)

70.5% 70.6%

BioLink +Grease DRAGON
BERT LM (Ours)

—

Effect of KG
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Benefit 1: Complex Reasoning

Large gains on QA examples involving complex reasoning

RoBERTa ™ GreaseLM [l DRAGON

50 II II II II II

Negation Conjunction Preposmonal Entities > 10 Other
Phrases > 2 Questions

13



Benefit 1: Complex Reasoning

Conjunction

Negation + Conjunction

Where would you use a folding chair and store one?
A.camp B.school C.beach

Where would you use a folding chair but not store one?
A. garage B.school C.beach

RoBERTa:
folding folding A.camp (X)
chair chair
o o ¢ —o .
C.camp (X)

school school

DRAGON:
camp beach camp beach B, school (V)

trip trip

DRAGON DRAGON Model
GNN 1st Layer GNN Final Layer Prediction

In DRAGON, KG serves as scaffold for performing structured reasoning

RoBERTa:

folding folding B. school ( X)
chair chair

. ‘ ‘ . GreaselLM:
school \chool B. school ( X)
DRAGON:
garage beach garage beach C.beach (V)

trip trip

DRAGON DRAGON Model
GNN 1st Layer GNN Final Layer Prediction
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Benefit 1: Complex Reasoning

Single context Multi context (extra reasoning step)

You don't enjoy watching pre-recorded performance. You will
buy a ticket for entering what building for entertainment?
A. station  B. movie theater C. concert hall

RoBERTa: RoBERTa:
B. movie theater (V') B. movie theater ( X )
ticket ticket ticket ticket
GreaselLM: GreaselM:
. ‘ . . B. movie theater (v/) . ‘ . . B. movie theater ( X )
movie movie movie movie

You will buy a ticket for entering what building for entertainment? »
A.station  B. movie theater

DRAGON: DRAGON:
. ‘ . - B. movie theater . .\ .). C. concert hall
entertain station entertain station record ‘ concert record concert
ment ment V) (V)
live live
DRAGON DRAGON Model DRAGON DRAGON Model
GNN 1st Layer GNN Final Layer Prediction GNN 1st Layer GNN Final Layer Prediction

Pretraining with KG helps extrapolate to harder test examples that need multi-step reasoning. 5



Benefit 2: Low-Resource QA

Large gains on few-shot and low-resource QA

= Intuition: self-supervision helps learn more knowledgec

Accuracy on OBQA
RoBERTa GreaseLM [ DRAGON

65

1% Train 10% Train 100% Train
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Key Design Choices: Modeling

Cross-modal fusion for text+KG KG structure
e Bidirectional interaction (DRAGON) eUse graph and GNN (DRAGON)
e Concatenate representations at end eConvert to sentence and add to text
Accuracy on OBQA Accuracy on OBQA
72.0% 72.0%
70.1%
68.0%
Concatenate Bidirectional Convertto  Use graph
atend interaction sentence (DRAGON)

(DRAGON)



Key Design Choices: Self-Supervision

Pretraining objective LinkPred head
e Joint MLM + LinkPred (DRAGON) eDistMult (Final DRAGON)
e MLM only eTranskE = All help
e LinkPred only eRotatE
Accuracy on OBQA Accuracy on OBQA
72.0% 72.0%

7.4% 71.7%

67.2%
66.4% ¥ 67.2%
LinkPred MLMonly MLM + No Transk RotatE  DistMult
only LinkPred LinkPred (DRAGON)

(DRAGON)
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Summary

DRAGON: Pretrain a foundation model jointly on text & KG

Approach
e Deeply bidirectional model for the two modalities to interact
e Self-supervised objective to learn joint reasoning over text and KG at scale

Result
e Improved performance on knowledge- and reasoning-intensive applications
(e.g. low-resource QA, multi-step reasoning)
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