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Text & KG offer complementary information

● Broad coverage  (e.g. Gao+2020)

● Captures rich context

Text  &
Pretrained Language Model (LM) Knowledge Graph (KG)

● Latent, structured relations
● Multihop reasoning (e.g. Yasunaga+2021)

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2104.06378
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Goal: Combine text & KG for pretraining 

● Broad coverage  (e.g. Gao+2020)

● Captures rich context

Text Knowledge Graph (KG)

● Latent, structured relations 
● Multihop reasoning 

(e.g. Yasunaga+2021)

Joint Pretraining

Language-Knowledge
Foundation Model

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2104.06378
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Proposed Method: DRAGON
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(1)  Text-KG Input
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Motivation
● Informative pair of (text, local KG):

Text can contextualize the KG
KG can ground the text

Idea
● Given text corpus and KG, sample a text 

segment and retrieve a relevant knowledge 
subgraph by entity linking
⇒  Aligned pairs of (text, local KG)
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(2)  Deep Bidirectional Cross-Modal Model
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Idea

● Use the GreaseLM encoder
(Transformer+GNN)

● Fuse text tokens
& KG nodes
bidirectionally
for multiple
layers

Zhang et al. 2022

https://arxiv.org/abs/2201.08860
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(3)  Bidirectional Self-Supervision

Masked LM 
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Joint training

Text & KG 
mutually inform 

each other

Idea: Pretrain with two self-supervised reasoning tasks
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Proposed Method: DRAGON
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Experiments
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General domain Biomedical domain

Pretraining data Text: BookCorpus (6GB)
KG: ConceptNet (800K nodes, 2M edges)

Text: PubMed (20GB) 
KG: UMLS (300K nodes, 1M edges)

Downstream tasks Commonsense reasoning 
(OBQA, RiddleSense, CommonsenseQA, 
CosmosQA, HellaSwag, PIQA, SIQA, aNLI, ARC)

Biomedical reasoning
(PubMedQA, BioASQ, MedQA-USMLE)

Baseline: LM RoBERTa (Liu+2019) BioLinkBERT (Yasunaga+2022)

Baseline: LM 
finetuned with KG

RoBERTa + GreaseLM BioLinkBERT + GreaseLM

Ours (DRAGON): LM pretrained with KG

https://huggingface.co/datasets/bookcorpus
https://conceptnet.io/
https://pubmed.ncbi.nlm.nih.gov/
https://www.nlm.nih.gov/research/umls/index.html
https://allenai.org/data/open-book-qa
https://arxiv.org/abs/2101.00376
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1909.00277
https://arxiv.org/abs/1905.07830
https://yonatanbisk.com/piqa/
https://leaderboard.allenai.org/socialiqa/submissions/get-started
https://openreview.net/forum?id=Byg1v1HKDB
https://leaderboard.allenai.org/arc/submissions/get-started
http://arxiv.org/abs/1909.06146
http://bioasq.org/
https://github.com/jind11/MedQA
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2203.15827
https://arxiv.org/abs/2201.08860
https://arxiv.org/abs/2201.08860


Performance

DRAGON makes consistent improvement across tasks and domains

Commonsense reasoning tasks
(e.g. OBQA, RiddleSense)

70.5% 70.6%

72.5%

BioLink
BERT

+Grease
LM

DRAGON
(Ours)
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69.0%
70.4%

75.1%

RoBERTa +Grease
LM

DRAGON
(Ours)

Biomedical reasoning tasks
(e.g. PubMedQA, MedQA)

Effect of 
pretraining

Effect of KG

Effect of 
pretraining

Effect of KG



Benefit 1:  Complex Reasoning

Large gains on QA examples involving complex reasoning
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Benefit 1:  Complex Reasoning
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folding
chair

folding
chair

folding
chair

folding
chair

school

Where would you use a folding chair and store one?
 

A. camp      B. school     C. beach

trip
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GNN 1st Layer

DRAGON
GNN Final Layer
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Int

trip

beach

school

beach

Int RoBERTa: 
A. camp (✗)

GreaseLM: 
C. camp (✗)

DRAGON: 
 B. school (✓)    

Conjunction

school

Where would you use a folding chair but not store one?
 

A. garage      B. school     C. beach

trip
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GNN 1st Layer

DRAGON
GNN Final Layer

garage
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trip
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garage

Model 
Prediction

RoBERTa: 
B. school (✗)

GreaseLM: 
B. school (✗)

DRAGON: 
 C. beach (✓)    

Model 
Prediction

camp

In DRAGON, KG serves as scaffold for performing structured reasoning



Benefit 1:  Complex Reasoning
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You will buy a ticket for entering what building for entertainment?
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You don't enjoy watching pre-recorded performance. You will 
buy a ticket for entering what building for entertainment?
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RoBERTa: 
B. movie theater (✓)

GreaseLM: 
B. movie theater (✓)

DRAGON: 
 B. movie theater 

(✓)    

Model 
Prediction

RoBERTa: 
B. movie theater (✗)

GreaseLM: 
B. movie theater (✗)

DRAGON: 
 C. concert hall 

(✓)    

Model 
Prediction

Pretraining with KG helps extrapolate to harder test examples that need multi-step reasoning.



16

Benefit 2:  Low-Resource QA

Large gains on few-shot and low-resource QA

 ⇒  Intuition: self-supervision helps learn more knowledgec
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Key Design Choices:  Modeling

Cross-modal fusion for text+KG
● Bidirectional interaction (DRAGON) 
● Concatenate representations at end

72.0%

Bidirectional 
interaction
(DRAGON)

Concatenate 
at end

68.0%

Accuracy on OBQA

KG structure
●Use graph and GNN (DRAGON)
●Convert to sentence and add to text

72.0%

Use graph
(DRAGON)

Convert to 
sentence

70.1%

Accuracy on OBQA
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Key Design Choices:  Self-Supervision

Pretraining objective
● Joint MLM + LinkPred (DRAGON) 
● MLM only
● LinkPred only

72.0%

MLM + 
LinkPred

(DRAGON)

MLM only

67.2%

Accuracy on OBQA

LinkPred head
●DistMult (Final DRAGON)
●TransE
●RotatE

Accuracy on OBQA

LinkPred 
only

66.4%

⇒  All help

72.0%

DistMult
(DRAGON)

RotatE

71.7%

TransE

71.4%

No 
LinkPred

67.2%

https://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://arxiv.org/abs/1902.10197


Summary
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DRAGON: Pretrain a foundation model jointly on text & KG

Approach
● Deeply bidirectional model for the two modalities to interact
● Self-supervised objective to learn joint reasoning over text and KG at scale

Result
● Improved performance on knowledge- and reasoning-intensive applications 

(e.g. low-resource QA, multi-step reasoning)
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Thanks!

https://github.com/michiyasunaga/DRAGON
https://cs.stanford.edu/~pliang/
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