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Abstract 

The automatic generation of medical reports from chest X-RAY images has attracted increasing 
attention due to its capability to enhance diagnostic accuracy and reduce workload in clinical 
decision support. The latest advancements in medical report generation, particularly with 
encoder-decoder models, emphasize their ability to integrate visual information with textual 
reports. However, these models face several challenges, including the generation of generic 
statements, the failure to capture detailed pathological findings, and the production of 
inconsistent reports. In this study, the effectiveness of Vision Transformer and Convolutional 
Vision Transformer encoders combined with GPT2-based (Generative Pre-trained Transformer) 
decoders are investigated for the task of chest X-RAY report generation. Their ability to capture 
radiological findings and generate clinically meaningful reports is evaluated through comparative 
analyses conducted under diverse experimental configurations on IU X-RAY (Indiana University 
X-RAY) dataset. Experimental results on the IU X-RAY dataset demonstrated that the ViT-GPT2 
model achieved superior performance, with a BLEU-1 score of 0.356, a METEOR score of 0.171, 
and a CIDEr score of 0.374, outperforming CNN–RNN baselines. These results confirm the 
potential of transformer-based models to generate clinically meaningful and linguistically 
coherent radiology reports. 
Keywords: convolutional vision transformer, image processing, medical report generation, 
natural language processing, radiography, vision transformer 

 

1. Introduction 

Medical report generation is a significant task at the intersection of natural language 
processing and computer vision. Its main objective is to generate diagnostic reports of 
medical images, such as radiological images. This approach shows potential for 
reducing the workload on radiologists, improving diagnostic consistency, and enabling 
timely decision-making [1-3]. Traditional deep learning-based approaches primarily 
adopt encoder-decoder frameworks, often utilizing Convolutional Neural Network 
(CNN) to extract spatial information and Recurrent Neural Network (RNN) [4-11] or 
Transformers [12-17] for generation of textual descriptions. For instance, a study in the 
literature employed a VGG19-based (Visual Geometry Group 19 Layer) CNN encoder 
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combined with a hierarchical LSTM (Long-Short Term Memory) decoder and a co-
attention mechanism to jointly attend to visual and semantic features [18]. In a recent 
approach, a multi-attention mechanism was integrated with one-shot pruning to reduce 
model complexity; however, its clinical coherence remained limited [19]. Another study 
incorporated hybrid reinforcement learning rewards and multi-linear attention 
mechanisms, aiming to improve the quality of generated reports [20]. However, these 
methods are often constrained by insufficient cross-modal alignment, limited capacity 
to capture detailed pathological findings, and an excessive reliance on recurrent normal 
patterns.  

In this study, the model performances of a Vision Transformer (ViT) and a Convolutional 
Vision Transformer (CVT) encoder are evaluated for the task of automatic generation of 
medical reports from chest X-RAY images. Transformer-based models were selected 
for this study because they can effectively capture global dependencies in medical 
images and generate fluent, semantically consistent text. Their ability to integrate global 
and local patterns makes them particularly advantageous for radiological report 
generation compared to conventional CNN–RNN approaches [21-23]. Each encoder is 
combined with a GPT2 decoder to generate the medical reports. The ViT leverages pure 
self-attention mechanisms to model long-range dependencies across the entire image. 
It enables effective global feature extraction that has demonstrated strong performance 
in vision-language tasks compared to conventional convolution-based encoders. 
However, the CVT combines local visual sensitivity with global contextual modelling, 
which has demonstrated advantages over traditional CNNs in multiple vision–language 
tasks. The GPT2 (Generative Pre-trained Transformer), fine-tuned for medical domain 
generation, ensures fluent and coherent narrative output. Our framework is trained and 
evaluated on the IU X-RAY dataset, which includes a large corpus of chest X-RAY 
images paired with expert-annotated radiology reports. Experimental results 
demonstrate that our framework outperforms CNN-RNN methods in performance 
metrics (BLEU-n (Bilingual Evaluation Understudy), METEOR (Metric for Evaluation of 
Translation with Explicit Ordering), ROUGE-L (Recall-Oriented Understudy for Gisting 
Evaluation), CIDEr (Consensus-based Image Description Evaluation)). 

The rest of this paper is organized as follows: Section 2 presents the proposed 
approach, together with the datasets and performance metrics employed. A 
comprehensive examination and interpretation of the experimental findings are 
presented in Section 3, while Section 4 concludes the study. 

2. Method 

This section introduces an end-to-end encoder-decoder framework that automatically 
generates radiology reports from radiological images. The framework utilizes a ViT or a 
CVT encoder and a pre-trained GPT2 decoder to create clinically meaningful and 
coherent reports. 

2.1. Vision Transformer-Based Encoder 

Figure 1 illustrates the encoder module utilizing a ViT [24], where a transformer 
architecture is applied directly to image patches to achieve global receptive field 
modelling. Input chest X-RAY images are resized and divided into fixed, non-
overlapping patches. Each patch is linearly embedded and augmented with positional 
encodings to maintain spatial context. A sequence of transformer encoder layers 
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processes tokens generated from embedded image patches that encode spatial 
information. Each layer comprises Multi-Head Self-Attention and Feed-Forward 
Network blocks. A key advantage of ViT over traditional convolutional encoders is its 
ability to directly capture long-range dependencies and global structural relationships 
via self-attention. This is especially beneficial for medical images, where pathological 
patterns need to be identified across the entire image. The encoder produces a 
sequence of high-dimensional tokens that comprise the global semantic and spatial 
information extracted from the X-RAY, preparing them for the decoder. 

2.2. Convolutional Vision Transformer-Based Encoder 

In the encoder module, a CVT [25] architecture, which integrates convolutional layers 
with transformer-based attention mechanisms to capture both local and global 
features,  

Figure 1. Proposed Framework. 

was incorporated. Here, input chest X-RAY images are resized and then processed 
through multiple convolutional layers to capture basic spatial patterns, while 
maintaining local information. These convolutional layers serve as a front-end feature 
extractor, generating a dense feature map that retains spatial resolution and fine-
grained visual cues. The resulting feature maps are then partitioned into patch tokens, 
which are linearly projected and supplemented with positional encodings to preserve 
the spatial arrangement. These tokens are fed into a transformer encoder stack, where 
each layer comprises Multi-Head Self-Attention and Feed-Forward Network 
components. The incorporation of convolutional operations before the transformer 
blocks introduces valuable inductive biases, particularly translation equivariance and 
spatial locality. These properties are particularly advantageous for medical imaging, 
where fine-grained pathological features are often clustered in specific regions of the 
image. The hybrid architecture of CVT enables the encoder to model short-range texture 
patterns using convolution, while simultaneously capturing long-range dependencies 
through self-attention. Finally, the encoder generates a sequence of high-dimensional 
tokens that encode comprehensive semantic and spatial information, which are then 
passed to the decoder for report generation.  
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2.3. GPT-Based Large Language Model 

The decoder in our framework leverages pre-trained GPT2 [26] architecture, an 
autoregressive language model recognized for generating coherent and contextually 
accurate text. The visual tokens from the ViT encoder are integrated into the GPT2 
decoder using cross-attention mechanisms. This enables the decoder to generate text 
conditioned on both previously generated words and visual features. The decoder 
sequentially generates the report, producing tokens from left to right. In our 
experiments, report generation is performed using greedy decoding and beam search 
to analyze the effects of different decoding strategies on report quality. Greedy 
decoding is computationally efficient because it selects the token with the highest 
likelihood at each step. However, this strategy may lead to suboptimal sequences since 
it does not consider alternative candidate tokens. Conversely, beam search keeps 
multiple possible hypotheses ("beams") at each step, evaluating various candidate 
paths to select the most probable complete sequence. This enables the model to 
explore various phrasings  

Table 1. Comparison of different transformer-based models.  

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE- CIDEr 

VIT-GPT2 0.356 0.219 0.148 0.104 0.171 0.261 0.314 

CVT-GPT2 0.362 0.222 0.149 0.104 0.163 0.271 0.241 

VIT-GPT2         
(beam search) 0.301 0.191 0.133 0.097 0.146 0.274 0.374 

CVT-GPT2 
  (beam search) 0.355 0.212 0.147 0.103 0.164 0.270 0.251 

 

and sentence structures, often resulting in semantically more detailed reports and 
higher evaluation scores. In this study, GPT-2 was used in its general pre-trained form 
without additional medical domain adaptation. This decision was made to focus 
primarily on assessing the impact of transformer-based encoders on report generation 
performance. Accordingly, the experimental setup was configured to provide reliable 
and comparable results. All transformer-based models were trained for 100 epochs on 
an NVIDIA GeForce RTX 3090 GPU (24 GB), ensuring stable convergence and reliable 
performance. 

3. Experimental Evaluations 

3.1. Dataset and Evaluation Metrics 

In this study, IU X-RAY [27] dataset is utilized for medical report generation tasks. The 
dataset comprises 7,470 chest X-RAY images (both lateral and frontal views) linked to 
3,955 corresponding radiology reports. These were collected from the radiology 
department at Indiana University Hospital. Each report typically includes structured 
sections such as Findings and Impression, providing concise descriptions of diagnostic 
observations and clinical interpretations. Several pre-processing steps were conducted 
to ensure consistency and clinical relevance in our modelling. Samples from patients 
younger than 16 years were excluded to ensure an exclusive focus on adult cases and  
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Figure 2. Line chart illustrating model performance comparison (ViT-GPT2 vs. CVT-GPT2; 
greedy vs. beam search) 

to facilitate a more accurate characterization of adult thoracic anatomy and pathology. 
This approach reduces the variability introduced by pediatric cases, which often differ 
in anatomical proportions and disease presentation. Furthermore, the original reports 
were examined and cleaned to remove references to prior examinations or temporal  
comparisons, such as sentences including phrases like "... compared to the previous 
study". This step prevents the model from relying on unavailable contextual information 
and ensures that reports are generated only from the current X-RAY image. In addition, 
reports were standardized standardized by focusing exclusively the Findings and 
Impression sections, which contain the most clinically relevant information. Low-quality 
or corrupted image files were also excluded from the dataset. In addition, the dataset 
was also reviewed by a radiologist, and incomplete or erroneous records were removed 
to ensure clinically reliable model inputs prior to training. The models were trained and 
evaluated on a filtered and standardized version of the IU X-RAY dataset. This setup 
was designed to highlight image conditioning, temporal independence, and clinically 
coherent report generation. 

The study evaluates the quality and clinical relevance of the automatically generated 
radiology reports using widely adopted metrics in image-to-text and medical report 
generation tasks. These include BLEU-n (with n-gram levels from 1 to 4) [28], ROUGE-
L [29], METEOR [30], and CIDEr [31]. Each metric captures different linguistic or 
semantic characteristics of the generated content when compared to the reference 
reports. BLEU-n quantifies the rate of n-gram overlap between generated and reference 
reports. While BLEU-1 reflects unigram-level similarity, BLEU-4 incorporates higher-
order n-grams, offering a more comprehensive measure of fluency and syntactic 
accuracy. In contrast to BLEU, METEOR improves the evaluation by incorporating recall 
in addition to precision, as well as synonym matching. This makes it more suitable for 
capturing semantically similar phrases that may not match exactly at the lexical level. 
Similarly, ROUGE-L measures the longest common subsequence between the 
generated and ground-truth reports. This enables evaluation of their sentence-level 
structural similarity and narrative coherence. CIDEr is a metric used to evaluate the 
similarity between generated and reference captions for image captioning. It achieves 
this by measuring TF-IDF (Term Frequency-Inverse Document Frequency) weighted n-
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gram overlap, which effectively captures both the relevance of the generated content 
and its alignment with human descriptions. Together, these metrics offer a 
comprehensive evaluation framework for assessing both the linguistic quality and the 
diagnostic accuracy of the generated radiology reports. 

Table 2. Comparison of proposed framework with latest studies. 

Model BLEU-1 BLEU-2 BLEU-3    BLEU-4 METEOR CIDEr 
[17] 0.387 0.245 0.166 0.111 0.164 0.257 

[32] 0.361 0.226 0.152 0.106 - 0.187 

[33] 0.438 0.298 0.208 0.151 – 0.343 

[34] 0.476 0.340 0.238 – – 0.297 

VIT-GPT2 (Ours) 0.356 0.219 0.148 0.104 0.171 0.314 

CVT-GPT2 (Ours) 0.362 0.222 0.149 0.104 0.163 0.241 
VIT-GPT2          
(beam s., Ours) 0.301 0.191 0.133 0.097 0.146 0.374 

CVT-GPT2         
(beam s., Ours) 0.355 0.212 0.147 0.103 0.164 0.251 

 

 

Figure 3. Line chart comparing the proposed models with state-of-the-art baselines on the IU X-RAY 
dataset (BLEU-n, METEOR, CIDEr). 

3.2. Result and Discussion 

Table 1 presents the performance of four Transformer-based encoder-decoder 
configurations (ViT-GPT2, CVT-GPT2, and their beam search variants) on the IU X-RAY 
dataset. Besides, Figure 2 demonstrates a line chart comparison of ViT-GPT2 and CVT-
GPT2 models across BLEU-n, METEOR, ROUGE-L, and CIDEr, offering a clearer 
visualization of performance metrics.The study reports model performance using BLEU-
n (with n-gram levels from 1 to 4), METEOR, ROUGE-L, and CIDEr metrics. Among the 
greedy decoding approaches, CVT-GPT2 achieved the best BLEU-1 (0.362), BLEU-2 
(0.222), and BLEU-3 (0.149) scores, suggesting that the convolutional inductive biases 
in the CVT encoder contributed to improved local and mid-range n-gram consistency 
in the generated text. However, ViT-GPT2 outperformed CVT-GPT2 in METEOR (0.171) 
and CIDEr (0.314), indicating higher linguistic quality and more robust semantic 
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consistency with the reference reports. When beam search was applied, ViT-GPT2 
(beam) achieved the highest CIDEr score overall (0.374), demonstrating its ability to 
generate more diverse and semantically rich reports. This improvement supports the 
hypothesis that the global receptive field of the ViT encoder, when paired with a broader 
decoding search space, enhances the capacity of the model to capture pathological 
patterns and translate them into clinically meaningful language.  
 
Table 2 compares our models against several state-of-the-art baselines from literature 
on the IU X-RAY dataset. In addition, Figure 3 illustrates a line chart comparing the 
proposed models with state-of-the-art baselines on the IU X-RAY dataset, providing an 
intuitive overview of relative strengths and weaknesses. Notably, ViT-GPT2 (beam) 
achieved the highest CIDEr score (0.374), surpassing all baseline models, and also 
demonstrated superior performance in METEOR (0.146), indicating its strength in 
generating lexically diverse and semantically rich radiology reports. While the model 
shown in the fourth row of Table 2 achieved the best BLEU-n scores among the 
baselines (BLEU-1: 0.476, BLEU-3: 0.238). However, these models declined in CIDEr 
and METEOR, metrics that better reflect clinical relevance and information density. In 
contrast, ViT-GPT2 and CVT-GPT2 models produced more informative and nuanced 
outputs, as reflected in their higher CIDEr values (0.314 and 0.241 respectively), 
demonstrating the effectiveness of combining Transformer-based vision encoders with 
GPT2-style language decoders. These results validate the advantage of leveraging ViT  

Table 3. Comparison of generated and reference radiology reports with ViT-GPT2 (beam search)  
from the IU X-RAY. 

   

Reference Report: The heart is 
within normal size limits. No 
significant abnormalities are noted 
in the mediastinum. The lungs 
appear underinflated but remain 
clear. No evidence of pleural 
effusion is present. 

Reference Report: The size of the 
heart and the pulmonary vessels are 
considered normal range. No focal 
airspace abnormalities are noted in 
the lungs. There is no signs of pleural 
effusion and pneumothorax. Stable 
low left paraspinal / retrocrural 
lymphadenopathy is observed without 
interval change 
 

Reference Report: Cardiac 
silhouette and pulmonary blood flow 
appear normal. There is no evidence 
of localized infiltrates,  
pneumothorax, or pleural fluid 
accumulation. 

Generated Report: The heart is 
normal. There is no consolidation 
or pneumothorax. There is no 

Generated Report: The heart is within 
the normal size range. There is no 
mediastinal widening. The lungs are 
completely clear. No large pleural 
effusion and pneumothorax is seen. 

Generated Report: The heart 
maintains a normal size. No notable 
abnormalities are seen in the 
mediastinum. Lung fields appear 
clear. 

and CVT backbones together with robust decoders that closely match the reference 
reports. They also confirm the effectiveness of carefully designed models and beam 
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search decoding strategies, particularly in capturing complex medical semantics and 
improving alignment with radiologist-authored references. A comparative analysis of 
reference radiology reports and automatically generated reports for three sample of 
chest X-RAY cases is illustrated in  
Table 3. In the first sample, both the reference and generated reports correctly describe 
normal cardiac and mediastinal contours, along with clear and expanded lungs. The 
generated sentence is ending with “There is no”.  This indicates a failure in coherence 
and completeness of the generation. The second sample illustrates capacity of the 
model to identify and report common thoracic structures accurately. The generated 
report correctly notes the absence of pleural effusion, pneumothorax, and mediastinal 
widening, and it corresponds well to the  reference in describing the heart and lungs as 
normal. The report does not capture the reference’s note on the presence of low left 
paraspinal/retrocrural adenopathy. The third example demonstrates a generated report 
identifying normal heart size, an unremarkable mediastinum, and clear lungs.  

4. Conclusion 

This study investigated the effectiveness of Vision Transformer (ViT) and Convolutional 
Vision Transformer (CVT) encoders combined with a GPT2-based decoder for 
automatic radiological report generation. Extensive experiments on the IU X-RAY 
dataset demonstrated that the proposed framework is capable of producing reports 
that are clinically meaningful and linguistically coherent, outperforming conventional 
CNN–RNN baselines. In particular, the ViT-GPT2 configuration achieved markedly 
improved performance in terms of semantic alignment and narrative fluency, reflecting 
the advantage of global receptive field modeling for medical image analysis. The 
comparative evaluation of decoding strategies further underscored the significance of 
inference mechanisms. While greedy decoding provided computational simplicity and 
faster inference, beam search yielded more diverse and semantically rich reports, 
aligning more closely with expert-authored references. Evaluation across widely 
adopted metrics (BLEU-n, METEOR, ROUGE-L, and CIDEr) confirmed the robustness 
of the proposed approach, with CIDEr emerging as the most representative indicator of 
human-aligned performance due to its ability to capture information density and clinical 
relevance. The results show the advantages of transformer-based encoders and 
decoders, which leverage self-attention mechanisms to achieve more powerful 
semantic alignment and clinically meaningful narrative generation. Overall, the findings 
demonstrate that Transformer-based vision encoders, when integrated with large 
generative language models such as GPT2, present considerable potential for 
advancing the automation of radiological interpretation. This study not only 
demonstrates the feasibility of transformer-based approaches for radiology report 
generation but also provides a basis for future work of the study. Future research will 
focus on expanding to larger and multi-modal datasets, adapting GPT-2 to medical 
terminology through vocabulary fine-tuning, incorporating reinforcement learning with 
expert feedback, and conducting extensive clinical validation studies to further enhance 
diagnostic reliability and clinical integration. 
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