Oracle® Database
Security Guide

18c
E83683-09
March 2019

ORACLE"

Oracle Database Security Guide, 18c

E83683-09

Copyright © 2006, 2019, Oracle and/or its affiliates. All rights reserved.
Primary Author: Patricia Huey

Contributing Authors: Sumit Jeloka

Contributors: Suraj Adhikari, Thomas Baby, Tammy Bednar, Todd Bottger, Sanjay Bharadwaj, Leo Cloutier,
Sudha Duraiswamy, Naveen Gopal, Rishabh Gupta, Yong Hu, Srinidhi Kayoor , Peter Knaggs, Andre
Kruklikov, Sanjay Kulhari, Anup A. Kumar, Bryn Llewellyn, Dah-Yoh Lim, Rahil Mir, Hari Mohankumar, Gopal
Mulagund, Abhishek Munnolimath, Paul Needham, Robert Pang, Dilip Raj, Kumar Rajamani, Kathy Rich,
Saikat Saha, Vipin Samar, Saravana Soundararajan, James Spiller, Srividya Tata, Kamal Tbeileh, Can Tuzla,
Anand Verma, Patrick Wheeler, Peter H. Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience xlv
Documentation Accessibility xlv
Related Documents xlvi
Conventions xlvi

Changes in This Release for Oracle Database Security Guide

Changes in Oracle Database Security 18c Xlvii
Changes in Oracle Database Security 12c Release 2 (12.2) |

1 Introduction to Oracle Database Security
About Oracle Database Security 1-1
Additional Oracle Database Security Resources 1-3

Part | Managing User Authentication and Authorization

2 Managing Security for Oracle Database Users

About User Security 2-1
Creating User Accounts 2-2
About Common Users and Local Users 2-2
About Common Users 2-3

How Plugging in PDBs Affects CDB Common Users 2-4

About Local Users 2-5

Who Can Create User Accounts? 2-6
Creating a New User Account That Has Minimum Database Privileges 2-7
Restrictions on Creating the User Name for a New Account 2-8
Uniqueness of User Names 2-8

User Names in a Multitenant Environment 2-8

Case Sensitivity for User Names 2-8

ORACLE iii

Assignment of User Passwords 2-9

Default Tablespace for the User 2-10
About Assigning a Default Tablespace for a User 2-10
DEFAULT TABLESPACE Clause for Assigning a Default Tablespace 2-11

Tablespace Quotas for a User 2-11
About Assigning a Tablespace Quota for a User 2-11
CREATE USER Statement for Assigning a Tablespace Quota 2-12
Restriction of the Quota Limits for User Objects in a Tablespace 2-12
Grants to Users for the UNLIMITED TABLESPACE System Privilege 2-12

Temporary Tablespaces for the User 2-13
About Assigning a Temporary Tablespace for a User 2-13
TEMPORARY TABLESPACE Clause for Assigning a Temporary
Tablespace 2-14

Profiles for the User 2-14

Creation of a Common User or a Local User 2-15
About Creating Common User Accounts 2-15
CREATE USER Statement for Creating a Common User Account 2-16
About Creating Local User Accounts 2-17
CREATE USER Statement for Creating a Local User Account 2-18

Creating a Default Role for the User 2-18

Altering User Accounts 2-19

About Altering User Accounts 2-19

ALTER USER Statement for Altering Common or Local User Accounts 2-19

Changing Non-SYS User Passwords 2-20
About Changing Non-SYS User Passwords 2-20
Using the PASSWORD Command or ALTER USER Statement to Change a
Password 2-21

Changing the SYS User Password 2-21
About Changing the SYS User Password 2-22
ORAPWD Utility for Changing the SYS User Password 2-22

Configuring User Resource Limits 2-23

About User Resource Limits 2-23

Types of System Resources and Limits 2-24
Limits to the User Session Level 2-24
Limits to Database Call Levels 2-25
Limits to CPU Time 2-25
Limits to Logical Reads 2-25
Limits to Other Resources 2-25

Values for Resource Limits of Profiles 2-26

Managing Resources with Profiles 2-27
About Profiles 2-27
ora_stig_profile User Profile 2-28

ORACLE iv

Creating a Profile 2-28
Creating a CDB Profile or an Application Profile 2-29
Assigning a Profile to a User 2-29
Dropping Profiles 2-30
Dropping User Accounts 2-30
About Dropping User Accounts 2-31
Terminating a User Session 2-31
About Dropping a User After the User Is No Longer Connected to the Database 2-32
Dropping a User Whose Schema Contains Objects 2-32
Database User and Profile Data Dictionary Views 2-32
Data Dictionary Views That List Information About Users and Profiles 2-33
Query to Find All Users and Associated Information 2-34
Query to List All Tablespace Quotas 2-34
Query to List All Profiles and Assigned Limits 2-35
Query to View Memory Use for Each User Session 2-36
3 Configuring Authentication

About Authentication 3-2
Configuring Password Protection 3-2
What Are the Oracle Database Built-in Password Protections? 3-3
Minimum Requirements for Passwords 3-4
Creating a Password by Using the IDENTIFIED BY Clause 3-4
Using a Password Management Policy 3-5
About Managing Passwords 3-6
Finding User Accounts That Have Default Passwords 3-6
Password Settings in the Default Profile 3-7
Using the ALTER PROFILE Statement to Set Profile Limits 3-8
Disabling and Enabling the Default Password Security Settings 3-8
Automatically Locking Inactive Database User Accounts 3-9
Automatically Locking User Accounts After Failed Logins 3-10
Example: Locking an Account with the CREATE PROFILE Statement 3-10
Explicitly Locking a User Account 3-11
Controlling the User Ability to Reuse Previous Passwords 3-11
About Controlling Password Aging and Expiration 3-12

Using the CREATE PROFILE or ALTER PROFILE Statement to Set a
Password Lifetime 3-13
Checking the Status of a User Account 3-13
Password Change Life Cycle 3-14
PASSWORD_LIFE_TIME Profile Parameter Low Value 3-15
Managing the Complexity of Passwords 3-16
About Password Complexity Verification 3-17

ORACLE

How Oracle Database Checks the Complexity of Passwords
Who Can Use the Password Complexity Functions?
verify_function_11G Function Password Requirements
oral2c_verify function Password Requirements
oral2c_strong_verify_function Function Password Requirements
oral2c_stig_verify_function Password Requirements

About Customizing Password Complexity Verification

Enabling Password Complexity Verification

Managing Password Case Sensitivity

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case
Sensitivity

Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
Management of Case Sensitivity for Secure Role Passwords
Management of Password Versions of Users

Finding and Resetting User Passwords That Use the 10G Password
Version

How Case Sensitivity Affects Password Files

How Case Sensitivity Affects Passwords Used in Database Link
Connections

Ensuring Against Password Security Threats by Using the 12C Password
Version

About the 12C Version of the Password Hash

Oracle Database 12C Password Version Configuration Guidelines
Configuring Oracle Database to Use the 12C Password Version Exclusively
How Server and Client Logon Versions Affect Database Links

Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively

Managing the Secure External Password Store for Password Credentials

About the Secure External Password Store

How Does the External Password Store Work?

About Configuring Clients to Use the External Password Store
Configuring a Client to Use the External Password Store
Example: Sample SQLNET.ORA File with Wallet Parameters Set
Managing External Password Store Credentials

Managing Passwords for Administrative Users

ORACLE

About Managing Passwords for Administrative Users

Setting the LOCK and EXPIRED Status of Administrative Users

Password Profile Settings for Administrative Users

Last Successful Login Time for Administrative Users

Management of the Password File of Administrative Users

Migration of the Password File of Administrative Users

How the Multitenant Option Affects Password Files for Administrative Users

3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-21

3-21
3-22
3-23
3-23

3-25
3-28

3-28

3-29
3-29
3-30
3-32
3-34

3-35
3-36
3-37
3-37
3-38
3-38
3-40
3-40
3-42
3-43
3-43
3-43
3-44
3-44
3-45
3-45

Vi

Password Complexity Verification Functions for Administrative Users 3-46

Authentication of Database Administrators 3-46
About Authentication of Database Administrators 3-47
Strong Authentication, Centralized Management for Administrators 3-47

About Strong Authentication for Database Administrators 3-47
Configuring Directory Authentication for Administrative Users 3-48
Configuring Kerberos Authentication for Administrative Users 3-48
Configuring Secure Sockets Layer Authentication for Administrative Users 3-49
Authentication of Database Administrators by Using the Operating System 3-50
Authentication of Database Administrators by Using Their Passwords 3-51
Risks of Using Password Files for Database Administrator Authentication 3-52

Database Authentication of Users 3-53
About Database Authentication 3-53
Advantages of Database Authentication 3-54
Creating Users Who Are Authenticated by the Database 3-55

Schema Only Accounts 3-55
About Schema Only Accounts 3-55
Creating a Schema Only Account 3-56
Altering a Schema Only Account 3-56

Operating System Authentication of Users 3-56

Network Authentication of Users 3-58
Authentication with Secure Sockets Layer 3-58
Authentication with Third-Party Services 3-58

About Authentication Using Third-Party Services 3-59
Authentication with Kerberos 3-59
Authentication with RADIUS 3-59
Authentication with Directory-Based Services 3-59
Authentication with Public Key Infrastructure 3-60

Configuring Operating System Users for a PDB 3-60
About Configuring Operating System Users for a PDB 3-61
Configuring an Operating System User for a PDB 3-61

Global User Authentication and Authorization 3-62
About Configuring Global User Authentication and Authorization 3-62
Configuration of Users Who Are Authorized by a Directory Service 3-63

Creating a Global User Who Has a Private Schema 3-63
Creating Multiple Enterprise Users Who Share Schemas 3-64
Advantages of Global Authentication and Global Authorization 3-64

Configuring an External Service to Authenticate Users and Passwords 3-65
About External Authentication 3-65
Advantages of External Authentication 3-66
Enabling External Authentication 3-66

ORACLE vii

Creating a User Who Is Authenticated Externally 3-67
Authentication of User Logins By Using the Operating System 3-67
Authentication of User Logins Using Network Authentication 3-68
Multitier Authentication and Authorization 3-68
Administration and Security in Clients, Application Servers, and Database Servers 3-68
Preserving User Identity in Multitiered Environments 3-70
Middle Tier Server Use for Proxy Authentication 3-70
About Proxy Authentication 3-71
Advantages of Proxy Authentication 3-72
Who Can Create Proxy User Accounts? 3-72
Guidelines for Creating Proxy User Accounts 3-73
Creating Proxy User Accounts and Authorizing Users to Connect Through
Them 3-73
Proxy User Accounts and the Authorization of Users to Connect Through
Them 3-74
Using Proxy Authentication with the Secure External Password Store 3-75
How the Identity of the Real User Is Passed with Proxy Authentication 3-75
Limits to the Privileges of the Middle Tier 3-76
Authorizing a Middle Tier to Proxy and Authenticate a User 3-77
Authorizing a Middle Tier to Proxy a User Authenticated by Other Means 3-78
Reauthenticating a User Through the Middle Tier to the Database 3-78
Using Password-Based Proxy Authentication 3-79
Using Proxy Authentication with Enterprise Users 3-79
Using Client Identifiers to Identify Application Users Unknown to the Database 3-80
About Client Identifiers 3-81
How Client Identifiers Work in Middle Tier Systems 3-81
Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity 3-81
Use of the CLIENT_IDENTIFIER Independent of Global Application Context 3-82
Setting the CLIENT_IDENTIFIER Independent of Global Application
Context 3-82
Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier 3-83
Enabling the CLIENTID_OVERWRITE Event System-Wide 3-84
Enabling the CLIENTID_OVERWRITE Event for the Current Session 3-84
Disabling the CLIENTID_OVERWRITE Event 3-85
User Authentication Data Dictionary Views 3-85
4 Configuring Privilege and Role Authorization
About Privileges and Roles 4-2
Who Should Be Granted Privileges? 4-3
How the Oracle Multitenant Option Affects Privileges 4-4

ORACLE

viii

Managing Administrative Privileges

About Administrative Privileges

Grants of Administrative Privileges to Users

SYSDBA and SYSOPER Privileges for Standard Database Operations
SYSBACKUP Administrative Privilege for Backup and Recovery Operations
SYSDG Administrative Privilege for Oracle Data Guard Operations

SYSKM Administrative Privilege for Transparent Data Encryption

SYSRAC Administrative Privilege for Oracle Real Application Clusters

Managing System Privileges

About System Privileges

Why Is It Important to Restrict System Privileges?
About the Importance of Restricting System Privileges
Restricting System Privileges by Securing the Data Dictionary
User Access to Objects in the SYS Schema

Grants and Revokes of System Privileges

Who Can Grant or Revoke System Privileges?

About ANY Privileges and the PUBLIC Role

Managing Commonly and Locally Granted Privileges

About Commonly and Locally Granted Privileges

How Commonly Granted System Privileges Work

How Commonly Granted Object Privileges Work

Granting or Revoking Privileges to Access a PDB

Example: Granting a Privilege in a Multitenant Environment

Enabling Common Users to View CONTAINER_DATA Object Information

Viewing Data About the Root, CDB, and PDBs While Connected to the Root

Enabling Common Users to Query Data in Specific PDBs

Managing Common Roles and Local Roles

About Common Roles and Local Roles

How Common Roles Work

How the PUBLIC Role Works in a Multitenant Environment
Privileges Required to Create, Modify, or Drop a Common Role
Rules for Creating Common Roles

Creating a Common Role

Rules for Creating Local Roles

Creating a Local Role

Role Grants and Revokes for Common Users and Local Users

Managing User Roles

About User Roles
What Are User Roles?
The Functionality of Roles

ORACLE

4-5
4-5
4-6
4-6
4-8

4-9
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-17
4-17
4-18
4-18

4-18
4-19
4-20
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-24
4-24
4-25
4-26
4-26

Properties of Roles and Why They Are Advantageous 4-27

Typical Uses of Roles 4-28
Common Uses of Application Roles 4-29
Common Uses of User Roles 4-29
How Roles Affect the Scope of a User's Privileges 4-29
How Roles Work in PL/SQL Blocks 4-29
How Roles Aid or Restrict DDL Usage 4-30
How Operating Systems Can Aid Roles 4-31
How Roles Work in a Distributed Environment 4-31
Predefined Roles in an Oracle Database Installation 4-32
Creating a Role 4-39
About the Creation of Roles 4-39
Creating a Role That Is Authenticated With a Password 4-40
Creating a Role That Has No Password Authentication 4-41
Creating a Role That Is External or Global 4-41
Altering a Role 4-42
Specifying the Type of Role Authorization 4-42
Authorizing a Role by Using the Database 4-43
Authorizing a Role by Using an Application 4-43
Authorizing a Role by Using an External Source 4-44
Authorizing a Role by Using the Operating System 4-44
Authorizing a Role by Using a Network Client 4-44
Authorizing a Global Role by an Enterprise Directory Service 4-45
Granting and Revoking Roles 4-45
About Granting and Revoking Roles 4-45
Who Can Grant or Revoke Roles? 4-46
Granting and Revoking Roles to and from Program Units 4-46
Dropping Roles 4-47
Restricting SQL*Plus Users from Using Database Roles 4-47
Potential Security Problems of Using Ad Hoc Tools 4-47
How the PRODUCT_USER_PROFILE System Table Can Limit Roles 4-48
How Stored Procedures Can Encapsulate Business Logic 4-49
Role Privileges and Secure Application Roles 4-49
Restricting Operations on PDBs Using PDB Lockdown Profiles 4-50
About PDB Lockdown Profiles 4-50
PDB Lockdown Profile Inheritance 4-51
Default PDB Lockdown Profiles 4-52
Creating a PDB Lockdown Profile 4-53
Enabling or Disabling a PDB Lockdown Profile 4-54
Dropping a PDB Lockdown Profile 4-56
Managing Object Privileges 4-57

ORACLE X

About Object Privileges 4-57

Who Can Grant Object Privileges? 4-58
Grants and Revokes of Object Privileges 4-58
About Granting and Revoking Object Privileges 4-59
How the ALL Clause Grants or Revokes All Available Object Privileges 4-59
READ and SELECT Object Privileges 4-59
About Managing READ and SELECT Object Privileges 4-59
Enabling Users to Use the READ Obiject Privilege to Query Any Table in the
Database 4-60
Restrictions on the READ and READ ANY TABLE Privileges 4-60
Object Privilege Use with Synonyms 4-61
Sharing Application Common Objects 4-62
Metadata-Linked Application Common Objects 4-62
Data-Linked Application Common Objects 4-63
Extended Data-Linked Application Common Objects 4-64
Table Privileges 4-65
How Table Privileges Affect Data Manipulation Language Operations 4-65
How Table Privileges Affect Data Definition Language Operations 4-65
View Privileges 4-66
Privileges Required to Create Views 4-66
The Use of Views to Increase Table Security 4-67
Procedure Privileges 4-68
The Use of the EXECUTE Privilege for Procedure Privileges 4-68
Procedure Execution and Security Domains 4-68
System Privileges Required to Create or Replace a Procedure 4-69
System Privileges Required to Compile a Procedure 4-69
How Procedure Privileges Affect Packages and Package Objects 4-69
About the Effect of Procedure Privileges on Packages and Package Objects
4-70
Example: Procedure Privileges Used in One Package 4-70
Example: Procedure Privileges and Package Objects 4-71
Type Privileges 4-71
System Privileges for Named Types 4-72
Object Privileges for Named Types 4-72
Method Execution Model for Named Types 4-73
Privileges Required to Create Types and Tables Using Types 4-73
Example: Privileges for Creating Types and Tables Using Types 4-74
Privileges on Type Access and Object Access 4-75
Type Dependencies 4-76
Grants of User Privileges and Roles 4-77
Granting System Privileges and Roles to Users and Roles 4-77
Privileges for Grants of System Privileges and Roles to Users and Roles 4-77

ORACLE Xi

Example: Granting a System Privilege and a Role to a User 4-78

Example: Granting the EXECUTE Privilege on a Directory Object 4-78

Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege 4-78
Creating a New User with the GRANT Statement 4-78
Granting Object Privileges to Users and Roles 4-79
About Granting Object Privileges to Users and Roles 4-79

How the WITH GRANT OPTION Clause Works 4-80

Grants of Object Privileges on Behalf of the Object Owner 4-81

Grants of Privileges on Columns 4-82
Row-Level Access Control 4-82
Revokes of Privileges and Roles from a User 4-83
Revokes of System Privileges and Roles 4-83
Revokes of Object Privileges 4-83
About Revokes of Object Privileges 4-84
Revokes of Multiple Object Privileges 4-84
Revokes of Object Privileges on Behalf of the Object Owner 4-84
Revokes of Column-Selective Object Privileges 4-85
Revokes of the REFERENCES Object Privilege 4-86
Cascading Effects of Revoking Privileges 4-86
Cascading Effects When Revoking System Privileges 4-86
Cascading Effects When Revoking Object Privileges 4-87

Grants and Revokes of Privileges to and from the PUBLIC Role 4-87
Grants of Roles Using the Operating System or Network 4-88
About Granting Roles Using the Operating System or Network 4-88
Operating System Role Identification 4-89
Operating System Role Management 4-90
Role Grants and Revokes When OS_ROLES Is Set to TRUE 4-90
Role Enablements and Disablements When OS_ROLES Is Set to TRUE 4-91
Network Connections with Operating System Role Management 4-91
How Grants and Revokes Work with SET ROLE and Default Role Settings 4-91
When Grants and Revokes Take Effect 4-92
How the SET ROLE Statement Affects Grants and Revokes 4-92
Specifying the Default Role for a User 4-92
The Maximum Number of Roles That a User Can Have Enabled 4-93
User Privilege and Role Data Dictionary Views 4-93
Data Dictionary Views to Find Information about Privilege and Role Grants 4-94
Query to List All System Privilege Grants 4-96
Query to List All Role Grants 4-96
Query to List Object Privileges Granted to a User 4-97
Query to List the Current Privilege Domain of Your Session 4-97
Query to List Roles of the Database 4-98

ORACLE Xii

Query to List Information About the Privilege Domains of Roles 4-99
5 Configuring Centrally Managed Users with Microsoft Active
Directory
Introduction to Centrally Managed Users with Microsoft Active Directory 5-1
About the Oracle Database-Microsoft Active Directory Integration 5-2
How Centrally Managed Users with Microsoft Active Directory Works 5-3
Centrally Managed User-Microsoft Active Directory Architecture 5-3
Supported Authentication Methods 5-4
Users Supported by Centrally Managed Users with Microsoft Active Directory 5-4
How the Oracle Multitenant Option Affects Centrally Managed Users 5-5
Configuring the Oracle Database-Microsoft Active Directory Integration 5-6
About Configuring the Oracle Database-Microsoft Active Directory Connection 5-6
Connecting to Microsoft Active Directory 5-6
Step 1: Create an Oracle Service Directory User Account on Microsoft
Active Directory 5-7
Step 2: For Password Authentication, Install the Password Filter and Extend
the Microsoft Active Directory Schema 5-8
Step 3: If Necessary, Install the Oracle Database Software 5-9
Step 4: Create the dsi.ora or Idap.ora File 5-10
Step 5: Request an Active Directory Certificate for a Secure Connection 5-14
Step 6: Create the Wallet for a Secure Connection 5-14
Step 7: Configure the Microsoft Active Directory Connection 5-15
Step 8: Verify the Oracle Wallet 5-19
Step 9: Test the Integration 5-20
Configuring Authentication for Centrally Managed Users 5-21
Configuring Password Authentication for Centrally Managed Users 5-21
About Configuring Password Authentication for Centrally Managed Users 5-21
Configuring Password Authentication for a Centrally Managed User 5-22
Logging in to an Oracle Database Using Password Authentication 5-23
Configuring Kerberos Authentication for Centrally Managed Users 5-24
Configuring Authentication Using PKI Certificates for Centrally Managed Users 5-25
Configuring Authorization for Centrally Managed Users 5-25
About Configuring Authorization for Centrally Managed Users 5-26
Mapping a Directory Group to a Shared Database Global User 5-27
Mapping a Directory Group to a Global Role 5-28
Exclusively Mapping a Directory User to a Database Global User 5-28
Altering or Migrating a User Mapping Definition 5-29
Configuring Administrative Users 5-29
Configuring Database Administrative Users with Shared Access Accounts 5-29
Configuring Database Administrative Users Using Exclusive Mapping 5-30

ORACLE

Xiii

Verifying the Centrally Managed User Logon Information 5-30
Integration of Oracle Database with Microsoft Active Directory Account Policies 5-33
6 Managing Security for Definer's Rights and Invoker's Rights
About Definer's Rights and Invoker's Rights 6-1
How Procedure Privileges Affect Definer's Rights 6-2
How Procedure Privileges Affect Invoker's Rights 6-3
When You Should Create Invoker's Rights Procedures 6-4
Controlling Invoker's Rights Privileges for Procedure Calls and View Access 6-5
How the Privileges of a Schema Affect the Use of Invoker's Rights Procedures 6-5
How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege Access 6-6
Grants of the INHERIT PRIVILEGES Privilege to Other Users 6-6
Example: Granting INHERIT PRIVILEGES on an Invoking User 6-7
Example: Revoking INHERIT PRIVILEGES 6-7
Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users 6-7
Example: Granting INHERIT ANY PRIVILEGES to a Trusted Procedure Owner 6-8
Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES 6-8
Definer's Rights and Invoker's Rights in Views 6-9
About Controlling Definer's Rights and Invoker's Rights in Views 6-9
Using the BEQUEATH Clause in the CREATE VIEW Statement 6-10
Finding the User Name or User ID of the Invoking User 6-10
Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER Views 6-11
Using Code Based Access Control for Definer's Rights and Invoker's Rights 6-12
About Using Code Based Access Control for Applications 6-12
Who Can Grant Code Based Access Control Roles to a Program Unit? 6-13
How Code Based Access Control Works with Invoker's Rights Program Units 6-14
How Code Based Access Control Works with Definer's Rights Program Units 6-15
Grants of Database Roles to Users for Their CBAC Grants 6-17
Grants and Revokes of Database Roles to a Program Unit 6-18
Tutorial: Controlling Access to Sensitive Data Using Code Based Access
Control 6-19
About This Tutorial 6-19
Step 1: Create the User and Grant HR the CREATE ROLE Privilege 6-20
Step 2: Create the print_employees Invoker's Rights Procedure 6-20
Step 3: Create the hr_clerk Role and Grant Privileges for It 6-21
Step 4: Test the Code Based Access Control HR.print_employees
Procedure 6-21
Step 5: Create the view_emp_role Role and Grant Privileges for It 6-22
Step 6: Test the HR.print_employees Procedure Again 6-22
Step 7: Remove the Components of This Tutorial 6-23
Controlling Definer's Rights Privileges for Database Links 6-23

ORACLE

Xiv

About Controlling Definer's Rights Privileges for Database Links 6-24

Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other Users 6-25
Example: Granting INHERIT REMOTE PRIVILEGES on a Connected User 6-25
Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other Users 6-26
Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege 6-26
Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege 6-27
Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege from
PUBLIC 6-27
Tutorial: Using a Database Link in a Definer's Rights Procedure 6-27
About This Tutorial 6-28
Step 1: Create User Accounts 6-28
Step 2: As User dbuser2, Create a Table to Store User IDs 6-28
Step 3: As User dbuserl, Create a Database Link and Definer's Rights
Procedure 6-29
Step 4: Test the Definer's Rights Procedure 6-29
Step 5: Remove the Components of This Tutorial 6-30

7 Managing Fine-Grained Access in PL/SQL Packages and Types

About Managing Fine-Grained Access in PL/SQL Packages and Types 7-2
About Fine-Grained Access Control to External Network Services 7-2
About Access Control to Oracle Wallets 7-3
Upgraded Applications That Depend on Packages That Use External Network
Services 7-3
Configuring Access Control for External Network Services 7-4
Syntax for Configuring Access Control for External Network Services 7-4
Example: Configuring Access Control for External Network Services 7-6
Revoking Access Control Privileges for External Network Services 7-6
Example: Revoking External Network Services Privileges 7-7
Configuring Access Control to an Oracle Wallet 7-7
About Configuring Access Control to an Oracle Wallet 7-7
Step 1: Create an Oracle Wallet 7-8
Step 2: Configure Access Control Privileges for the Oracle Wallet 7-8
Step 3: Make the HTTP Request with the Passwords and Client Certificates 7-9
Making the HTTPS Request with the Passwords and Client Certificates 7-10
Using a Request Context to Hold the Wallet When Sharing the Session with
Other Applications 7-11
Use of Only a Client Certificate to Authenticate 7-11
Use of a Password to Authenticate 7-11
Revoking Access Control Privileges for Oracle Wallets 7-12
Examples of Configuring Access Control for External Network Services 7-13

Example: Configuring Access Control for a Single Role and Network Connection
7-13

ORACLE XV

Example: Configuring Access Control for a User and Role 7-14
Example: Using the DBA HOST_ACES View to Show Granted Privileges 7-14
Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet 7-15
Example: Configuring ACL Access for a Wallet in a Shared Database Session 7-16
Specifying a Group of Network Host Computers 7-17
Precedence Order for a Host Computer in Multiple Access Control List Assignments 7-17
Precedence Order for a Host in Access Control List Assignments with Port Ranges 7-18
Checking Privilege Assignments That Affect User Access to Network Hosts 7-18
About Privilege Assignments that Affect User Access to Network Hosts 7-19
How to Check User Network Connection and Domain Privileges 7-20
Example: Administrator Checking User Network Access Control Permissions 7-20
How Users Can Check Their Network Connection and Domain Privileges 7-21
Example: User Checking Network Access Control Permissions 7-21
Configuring Network Access for Java Debug Wire Protocol Operations 7-21
Data Dictionary Views for Access Control Lists Configured for User Access 7-22
8 Managing Security for a Multitenant Environment in Enterprise
Manager
About Managing Security for a Multitenant Environment in Enterprise Manager 8-1
Logging into a Multitenant Environment in Enterprise Manager 8-1
Logging into a CDB or a PDB 8-2
Switching to a Different PDB or to the Root 8-3
Managing Common and Local Users in Enterprise Manager 8-3
Creating a Common User Account in Enterprise Manager 8-4
Editing a Common User Account in Enterprise Manager 8-4
Dropping a Common User Account in Enterprise Manager 8-5
Creating a Local User Account in Enterprise Manager 8-6
Editing a Local User Account in Enterprise Manager 8-6
Dropping a Local User Account in Enterprise Manager 8-7
Managing Common and Local Roles and Privileges in Enterprise Manager 8-7
Creating a Common Role in Enterprise Manager 8-8
Editing a Common Role in Enterprise Manager 8-8
Dropping a Common Role in Enterprise Manager 8-9
Revoking Common Privilege Grants in Enterprise Manager 8-9
Creating a Local Role in Enterprise Manager 8-10
Editing a Local Role in Enterprise Manager 8-10
Dropping a Local Role in Enterprise Manager 8-11
Revoking Local Privilege Grants in Enterprise Manager 8-11

ORACLE

XVi

Part |l Application Development Security

9 Managing Security for Application Developers

About Application Security Policies
Considerations for Using Application-Based Security
Are Application Users Also Database Users?
Is Security Better Enforced in the Application or in the Database?
Securing Passwords in Application Design
General Guidelines for Securing Passwords in Applications
Platform-Specific Security Threats
Guidelines for Designing Applications to Handle Password Input
Guidelines for Configuring Password Formats and Behavior
Guidelines for Handling Passwords in SQL Scripts
Use of an External Password Store to Secure Passwords
Securing Passwords Using the ORAPWD Utility
Example: Java Code for Reading Passwords
Securing External Procedures
About Securing External Procedures
General Process for Configuring extproc for a Credential Authentication
extproc Process Authentication and Impersonation Expected Behaviors
Configuring Authentication for External Procedures
External Procedures for Legacy Applications
Managing Application Privileges
Advantages of Using Roles to Manage Application Privileges
Creating Secure Application Roles to Control Access to Applications
Step 1: Create the Secure Application Role

Step 2: Create a PL/SQL Package to Define the Access Policy for the
Application

About Creating a PL/SQL Package to Define the Access Policy for an
Application

Creating a PL/SQL Package or Procedure to Define the Access Policy for
an Application

Testing the Secure Application Role

Association of Privileges with User Database Roles

Why Users Should Only Have the Privileges of the Current Database Role

Use of the SET ROLE Statement to Automatically Enable or Disable Roles
Protecting Database Objects by Using Schemas

Protecting Database Objects in a Unique Schema

Protection of Database Objects in a Shared Schema
Object Privileges in an Application

ORACLE

9-13
9-13
9-13
9-14
9-15
9-17
9-17
9-18
9-18
9-18

9-19

9-19

9-20
9-21
9-21
9-22
9-22
9-22
9-23
9-23
9-23

XVii

What Application Developers Must Know About Object Privileges 9-24

SQL Statements Permitted by Object Privileges 9-24
Parameters for Enhanced Security of Database Communication 9-25
Bad Packets Received on the Database from Protocol Errors 9-26
Controlling Server Execution After Receiving a Bad Packet 9-26
Configuration of the Maximum Number of Authentication Attempts 9-27
Configuring the Display of the Database Version Banner 9-28
Configuring Banners for Unauthorized Access and Auditing User Actions 9-28

Part Ill Controlling Access to Data

10 Using Application Contexts to Retrieve User Information

About Application Contexts 10-1
What Is an Application Context? 10-2
Components of the Application Context 10-2
Where Are the Application Context Values Stored? 10-2
Benefits of Using Application Contexts 10-3
How Editions Affects Application Context Values 10-3
Application Contexts in a Multitenant Environment 10-4

Types of Application Contexts 10-5

Using Database Session-Based Application Contexts 10-6
About Database Session-Based Application Contexts 10-7
Components of a Database Session-Based Application Context 10-7
Creating Database Session-Based Application Contexts 10-8

About Creating Database Session-Based Application Contexts 10-8
Creating a Database Session-Based Application Context 10-9
Database Session-Based Application Contexts for Multiple Applications 10-10
Creating a Package to Set a Database Session-Based Application Context 10-10
About the Package That Manages the Database Session-Based Application
Context 10-11
Using the SYS_CONTEXT Function to Retrieve Session Information 10-12
Checking the SYS_CONTEXT Settings 10-12
Dynamic SQL with SYS_CONTEXT 10-13
SYS CONTEXT in a Parallel Query 10-13
SYS CONTEXT with Database Links 10-14
DBMS_SESSION.SET_CONTEXT for Setting Session Information 10-14
Example: Simple Procedure to Create an Application Context Value 10-15
Logon Triggers to Run a Database Session Application Context Package 10-16
Example: Creating a Simple Logon Trigger 10-17
Example: Creating a Logon Trigger for a Production Environment 10-17

ORACLE Xviii

Example: Creating a Logon Trigger for a Development Environment

Tutorial: Creating and Using a Database Session-Based Application Context

Step 1: Create User Accounts and Ensure the User SCOTT Is Active
Step 2: Create the Database Session-Based Application Context

Step 3: Create a Package to Retrieve Session Data and Set the Application
Context

Step 4: Create a Logon Trigger for the Package
Step 5: Test the Application Context
Step 6: Remove the Components of This Tutorial

Initializing Database Session-Based Application Contexts Externally

About Initializing Database Session-Based Application Contexts Externally
Default Values from Users
Values from Other External Resources

Example: Creating an Externalized Database Session-based Application
Context

Initialization of Application Context Values from a Middle-Tier Server

Initializing Database Session-Based Application Contexts Globally

About Initializing Database Session-Based Application Contexts Globally
Database Session-Based Application Contexts with LDAP

How Globally Initialized Database Session-Based Application Contexts
Work

Initializing a Database Session-Based Application Context Globally

Externalized Database Session-Based Application Contexts

Global Application Contexts

About Global Application Contexts

Uses for Global Application Contexts

Components of a Global Application Context

Global Application Contexts in an Oracle Real Application Clusters Environment

Creating Global Application Contexts

Ownership of the Global Application Context
Creating a Global Application Context

PL/SQL Package to Manage a Global Application Context

ORACLE

About the Package That Manages the Global Application Context

How Editions Affects the Results of a Global Application Context PL/SQL
Package

DBMS_SESSION.SET_CONTEXT username and client_id Parameters
Sharing Global Application Context Values for All Database Users

Example: Package to Manage Global Application Values for All Database
Users

Global Contexts for Database Users Who Move Between Applications
Global Application Context for Nondatabase Users

Example: Package to Manage Global Application Context Values for
Nondatabase Users

10-17
10-18
10-18
10-19

10-20
10-21
10-21
10-22
10-22
10-23
10-23
10-23

10-24
10-24
10-25
10-25
10-25

10-26
10-27
10-29
10-29
10-30
10-30
10-30
10-31
10-32
10-32
10-32
10-32
10-33

10-34
10-34
10-35

10-35
10-37
10-38

10-39

XiX

Clearing Session Data When the Session Closes 10-41
Embedding Calls in Middle-Tier Applications to Manage the Client Session 1D 10-42
About Managing Client Session IDs Using a Middle-Tier Application 10-42
Step 1: Retrieve the Client Session ID Using a Middle-Tier Application 10-42
Step 2: Set the Client Session ID Using a Middle-Tier Application 10-43
Step 3: Clear the Session Data Using a Middle-Tier Application 10-45
Tutorial: Creating a Global Application Context That Uses a Client Session ID 10-45
About This Tutorial 10-46
Step 1: Create User Accounts 10-46
Step 2: Create the Global Application Context 10-47
Step 3: Create a Package for the Global Application Context 10-47
Step 4: Test the Newly Created Global Application Context 10-48
Step 5: Modify the Session ID and Test the Global Application Context
Again 10-49
Step 6: Remove the Components of This Tutorial 10-50
Global Application Context Processes 10-50
Simple Global Application Context Process 10-51
Global Application Context Process for Lightweight Users 10-52
Using Client Session-Based Application Contexts 10-54
About Client Session-Based Application Contexts 10-54
Setting a Value in the CLIENTCONTEXT Namespace 10-55
Retrieving the CLIENTCONTEXT Namespace 10-56
Example: Retrieving a Client Session ID Value for Client Session-Based
Contexts 10-56
Clearing a Setting in the CLIENTCONTEXT Namespace 10-57
Clearing All Settings in the CLIENTCONTEXT Namespace 10-57
Application Context Data Dictionary Views 10-57
11 Using Oracle Virtual Private Database to Control Data Access
About Oracle Virtual Private Database 11-1
What Is Oracle Virtual Private Database? 11-2
Benefits of Using Oracle Virtual Private Database Policies 11-3
Security Policies Based on Database Objects Rather Than Applications 11-3
Control Over How Oracle Database Evaluates Policy Functions 11-3
Who Can Create Oracle Virtual Private Database Policies? 11-4
Privileges to Run Oracle Virtual Private Database Policy Functions 11-4
Oracle Virtual Private Database Use with an Application Context 11-4
Oracle Virtual Private Database in a Multitenant Environment 11-5
Components of an Oracle Virtual Private Database Policy 11-6
Function to Generate the Dynamic WHERE Clause 11-7
Policies to Attach the Function to the Objects You Want to Protect 11-8

ORACLE

XX

Configuration of Oracle Virtual Private Database Policies
About Oracle Virtual Private Database Policies
Attaching a Policy to a Database Table, View, or Synonym
Example: Attaching a Simple Oracle Virtual Private Database Policy to a Table
Enforcing Policies on Specific SQL Statement Types
Example: Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY
Control of the Display of Column Data with Policies
Policies for Column-Level Oracle Virtual Private Database
Example: Creating a Column-Level Oracle Virtual Private Database Policy
Display of Only the Column Rows Relevant to the Query
Column Masking to Display Sensitive Columns as NULL Values

Example: Adding Column Masking to an Oracle Virtual Private Database
Policy

Oracle Virtual Private Database Policy Groups
About Oracle Virtual Private Database Policy Groups
Creation of a New Oracle Virtual Private Database Policy Group
Default Policy Group with the SYS_DEFAULT Policy Group
Multiple Policies for Each Table, View, or Synonym
Validation of the Application Used to Connect to the Database
Optimizing Performance by Using Oracle Virtual Private Database Policy Types
About Oracle Virtual Private Database Policy Types
Dynamic Policy Type to Automatically Rerun Policy Functions
Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
Static Policy to Prevent Policy Functions from Rerunning for Each Query
Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY
Example: Shared Static Policy to Share a Policy with Multiple Objects
When to Use Static and Shared Static Policies
Context-Sensitive Policy for Application Context Attributes That Change

Example: Creating a Context-Sensitive Policy with
DBMS_RLS.ADD_POLICY

Example: Refreshing Cached Statements for a VPD Context-Sensitive
Policy

Example: Altering an Existing Context-Sensitive Policy

Example: Using a Shared Context Sensitive Policy to Share a Policy with
Multiple Objects

When to Use Context-Sensitive and Shared Context-Sensitive Policies
Summary of the Five Oracle Virtual Private Database Policy Types
Tutorials: Creating Oracle Virtual Private Database Policies
Tutorial: Creating a Simple Oracle Virtual Private Database Policy
About This Tutorial
Step 1: Ensure That the OE User Account Is Active
Step 2: Create a Policy Function

ORACLE

11-8

11-9
11-10
11-11
11-11
11-12
11-12
11-13
11-13
11-14
11-14

11-15
11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-20
11-20
11-21
11-21
11-22
11-22
11-23
11-23

11-24

11-25
11-25

11-25
11-26
11-27
11-27
11-28
11-28
11-28
11-29

XXi

Step 3: Create the Oracle Virtual Private Database Policy 11-30

Step 4: Test the Policy 11-30
Step 5: Remove the Components of This Tutorial 11-31
Tutorial: Implementing a Session-Based Application Context Policy 11-31
About This Tutorial 11-32
Step 1: Create User Accounts and Sample Tables 11-32
Step 2: Create a Database Session-Based Application Context 11-34
Step 3: Create a PL/SQL Package to Set the Application Context 11-34
Step 4: Create a Logon Trigger to Run the Application Context PL/SQL
Package 11-35
Step 5: Test the Logon Trigger 11-35
Step 6: Create a PL/SQL Policy Function to Limit User Access to Their
Orders 11-36
Step 7: Create the New Security Policy 11-36
Step 8: Test the New Policy 11-37
Step 9: Remove the Components of This Tutorial 11-38
Tutorial: Implementing an Oracle Virtual Private Database Policy Group 11-39
About This Tutorial 11-39
Step 1: Create User Accounts and Other Components for This Tutorial 11-40
Step 2: Create the Two Policy Groups 11-41
Step 3: Create PL/SQL Functions to Control the Policy Groups 11-41
Step 4: Create the Driving Application Context 11-42
Step 5: Add the PL/SQL Functions to the Policy Groups 11-43
Step 6: Test the Policy Groups 11-44
Step 7: Remove the Components of This Tutorial 11-45
How Oracle Virtual Private Database Works with Other Oracle Features 11-45
Oracle Virtual Private Database Policies with Editions 11-46
SELECT FOR UPDATE Statement in User Queries on VPD-Protected Tables 11-46
Oracle Virtual Private Database Policies and Outer or ANSI Joins 11-46
Oracle Virtual Private Database Security Policies and Applications 11-47
Automatic Reparsing for Fine-Grained Access Control Policies Functions 11-47
Oracle Virtual Private Database Policies and Flashback Queries 11-48
Oracle Virtual Private Database and Oracle Label Security 11-48
Using Oracle Virtual Private Database to Enforce Oracle Label Security
Policies 11-48
Oracle Virtual Private Database and Oracle Label Security Exceptions 11-49
Export of Data Using the EXPDP Utility access_method Parameter 11-50
User Models and Oracle Virtual Private Database 11-51
Oracle Virtual Private Database Data Dictionary Views 11-52

ORACLE XXii

12 Using Transparent Sensitive Data Protection

About Transparent Sensitive Data Protection 12-2
General Steps for Using Transparent Sensitive Data Protection 12-2
Use Cases for Transparent Sensitive Data Protection Policies 12-3
Privileges Required for Using Transparent Sensitive Data Protection 12-4
How a Multitenant Environment Affects Transparent Sensitive Data Protection 12-4
Creating Transparent Sensitive Data Protection Policies 12-5
Step 1: Create a Sensitive Type 12-6
Step 2: Identify the Sensitive Columns to Protect 12-6
Step 3: Import the Sensitive Columns List from ADM into Your Database 12-7
Step 4: Create the Transparent Sensitive Data Protection Policy 12-8
About Creating the Transparent Sensitive Data Protection Policy 12-8
Creating the Transparent Sensitive Data Protection Policy 12-9
Setting the Oracle Data Redaction or Virtual Private Database Feature
Options 12-10
Setting Conditions for the Transparent Sensitive Data Protection Policy 12-10
Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure 12-11
Step 5: Associate the Policy with a Sensitive Type 12-12
Step 6: Enable the Transparent Sensitive Data Protection Policy 12-12
Enabling Protection for the Current Database in a Protected Source 12-13
Enabling Protection for a Specific Table Column 12-13
Enabling Protection for a Specific Column Type 12-13
Step 7: Optionally, Export the Policy to Other Databases 12-14
Altering Transparent Sensitive Data Protection Policies 12-14
Disabling Transparent Sensitive Data Protection Policies 12-15
Dropping Transparent Sensitive Data Protection Policies 12-16
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values 12-17
About the REDACT_AUDIT Policy 12-18
Variables Associated with Sensitive Columns 12-18
About Variables Associated with Sensitive Columns 12-19
Bind Variables and Sensitive Columns in the Expressions of Conditions 12-19
A Bind Variable and a Sensitive Column Appearing in the Same SELECT
ltem 12-20
Bind Variables in Expressions Assigned to Sensitive Columns in INSERT or
UPDATE Operations 12-20
How Bind Variables on Sensitive Columns Behave with Views 12-21
Disabling the REDACT_AUDIT Policy 12-21
Enabling the REDACT_AUDIT Policy 12-22
Transparent Sensitive Data Protection Policies with Data Redaction 12-22
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies 12-23
About Using TSDP Policies with Oracle Virtual Private Database Policies 12-23

ORACLE XXiii

DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies 12-24

Tutorial: Creating a TSDP Policy That Uses Virtual Private Database Protection 12-25
Step 1: Create the hr_appuser User Account 12-26

Step 2: Identify the Sensitive Columns 12-26

Step 3: Create an Oracle Virtual Private Database Function 12-27

Step 4: Create and Enable a Transparent Sensitive Data Protection Policy 12-27

Step 5: Test the Transparent Sensitive Data Protection Policy 12-28

Step 6: Remove the Components of This Tutorial 12-29

Using Transparent Sensitive Data Protection Policies with Unified Auditing 12-30
About Using TSDP Policies with Unified Audit Policies 12-30
Unified Audit Policy Settings That Are Used with TSDP Policies 12-31
Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing 12-32
About Using TSDP Policies with Fine-Grained Auditing 12-32
Fine-Grained Auditing Parameters That Are Used with TSDP Policies 12-33
Using Transparent Sensitive Data Protection Policies with TDE Column Encryption 12-34
About Using TSDP Policies with TDE Column Encryption 12-35
TDE Column Encryption ENCRYPT Clause Settings Used with TSDP Policies 12-36
Transparent Sensitive Data Protection Data Dictionary Views 12-36

13 Encryption of Sensitive Credential Data in the Data Dictionary

About Encrypting Sensitive Credential Data in the Data Dictionary 13-1
How the Multitenant Option Affects the Encryption of Sensitive Data 13-2
Encrypting Sensitive Credential Data in System Tables 13-2
Rekeying Sensitive Credential Data in the SYS.LINK$ System Table 13-3
Deleting Sensitive Credential Data in System Tables 13-4
Restoring the Functioning of Database Links After a Lost Keystore 13-5
Data Dictionary Views for Encrypted Data Dictionary Credentials 13-6

14 Manually Encrypting Data

Security Problems That Encryption Does Not Solve 14-1
Principle 1: Encryption Does Not Solve Access Control Problems 14-1
Principle 2: Encryption Does Not Protect Against a Malicious Administrator 14-2
Principle 3: Encrypting Everything Does Not Make Data Secure 14-3

Data Encryption Challenges 14-4
Encrypted Indexed Data 14-4
Generated Encryption Keys 14-5
Transmitted Encryption Keys 14-5
Storing Encryption Keys 14-6

About Storing Encryption Keys 14-6

ORACLE XXiV

Storage of Encryption Keys in the Database
Storage of Encryption Keys in the Operating System
Users Managing Their Own Encryption Keys

Manual Encryption with Transparent Database Encryption and Tablespace
Encryption

Importance of Changing Encryption Keys
Encryption of Binary Large Objects
Data Encryption Storage with the DBMS_CRYPTO Package
Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g
Examples of Using the Data Encryption API
Example: Data Encryption Procedure
Example: AES 256-Bit Data Encryption and Decryption Procedures
Example: Encryption and Decryption Procedures for BLOB Data
Data Dictionary Views for Encrypted Data

Part IV Securing Data on the Network

14-6
14-8
14-8

14-8
14-9
14-9
14-9
14-11
14-14
14-14
14-15
14-16
14-19

15 Configuring Oracle Database Native Network Encryption and Data

Integrity

About Oracle Database Native Network Encryption and Data Integrity
How Oracle Database Native Network Encryption and Integrity Works
Advanced Encryption Standard
ARIA
GOST
SEED
Triple-DES Support

Oracle Database Native Network Encryption Data Integrity

Data Integrity Algorithms Support

Diffie-Hellman Based Key Negotiation

Configuration of Data Encryption and Integrity
About Activating Encryption and Integrity
About Negotiating Encryption and Integrity

About the Values for Negotiating Encryption and Integrity
REJECTED Configuration Parameter
ACCEPTED Configuration Parameter
REQUESTED Configuration Parameter
REQUIRED Configuration Parameter
Configuring Encryption and Integrity Parameters Using Oracle Net Manager
Configuring Encryption on the Client and the Server

ORACLE

15-1
15-2
15-2
15-2
15-2
15-2
15-3
15-3
15-3
15-4
15-4
15-5
15-5
15-6
15-7
15-7
15-7
15-8
15-8
15-8

XXV

Configuring Integrity on the Client and the Server 15-10

16 Configuring the Thin JDBC Client Network

About the Java Implementation 16-1
Java Database Connectivity Support 16-2
Thin JDBC Features 16-2
Implementation Overview 16-3
Obfuscation of the Java Cryptography Code 16-3
Configuration Parameters for the Thin JDBC Network Implementation 16-4
About the Thin JDBC Network Implementation Configuration Parameters 16-4
Client Encryption Level Parameter 16-5
Client Encryption Selected List Parameter 16-5
Client Integrity Level Parameter 16-6
Client Integrity Selected List Parameter 16-6
Client Authentication Service Parameter 16-7
AnoServices Constants 16-7

Part V. Managing Strong Authentication

17 Introduction to Strong Authentication

What Is Strong Authentication? 17-1
Centralized Authentication and Single Sign-On 17-2
How Centralized Network Authentication Works 17-2
Supported Strong Authentication Methods 17-4

About Kerberos 17-4

About Remote Authentication Dial-In User Service (RADIUS) 17-4

About Secure Sockets Layer 17-5
Oracle Database Native Network Encryption/Strong Authentication Architecture 17-5
System Requirements for Strong Authentication 17-7
Oracle Database Native Network Encryption and Strong Authentication Restrictions 17-7

18 Strong Authentication Administration Tools

About the Configuration and Administration Tools 18-1
Native Network Encryption and Strong Authentication Configuration Tools 18-1
About Oracle Net Manager 18-1
Kerberos Adapter Command-Line Utilities 18-2
Public Key Infrastructure Credentials Management Tools 18-2
About Oracle Wallet Manager 18-3

ORACLE XXVi

About the orapki Utility 18-3
Duties of Strong Authentication Administrators 18-4
19 Configuring Kerberos Authentication

Enabling Kerberos Authentication 19-1
Step 1: Install Kerberos 19-2
Step 2: Configure a Service Principal for an Oracle Database Server 19-3
Step 3: Extract a Service Key Table from Kerberos 19-4
Step 4: Install an Oracle Database Server and an Oracle Client 19-4
Step 5: Configure Oracle Net Services and Oracle Database 19-5
Step 6: Configure Kerberos Authentication 19-5
Step 6A: Configure Kerberos on the Client and on the Database Server 19-5
Step 6B: Set the Initialization Parameters 19-7
Step 6C: Set sqlnet.ora Parameters (Optional) 19-8
Step 7: Create a Kerberos User 19-10
Step 8: Create an Externally Authenticated Oracle User 19-11
Step 9: Get an Initial Ticket for the Kerberos/Oracle User 19-11
Utilities for the Kerberos Authentication Adapter 19-11
okinit Utility Options for Obtaining the Initial Ticket 19-12
oklist Utility Options for Displaying Credentials 19-14
okdstry Utility Options for Removing Credentials from the Cache File 19-15
okcreate Utility Options for Automatic Keytab Creation 19-15
Connecting to an Oracle Database Server Authenticated by Kerberos 19-16
Configuring Interoperability with a Windows 2008 Domain Controller KDC 19-16

About Configuring Interoperability with a Windows 2008 Domain Controller KDC 19-17
Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain Controller 19-17
Step 1A: Create the Client Kerberos Configuration Files 19-17

Step 1B: Specify the Oracle Configuration Parameters in the sqglnet.ora File 19-18
Step 1C: Specify the Listening Port Number 19-18

Step 2: Configure a Windows 2008 Domain Controller KDC for the Oracle Client 19-18
Step 2A: Create the User Account 19-19
Step 2B: Create the Oracle Database Principal User Account and Keytab 19-19

Step 3: Configure Oracle Database for a Windows 2008 Domain Controller KDC

19-20
Step 3A: Set Configuration Parameters in the sqglnet.ora File 19-20
Step 3B: Create an Externally Authenticated Oracle User 19-21
Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User 19-21
Configuring Kerberos Authentication Fallback Behavior 19-21
Troubleshooting the Oracle Kerberos Authentication Configuration 19-22

ORACLE

XXVii

20 Configuring Secure Sockets Layer Authentication

Secure Sockets Layer and Transport Layer Security

The Difference Between Secure Sockets Layer and Transport Layer Security

Using Transport Layer Security in a Multitenant Environment

How Oracle Database Uses Secure Sockets Layer for Authentication

How Secure Sockets Layer Works in an Oracle Environment: The SSL Handshake

Public Key Infrastructure in an Oracle Environment

About Public Key Cryptography

Public Key Infrastructure Components in an Oracle Environment

Certificate Authority
Certificates

Certificate Revocation Lists
Wallets

Hardware Security Modules

Secure Sockets Layer Combined with Other Authentication Methods

Architecture: Oracle Database and Secure Sockets Layer

How Secure Sockets Layer Works with Other Authentication Methods

Secure Sockets Layer and Firewalls

Secure Sockets Layer Usage Issues

Enabling Secure Sockets Layer

Step 1: Configure Secure Sockets Layer on the Server

Step 1A: Confirm Wallet Creation on the Server
Step 1B: Specify the Database Wallet Location on the Server

Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server
(Optional)

Step 1D: Set the Required Secure Sockets Layer Version on the Server
(Optional)

Step 1E: Set SSL Client Authentication on the Server (Optional)
Step 1F: Set SSL as an Authentication Service on the Server (Optional)
Step 1G: Disable SSLv3 on the Server and Client (Optional)

Step 1H: Create a Listening Endpoint that Uses TCP/IP with SSL on the
Server

Step 2: Configure Secure Sockets Layer on the Client

ORACLE

Step 2A: Confirm Client Wallet Creation

Step 2B: Configure the Server DNs and Use TCP/IP with SSL on the Client
Step 2C: Specify Required Client SSL Configuration (Wallet Location)

Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
Step 2E: Set the Required SSL Version on the Client (Optional)

Step 2F: Set SSL as an Authentication Service on the Client (Optional)

Step 2G: Specify the Certificate to Use for Authentication on the Client
(Optional)

20-1
20-2
20-2
20-3
20-3
20-4
20-4
20-5
20-5
20-6
20-6
20-7
20-7
20-8
20-8
20-8
20-9
20-10
20-10
20-11
20-11
20-12

20-13

20-16
20-17
20-18
20-19

20-19
20-19
20-20
20-20
20-22
20-24
20-26
20-27

20-27

XXV

Step 3: Log in to the Database Instance 20-28
Troubleshooting the Secure Sockets Layer Configuration 20-29
Certificate Validation with Certificate Revocation Lists 20-32

About Certificate Validation with Certificate Revocation Lists 20-32

What CRLs Should You Use? 20-32

How CRL Checking Works 20-33

Configuring Certificate Validation with Certificate Revocation Lists 20-33

About Configuring Certificate Validation with Certificate Revocation Lists 20-34
Enabling Certificate Revocation Status Checking for the Client or Server 20-34
Disabling Certificate Revocation Status Checking 20-36

Certificate Revocation List Management 20-37

About Certificate Revocation List Management 20-37
Displaying orapki Help for Commands That Manage CRLs 20-38
Renaming CRLs with a Hash Value for Certificate Validation 20-38
Uploading CRLs to Oracle Internet Directory 20-39
Listing CRLs Stored in Oracle Internet Directory 20-39
Viewing CRLs in Oracle Internet Directory 20-40
Deleting CRLs from Oracle Internet Directory 20-41

Troubleshooting CRL Certificate Validation 20-41

Oracle Net Tracing File Error Messages Associated with Certificate Validation 20-42
Configuring Your System to Use Hardware Security Modules 20-43

General Guidelines for Using Hardware Security Modules for SSL 20-44

Configuring Your System to Use nCipher Hardware Security Modules 20-44

About Configuring Your System to Use nCipher Hardware Security Modules 20-45
Oracle Components Required To Use an nCipher Hardware Security
Module 20-45
Directory Path Requirements for Installing an nCipher Hardware Security
Module 20-46
Configuring Your System to Use SafeNET Hardware Security Modules 20-46
About Configuring Your System to Use SafeNET Hardware Security
Modules 20-46
Oracle Components Required for SafeNET Luna SA Hardware Security
Modules 20-47
Directory Path Requirements for Installing a SafeNET Hardware Security
Module 20-47
Troubleshooting Using Hardware Security Modules 20-48
Errors in the Oracle Net Trace Files 20-48
Error Messages Associated with Using Hardware Security Modules 20-48
21 Configuring RADIUS Authentication
About Configuring RADIUS Authentication 21-1
RADIUS Components 21-3

ORACLE

XXiX

RADIUS Authentication Modes 21-3
Synchronous Authentication Mode 21-3
Sequence for Synchronous Authentication Mode 21-3
Example: Synchronous Authentication with SecurlD Token Cards 21-4
Challenge-Response (Asynchronous) Authentication Mode 21-5
Sequence for Challenge-Response (Asynchronous) Authentication Mode 21-5
Example: Asynchronous Authentication with Smart Cards 21-7
Example: Asynchronous Authentication with ActivCard Tokens 21-7
Enabling RADIUS Authentication, Authorization, and Accounting 21-8
Step 1: Configure RADIUS Authentication 21-8
Step 1A: Configure RADIUS on the Oracle Client 21-9

Step 1B: Configure RADIUS on the Oracle Database Server 21-10

Step 1C: Configure Additional RADIUS Features 21-13

Step 2: Create a User and Grant Access 21-16
Step 3: Configure External RADIUS Authorization (Optional) 21-17
Step 3A: Configure the Oracle Server (RADIUS Client) 21-17

Step 3B: Configure the Oracle Client Where Users Log In 21-17

Step 3C: Configure the RADIUS Server 21-17

Step 4: Configure RADIUS Accounting 21-18
Step 4A: Set RADIUS Accounting on the Oracle Database Server 21-19

Step 4B: Configure the RADIUS Accounting Server 21-19

Step 5: Add the RADIUS Client Name to the RADIUS Server Database 21-19
Step 6: Configure the Authentication Server for Use with RADIUS 21-20
Step 7: Configure the RADIUS Server for Use with the Authentication Server 21-20
Step 8: Configure Mapping Roles 21-20
Using RADIUS to Log in to a Database 21-21
RSA ACE/Server Configuration Checklist 21-22

272 Customizing the Use of Strong Authentication

Connecting to a Database Using Strong Authentication 22-1
Disabling Strong Authentication and Native Network Encryption 22-2
Configuring Multiple Authentication Methods 22-4
Configuring Oracle Database for External Authentication 22-5
Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora 22-5
Setting OS_AUTHENT_PREFIX to a Null Value 22-6

Part VI Monitoring Database Activity with Auditing

ORACLE

XXX

23 Introduction to Auditing

What Is Auditing? 23-2
Why Is Auditing Used? 23-3
Best Practices for Auditing 23-3
What Is Unified Auditing? 23-4
Benefits of the Unified Audit Trail 23-4
Checking if Your Database Has Migrated to Unified Auditing 23-5
Mixed Mode Auditing 23-5
About Mixed Mode Auditing 23-6
Enablement of Unified Auditing 23-7
How Database Creation Determines the Type of Auditing You Have Enabled 23-7
Capabilities of Mixed Mode Auditing 23-7
Who Can Perform Auditing? 23-8
About Auditing in a Multitenant Environment 23-9
Auditing in a Distributed Database 23-9
24 Configuring Audit Policies

Selecting an Auditing Type 24-1
Auditing SQL Statements, Privileges, and Other General Activities 24-1
Auditing Commonly Used Security-Relevant Activities 24-2
Auditing Specific, Fine-Grained Activities 24-2
Auditing Activities with Unified Audit Policies and the AUDIT Statement 24-3
About Auditing Activities with Unified Audit Policies and AUDIT 24-4
Best Practices for Creating Unified Audit Policies 24-5
Syntax for Creating a Unified Audit Policy 24-5
Auditing Roles 24-7
About Role Auditing 24-7
Configuring Role Unified Audit Policies 24-7
Example: Auditing the DBA Role in a Multitenant Environment 24-8
Auditing System Privileges 24-8
About System Privilege Auditing 24-9

System Privileges That Can Be Audited 24-9

System Privileges That Cannot Be Audited 24-10
Configuring a Unified Audit Policy to Capture System Privilege Use 24-10
Example: Auditing a User Who Has ANY Privileges 24-10
Example: Using a Condition to Audit a System Privilege 24-11

How System Privilege Unified Audit Policies Appear in the Audit Trail 24-11
Auditing Administrative Users 24-11
Administrative User Accounts That Can Be Audited 24-12
Configuring a Unified Audit Policy to Capture Administrator Activities 24-12

ORACLE

XXXI

Example: Auditing the SYS User 24-12

Auditing Object Actions 24-13
About Auditing Object Actions 24-14
Object Actions That Can Be Audited 24-14
Configuring an Object Action Unified Audit Policy 24-15
Example: Auditing Actions on SYS Objects 24-15
Example: Auditing Multiple Actions on One Object 24-15
Example: Auditing Both Actions and Privileges on an Object 24-16
Example: Auditing All Actions on a Table 24-16
Example: Auditing All Actions in the Database 24-16
How Object Action Unified Audit Policies Appear in the Audit Trail 24-16
Auditing Functions, Procedures, Packages, and Triggers 24-17
Auditing of Oracle Virtual Private Database Predicates 24-17
Audit Policies for Oracle Virtual Private Database Policy Functions 24-19
Unified Auditing with Editioned Objects 24-19

Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges 24-20
About Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges 24-20
Creating a Unified Audit Policy to Capture READ Object Privilege
Operations 24-20
How the Unified Audit Trail Captures READ ANY TABLE and SELECT ANY
TABLE 24-21

Auditing SQL Statements and Privileges in a Multitier Environment 24-23

Creating a Condition for a Unified Audit Policy 24-25
About Conditions in Unified Audit Policies 24-26
Configuring a Unified Audit Policy with a Condition 24-26
Example: Auditing Access to SQL*Plus 24-28
Example: Auditing Actions Not in Specific Hosts 24-28
Example: Auditing Both a System-Wide and a Schema-Specific Action 24-28
Example: Auditing a Condition Per Statement Occurrence 24-28
Example: Unified Audit Session ID of a Current Administrative User Session 24-29
Example: Unified Audit Session ID of a Current Non-Administrative User
Session 24-29
How Audit Records from Conditions Appear in the Audit Trail 24-30

Auditing Application Context Values 24-30
About Auditing Application Context Values 24-30
Configuring Application Context Audit Settings 24-31
Disabling Application Context Audit Settings 24-31
Example: Auditing Application Context Values in a Default Database 24-32
Example: Auditing Application Context Values from Oracle Label Security 24-32
How Audited Application Contexts Appear in the Audit Trall 24-32

Auditing Oracle Database Real Application Security Events 24-32
About Auditing Oracle Database Real Application Security Events 24-33

ORACLE XXXii

Oracle Database Real Application Security Auditable Events

Oracle Database Real Application Security User, Privilege, and Role Audit
Events

Oracle Database Real Application Security Security Class and ACL Audit
Events

Oracle Database Real Application Security Session Audit Events
Oracle Database Real Application Security ALL Events

Configuring a Unified Audit Policy for Oracle Database Real Application
Security

Example: Auditing Real Application Security User Account Modifications

Example: Using a Condition in a Real Application Security Unified Audit
Policy

How Oracle Database Real Application Security Events Appear in the Audit
Trall

Auditing Oracle Recovery Manager Events

About Auditing Oracle Recovery Manager Events
Oracle Recovery Manager Unified Audit Trail Events
How Oracle Recovery Manager Audited Events Appear in the Audit Trall

Auditing Oracle Database Vault Events

About Auditing Oracle Database Vault Events

Who Is Audited in Oracle Database Vault?

About Oracle Database Vault Unified Audit Trail Events
Oracle Database Vault Realm Audit Events

Oracle Database Vault Rule Set and Rule Audit Events
Oracle Database Vault Command Rule Audit Events

Oracle Database Vault Factor Audit Events

Oracle Database Vault Secure Application Role Audit Events
Oracle Database Vault Oracle Label Security Audit Events
Oracle Database Vault Oracle Data Pump Audit Events
Oracle Database Vault Enable and Disable Audit Events
Configuring a Unified Audit Policy for Oracle Database Vault
Example: Auditing an Oracle Database Vault Realm
Example: Auditing an Oracle Database Vault Rule Set
Example: Auditing Two Oracle Database Vault Events
Example: Auditing Oracle Database Vault Factors

How Oracle Database Vault Audited Events Appear in the Audit Trail

Auditing Oracle Label Security Events

ORACLE

About Auditing Oracle Label Security Events

Oracle Label Security Unified Audit Trail Events

Oracle Label Security Auditable User Session Labels

Configuring a Unified Audit Policy for Oracle Label Security
Example: Auditing Oracle Label Security Session Label Attributes

24-34

24-34

24-36
24-37
24-38

24-39
24-39

24-39

24-40
24-40
24-40
24-41
24-41
24-42
24-43
24-43
24-44
24-44
24-45
24-46
24-46
24-48
24-49
24-49
24-50
24-50
24-51
24-51
24-51
24-51
24-52
24-52
24-53
24-53
24-55
24-56
24-56

XXXiii

Example: Excluding a User from an Oracle Label Security Policy 24-56

Example: Auditing Oracle Label Security Policy Actions 24-56
Example: Querying for Audited OLS Session Labels 24-57
How Oracle Label Security Audit Events Appear in the Audit Trail 24-57
Auditing Oracle Data Mining Events 24-58
About Auditing Oracle Data Mining Events 24-58
Oracle Data Mining Unified Audit Trail Events 24-58
Configuring a Unified Audit Policy for Oracle Data Mining 24-59
Example: Auditing Multiple Oracle Data Mining Operations by a User 24-59
Example: Auditing All Failed Oracle Data Mining Operations by a User 24-60
How Oracle Data Mining Events Appear in the Audit Trail 24-60
Auditing Oracle Data Pump Events 24-61
About Auditing Oracle Data Pump Events 24-61
Oracle Data Pump Unified Audit Trail Events 24-61
Configuring a Unified Audit Policy for Oracle Data Pump 24-62
Example: Auditing Oracle Data Pump Import Operations 24-62
Example: Auditing All Oracle Data Pump Operations 24-62
How Oracle Data Pump Audited Events Appear in the Audit Trall 24-62
Auditing Oracle SQL*Loader Direct Load Path Events 24-63
About Auditing in Oracle SQL*Loader Direct Path Load Events 24-63
Oracle SQL*Loader Direct Load Path Unified Audit Trail Events 24-64
Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct Path
Events 24-64
Example: Auditing Oracle SQL*Loader Direct Path Load Operations 24-64
How SQL*Loader Direct Path Load Audited Events Appear in the Audit Trail 24-65
Unified Audit Policies or AUDIT Settings in a Multitenant Environment 24-65
About Local, CDB Common, and Application Common Audit Policies 24-66
Traditional Auditing in a Multitenant Environment 24-67
Configuring a Local Unified Audit Policy or Common Unified Audit Policy 24-68
Example: Local Unified Audit Policy 24-70
Example: CDB Common Unified Audit Policy 24-70
Example: Application Common Unified Audit Policy 24-70
How Local or Common Audit Policies or Settings Appear in the Audit Trail 24-71
Altering Unified Audit Policies 24-72
About Altering Unified Audit Policies 24-72
Altering a Unified Audit Policy 24-72
Example: Altering a Condition in a Unified Audit Policy 24-73
Example: Altering an Oracle Label Security Component in a Unified Audit
Policy 24-74
Example: Altering Roles in a Unified Audit Policy 24-74
Example: Dropping a Condition from a Unified Audit Policy 24-74
Enabling and Applying Unified Audit Policies to Users and Roles 24-74

ORACLE XXXIV

About Enabling Unified Audit Policies 24-75

Enabling a Unified Audit Policy 24-76
Example: Enabling a Unified Audit Policy 24-77
Disabling Unified Audit Policies 24-77
About Disabling Unified Audit Policies 24-77
Disabling a Unified Audit Policy 24-78
Example: Disabling a Unified Audit Policy 24-78
Dropping Unified Audit Policies 24-78
About Dropping Unified Audit Policies 24-79
Dropping a Unified Audit Policy 24-79
Example: Disabling and Dropping a Unified Audit Policy 24-79
Tutorial: Auditing Nondatabase Users 24-80
Step 1: Create the User Accounts and Ensure the User OE Is Active 24-80
Step 2: Create the Unified Audit Policy 24-81
Step 3: Test the Policy 24-81
Step 4: Remove the Components of This Tutorial 24-82
Auditing Activities with the Predefined Unified Audit Policies 24-83
Logon Failures Predefined Unified Audit Policy 24-83
Secure Options Predefined Unified Audit Policy 24-84
Oracle Database Parameter Changes Predefined Unified Audit Policy 24-85
User Account and Privilege Management Predefined Unified Audit Policy 24-85
Center for Internet Security Recommendations Predefined Unified Audit Policy 24-85
Oracle Database Real Application Security Predfined Audit Policies 24-85
System Administrator Operations Predefined Unified Audit Policy 24-86
Session Operations Predefined Unified Audit Policy 24-86
Oracle Database Vault Predefined Unified Audit Policy for DVSYS and
LBACSYS Schemas 24-87
Oracle Database Vault Predefined Unified Audit Policy for Default Realms and
Command Rules 24-87
Auditing Specific Activities with Fine-Grained Auditing 24-87
About Fine-Grained Auditing 24-88
Where Are Fine-Grained Audit Records Stored? 24-89
Who Can Perform Fine-Grained Auditing? 24-89
Fine-Grained Auditing on Tables or Views That Have Oracle VPD Policies 24-90
Fine-Grained Auditing in a Multitenant Environment 24-90
Fine-Grained Audit Policies with Editions 24-91
Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit Policies 24-92
About the DBMS_FGA PL/SQL PL/SQL Package 24-92
The DBMS_FGA PL/SQL Package with Editions 24-93
The DBMS_FGA PL/SQL Package in a Multitenant Environment 24-93
Creating a Fine-Grained Audit Policy 24-93

ORACLE' -

Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit

Policy 24-96
Disabling a Fine-Grained Audit Policy 24-97
Enabling a Fine-Grained Audit Policy 24-98
Dropping a Fine-Grained Audit Policy 24-98
Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy 24-99
About This Tutorial 24-99
Step 1: Install and Configure the UTL_MAIL PL/SQL Package 24-100
Step 2: Create User Accounts 24-101
Step 3: Configure an Access Control List File for Network Services 24-102
Step 4: Create the Email Security Alert PL/SQL Procedure 24-103
Step 5: Create and Test the Fine-Grained Audit Policy Settings 24-104
Step 6: Test the Alert 24-104
Step 7: Remove the Components of This Tutorial 24-105
Audit Policy Data Dictionary Views 24-106

25 Administering the Audit Trail

Managing the Unified Audit Trail 25-1
When and Where Are Audit Records Created? 25-2
Activities That Are Mandatorily Audited 25-3
How Do Cursors Affect Auditing? 25-4
Writing the Unified Audit Trail Records to the AUDSYS Schema 25-4
Writing the Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer 25-5

About Writing the Unified Audit Trail Records to SYSLOG or the Windows

Event Viewer 25-5

Enabling syslog and Windows Event Viewer Captures for the Unified Audit

Trall 25-6
When Audit Records Are Written to the Operating System 25-7
Moving Operating System Audit Records into the Unified Audit Trail 25-7
Disabling Unified Auditing 25-8
Exporting and Importing the Unified Audit Trail Using Oracle Data Pump 25-9

Archiving the Audit Trail 25-10
Archiving the Traditional Operating System Audit Trail 25-10
Archiving the Unified and Traditional Database Audit Trails 25-11

Purging Audit Trail Records 25-11
About Purging Audit Trail Records 25-12
Selecting an Audit Trail Purge Method 25-13

Purging the Audit Trail on a Regularly Scheduled Basis 25-13
Manually Purging the Audit Trail at a Specific Time 25-13
Scheduling an Automatic Purge Job for the Audit Trail 25-14

ORACLE XXXVi

About Scheduling an Automatic Purge Job 25-14
Step 1: If Necessary, Tune Online and Archive Redo Log Sizes 25-14
Step 2: Plan a Timestamp and Archive Strategy 25-15
Step 3: Optionally, Set an Archive Timestamp for Audit Records 25-15
Step 4: Create and Schedule the Purge Job 25-17
Manually Purging the Audit Trail 25-18
About Manually Purging the Audit Trall 25-18

Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge the
Audit Trail 25-19
Other Audit Trail Purge Operations 25-20
Enabling or Disabling an Audit Trail Purge Job 25-21
Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job 25-21
Deleting an Audit Trail Purge Job 25-22
Clearing the Archive Timestamp Setting 25-23
Example: Directly Calling a Unified Audit Trail Purge Operation 25-23
Audit Trail Management Data Dictionary Views 25-24

Part VIl Appendixes
A Keeping Your Oracle Database Secure

About the Oracle Database Security Guidelines A-1
Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities A-2
Downloading Security Patches and Workaround Solutions A-2
Contacting Oracle Security Regarding Vulnerabilities in Oracle Database A-2
Guidelines for Securing User Accounts and Privileges A-3
Guidelines for Securing Roles A-7
Guidelines for Securing Passwords A-8
Guidelines for Securing Data A-11
Guidelines for Securing the ORACLE_LOADER Access Driver A-12
Guidelines for Securing a Database Installation and Configuration A-14
Guidelines for Securing the Network A-14
Client Connection Security A-15
Network Connection Security A-16
Secure Sockets Layer Connection Security A-19
Guideline for Securing External Procedures A-20
Guidelines for Auditing A-20
Manageability of Audited Information A-21
Audits of Typical Database Activity A-22
Audits of Suspicious Database Activity A-22
Recommended Audit Settings A-23

ORACLE

XXXVii

Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View A-24
Addressing the CONNECT Role Change A-24
Why Was the CONNECT Role Changed? A-25
How the CONNNECT Role Change Affects Applications A-25
How the CONNECT Role Change Affects Database Upgrades A-26
How the CONNECT Role Change Affects Account Provisioning A-26

How the CONNECT Role Change Affects Applications Using New
Databases A-26
How the CONNECT Role Change Affects Users A-26
How the CONNECT Role Change Affects General Users A-27
How the CONNECT Role Change Affects Application Developers A-27
How the CONNECT Role Change Affects Client Server Applications A-27
Approaches to Addressing the CONNECT Role Change A-27
Creating a New Database Role A-28
Restoring the CONNECT Privilege A-29
Data Dictionary View to Show CONNECT Grantees A-30
Least Privilege Analysis Studies A-30

B Data Encryption and Integrity Parameters
About Using sqlnet.ora for Data Encryption and Integrity B-1
Sample sqglnet.ora File B-1
Data Encryption and Integrity Parameters B-3
About the Data Encryption and Integrity Parameters B-3
SQLNET.ENCRYPTION_SERVER B-4
SQLNET.ENCRYPTION_CLIENT B-5
SQLNET.CRYPTO_CHECKSUM_SERVER B-5
SQLNET.CRYPTO_CHECKSUM_CLIENT B-6
SQLNET.ENCRYPTION_TYPES_SERVER B-6
SQLNET.ENCRYPTION_TYPES_CLIENT B-7
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER B-7
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT B-8
C Kerberos, SSL, and RADIUS Authentication Parameters

Parameters for Clients and Servers Using Kerberos Authentication C-1
Parameters for Clients and Servers Using Secure Sockets Layer C-1
Ways to Configure a Parameter for Secure Sockets Layer C-2
Secure Sockets Layer Authentication Parameters for Clients and Servers C-2
Cipher Suite Parameters for Secure Sockets Layer C-3
Supported Secure Sockets Layer Cipher Suites C-4
Secure Sockets Layer Version Parameters C-14
XXXV

ORACLE

Secure Sockets Layer Client Authentication Parameters C-5

Secure Sockets Layer X.509 Server Match Parameters C-6
SSL_SERVER_DN_MATCH C-6
SSL_SERVER_CERT_DN C-7

Oracle Wallet Location C-7

Parameters for Clients and Servers Using RADIUS Authentication C-8

sqlnet.ora File Parameters C-8
SQLNET.AUTHENTICATION_SERVICES C-9
SQLNET.RADIUS_ALTERNATE C-10
SQLNET.RADIUS_ALTERNATE_PORT C-10
SQLNET.RADIUS_ALTERNATE_TIMEOUT C-10
SQLNET.RADIUS_ALTERNATE_RETRIES C-10
SQLNET.RADIUS_AUTHENTICATION C-11
SQLNET.RADIUS_AUTHENTICATION_INTERFACE C-11
SQLNET.RADIUS_AUTHENTICATION_PORT C-11
SQLNET.RADIUS_AUTHENTICATION_TIMEOUT C-12
SQLNET.RADIUS_AUTHENTICATION_RETRIES C-12
SQLNET.RADIUS_CHALLENGE_RESPONSE C-12
SQLNET.RADIUS_CHALLENGE_KEYWORD C-13
SQLNET.RADIUS_CLASSPATH C-13
SQLNET.RADIUS_SECRET C-13
SQLNET.RADIUS_SEND_ACCOUNTING C-14

Minimum RADIUS Parameters C-14

Initialization File Parameter for RADIUS C-14

D Integrating Authentication Devices Using RADIUS

About the RADIUS Challenge-Response User Interface D-1
Customizing the RADIUS Challenge-Response User Interface D-1
Example: Using the OracleRadiusinterface Interface D-2

E Oracle Database FIPS 140-2 Settings

About the Oracle Database FIPS 140-2 Settings E-1
Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO E-1
Configuration of FIPS 140-2 for Secure Sockets Layer E-2

Configuring the SSLFIPS_140 Parameter for Secure Sockets Layer E-3

Approved SSL Cipher Suites for FIPS 140-2 E-3
Postinstallation Checks for FIPS 140-2 E-4
Verifying FIPS 140-2 Connections E-4

ORACLE XXXIX

F Managing Public Key Infrastructure (PKI) Elements

Uses of the orapki Utility

orapki Utility Syntax

Creating Signed Certificates for Testing Purposes

Viewing a Certificate
Controlling MD5 and SHA-1 Certificate Use
Managing Oracle Wallets with orapki Utility

About Managing Wallets with orapki

Creating, Viewing, and Modifying Wallets with orapki

Creating a PKCS#12 Wallet
Creating an Auto-Login Wallet
Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet

Creating an Auto-Login Wallet That Is Local to the Computer and User Who
Created It

Viewing a Wallet
Modifying the Password for a Wallet
Converting an Oracle Wallet to Use the AES256 Algorithm

Adding Certificates and Certificate Requests to Oracle Wallets with orapki

Adding a Certificate Request to an Oracle Wallet

Adding a Trusted Certificate to an Oracle Wallet

Adding a Root Certificate to an Oracle Wallet

Adding a User Certificate to an Oracle Wallet

Verifying Credentials on the Hardware Device That Uses a PKCS#11 Wallet

Adding PKCS#11 Information to an Oracle Wallet

Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

Management of Certificate Revocation Lists (CRLs) with orapki Utility

orapki Usage

Example: Wallet with a Self-Signed Certificate and Export of the Certificate

Example: Creating a Wallet and a User Certificate

orapki Utility Commands Summary

orapki cert create

orapki cert display
orapki crl delete Command

orapki crl display

orapki crl hash

orapki crl list

orapki crl upload

orapki wallet add

orapki wallet convert

orapki wallet create

ORACLE

F-6
F-6
F-6
F-7
F-7
F-7
F-8
F-8
F-8

F-9

F-9
F-10
F-10
F-10
F-11
F-12
F-13
F-13
F-14
F-14
F-15
F-15
F-16
F-16
F-17
F-17

Xl

orapki wallet display F-18
orapki wallet export F-18

G How the Unified Auditing Migration Affects Individual Audit Features

Glossary

Index

ORACLE" xli

List of Tables

2-1 Data Dictionary Views That Display Information about Users and Profiles

3-1 Password-Specific Settings in the Default Profile

3-2 Parameters Controlling Reuse of a Previous Password

3-3 Effect of SQLNET.ALLOWED_LOGON_VERSION_SERVER on Password Version
Generation

3-4 Data Dictionary Views That Describe User Authentication

4-1 Roles to Allow Access to SYS Schema Objects

4-2 Properties of Roles and Their Description

4-3 Oracle Database Predefined Roles

4-4 System Privileges for Named Types

4-5 Privileges for Object Tables

4-6 Data Dictionary Views That Display Privilege and Role Information

7-1 Data Dictionary Views That Display Information about Access Control Lists

9-1 Features Affected by the One Big Application User Model

9-2 Expected Behaviors for extproc Process Authentication and Impersonation Settings

9-3 How Privileges Relate to Schema Objects

9-4 SQL Statements Permitted by Database Object Privileges

10-1 Types of Application Contexts

10-2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters

10-3 Data Dictionary Views That Display Information about Application Contexts

11-1 DBMS_RLS Procedures

11-2 DBMS_RLS.ADD_POLICY Palicy Types

11-3 Oracle Virtual Private Database in Different User Models

11-4 Data Dictionary Views That Display Information about VPD Policies

12-1 DBMS_RLS.ADD_POLICY Parameters Used for TSDP Policies

12-2 Unified Audit Policy Settings Used for TSDP Policies

12-3 Fine-Grained Audit Policy Settings Used for TSDP Policies

12-4 TDE Column Encryption ENCRYPT Settings Used for TSDP Policies

12-5 Transparent Sensitive Data Protection Views

13-1 Data Dictionary Views for Encrypted Data Dictionary Credentials

14-1 DBMS_CRYPTO Package Feature Summary

14-2 Data Dictionary Views That Display Information about Encrypted Data

15-1 Two Forms of Network Attacks

15-2 Encryption and Data Integrity Negotiations

15-3 Valid Encryption Algorithms

ORACLE

2-33
3-7
3-11

3-33
3-85
4-13
4-27
4-32
4-72
4-75
4-94
7-23
9-3
9-14
9-24
9-25
10-5
10-35
10-57
11-9
11-27
11-52
11-53
12-24
12-31
12-33
12-36
12-36
13-6
14-10
14-19
15-3
15-6
15-10

xlii

16-1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL Attributes
16-2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Attributes
16-3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL Attributes

16-4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES Attributes

16-5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES Attributes
17-1 Authentication Methods and System Requirements

18-1 Kerberos Adapter Command-Line Utilities

18-2 Common Security Administrator/DBA Configuration and Administrative Tasks
19-1 Kerberos-Specific sglnet.ora Parameters

19-2 Options for the okinit Utility

19-3 Options for the oklist Utility

19-4 Options for the okdstry Utility

19-5 okcreate Utility Options for Automatic Keytab Creation

20-1 Secure Sockets Layer Cipher Suites

20-2 SSL_DH Secure Sockets Layer Cipher Suites

21-1 RADIUS Authentication Components

23-1 Differences Between Mixed Mode Audting and Pure Unified Auditing

24-1 Administrative Users and Administrative Privileges

24-2 Object-Level Standard Database Action Audit Option

24-3 Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE

24-4 Oracle Database Real Application Security User, Privilege, and Role Audit Events
24-5 Oracle Database Real Application Security Security Class and ACL Audit Events
24-6 Oracle Database Real Application Security Session Audit Events

24-7 Oracle Database Real Application Security ALL Events

24-8 Oracle Recovery Manager Columns in UNIFIED_AUDIT_TRAIL View

24-9 Oracle Database Vault Realm Audit Events

24-10 Oracle Database Vault Rule Set and Rule Audit Events

24-11 Oracle Database Vault Command Rule Audit Events

24-12 Oracle Database Vault Factor Audit Events

24-13 Oracle Database Vault Secure Application Role Audit Events

24-14 Oracle Database Vault Oracle Label Security Audit Events

24-15 Oracle Database Vault Oracle Data Pump Audit Events

24-16 Oracle Database Vault Enable and Disable Audit Events

24-17 Oracle Label Security Audit Events

24-18 Oracle Data Mining Audit Events

24-19 How Audit Policies Apply to the CDB Root, Application Root, and Individual PDBs
24-20 Views That Display Information about Audited Activities

ORACLE

16-5
16-5
16-6
16-6
16-7
17-7
18-2
18-4
19-9

19-12
19-14
19-15
19-15
20-14
20-15
21-3
23-6
24-12
24-14
24-21
24-35
24-36
24-37
24-38
24-41
24-44
24-45
24-46
24-46
24-48
24-49
24-49
24-50
24-53
24-59
24-66
24-106

xliii

25-1 Audit Record Field Names for SYSLOG and the Windows Event Viewer
25-2 Views That Display Information about Audit Trail Management Settings
A-1 Columns and Contents for DBA_ CONNECT_ROLE_GRANTEES

B-1 Algorithm Type Selection

B-2 SQLNET.ENCRYPTION_SERVER Parameter Attributes

B-3 SQLNET.ENCRYPTION_CLIENT Parameter Attributes

B-4 SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes

B-5 SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes

B-6 SQLNET.ENCRYPTION_TYPES_ SERVER Parameter Attributes

B-7 SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes

B-8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter Attributes
B-9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter Attributes
C-1 Kerberos Authentication Parameters

C-2 SSL Authentication Parameters for Clients and Servers

C-3 Cipher Suite Parameters for Secure Sockets Layer

C-4 Secure Sockets Layer Version Parameters

C-5 Secure Sockets Layer Client Authentication Parameters

C-6 SSL_SERVER_DN_MATCH Parameter

C-7 SSL_SERVER_CERT_DN Parameter

C-8 Wallet Location Parameters

C-9 SQLNET.AUTHENTICATION_SERVICES Parameter Attributes

C-10 SQLNET.RADIUS_ALTERNATE Parameter Attributes

C-11 SQLNET.RADIUS_ ALTERNATE_PORT Parameter Attributes

C-12 SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes

C-13 SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes

C-14 SQLNET.RADIUS AUTHENTICATION Parameter Attributes

C-15 SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter Attributes
C-16 SQLNET.RADIUS AUTHENTICATION_PORT Parameter Attributes
C-17 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter Attributes
C-18 SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes
C-19 SQLNET.RADIUS CHALLENGE_RESPONSE Parameter Attributes
C-20 SQLNET.RADIUS CHALLENGE_KEYWORD Parameter Attributes
C-21 SQLNET.RADIUS_ CLASSPATH Parameter Attributes

C-22 SQLNET.RADIUS_SECRET Parameter Attributes

C-23 SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes

E-1 How the DBFIPS_140 Initialization Parameter Affects Platforms

G-1 Availability of Unified Auditing Features Before and After Migration
ORACLE

25-5
25-24
A-30
B-4
B-4
B-5
B-5
B-6
B-6
B-7
B-8
B-8
c-1
C-2
C-3

C-5
C-6
C-7
C-8
C-9
C-10
C-10
C-10
Cc-11
Cc-11
Cc-11
C-12
C-12
C-12
C-12
C-13
C-13
C-14
C-14
E-2
G-1

xliv

Preface

Welcome to Oracle Database Security Guide. This guide describes how you can
configure security for Oracle Database by using the default database features.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

Oracle Database Security Guide is intended for database administrators (DBAS),
security administrators, application developers, and others tasked with performing the
following operations securely and efficiently.

It covers these areas:

» Designing and implementing security policies to protect the data of an
organization, users, and applications from accidental, inappropriate, or
unauthorized actions

» Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

* Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

» Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and ease of use

To use this document, you need a basic understanding of how and why a database is
used, and basic familiarity with SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

ORACLE IV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more security-related information, see these Oracle resources:

* Oracle Database Administrator's Guide
* Oracle Database 2 Day DBA

* Oracle Database Concepts

* Oracle Database Reference

e Oracle Multitenant Administrator's Guide

Many of the examples in this guide use the sample schemas of the seed PDB, which
you can create when you install Oracle Database. See Oracle Database Sample
Schemas for information about how these schemas were created and how you can
use them yourself.

Oracle Technology Network (OTN)

You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit

http://www.oracle.com/technetwork/index.html

For security-specific information on OTN, visit
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

My Oracle Support

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

ORACLE xIvi

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/documentation/index.html
https://support.oracle.com

Changes in This Release for
Oracle Database Security Guide

This preface contains:

Changes in Oracle Database Security 18c

Changes in Oracle Database Security 12c Release 2 (12.2)

Changes in Oracle Database Security 18c

Oracle Database Security Guide for Oracle Database 18c has new security features.

Ability to Create Schema Only Accounts
You now can create schema only accounts, for object ownership without allowing
clients to log in to the schema.

Integration of Active Directory Services with Oracle Database
Starting with this release, you can authenticate and authorize users directly with
Microsoft Active Directory.

Ability to Encrypt Sensitive Credential Data in the Data Dictionary
Starting with this release, you can encrypt sensitive credential data that is stored in
the data dictionary SYS_LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

PDB Lockdown Profile Enhancements
This release introduces several enhancements for PDB lockdown profiles.

New Authentication and Certification Parameters
This release introduces four new parameters that can be used to strengthen
security on the database.

Ability to Write Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer

Starting with this release you can write unified audit trail records to SYSLOG on
UNIX or the Windows Event Viewer on Microsoft Windows.

Ability to Use Oracle Data Pump to Export and Import the Unified Audit Trail
Starting with this release, you can include the unified audit trail in either full or
partial export and import operations using Oracle Data Pump.

Ability to Create Schema Only Accounts

You now can create schema only accounts, for object ownership without allowing
clients to log in to the schema.

ORACLE

A user (or other client) cannot log in to the database schema unless the account is

modified to accept an authentication method. However, this type of schema user can
proxy in a single session proxy.

xIvii

Changes in This Release for Oracle Database Security Guide

Related Topics

* Schema Only Accounts
You can create schema only accounts, that is, the schema user has no password.

Integration of Active Directory Services with Oracle Database

Starting with this release, you can authenticate and authorize users directly with
Microsoft Active Directory.

With centrally managed users (CMU) Oracle database users and roles can map
directly to Active Directory users and groups without using Oracle Enterprise User
Security (EUS) or another intermediate directory service. EUS is not being replaced or
deprecated; this new feature is another simpler option if you only want to authenticate
and authorize users with Active Directory. Centrally managed users is designed to be
extended to work with other LDAP version 3—compliant directory services, but
Microsoft Active Directory is the only service that is supported in this release.

The direct integration with directory services supports better security through simpler
configuration with the enterprise identity management architecture. In the past, users
may have avoided the security practice of integrating the database with directory
services due to the difficulty and complexity. With the direct integration, you can
improve your security posture by more easily integrating the Database to the
enterprise directory service.

Related Topics

* Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

Ability to Encrypt Sensitive Credential Data in the Data Dictionary

Starting with this release, you can encrypt sensitive credential data that is stored in the
data dictionary SYS.LINK$ and SYS.SCHEDULER$ CREDENTIAL system tables.

In previous releases, and by default in this release, the data in these tables is
obfuscated. However, because of the rise of de-obfuscation algorithms that are
available on the Internet, it is important to use a more secure solution to protect this
type of sensitive data. You can manually encrypt this data by using the ALTER
DATABASE DICTIONARY SQL statement.

Related Topics

* Encryption of Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential information, such as passwords that are
stored in the data dictionary.

PDB Lockdown Profile Enhancements

This release introduces several enhancements for PDB lockdown profiles.
These enhancements are as follows:

* You now can create PDB lockdown profiles in the application root, as well as in the
CDB root. In previous releases, you only could create the profile in the CDB root.

ORACLE xIviii

Changes in This Release for Oracle Database Security Guide

The ability to create a PDB lockdown profile in an application container enables
you to more finely control access to the applications that are associated with the
application container.

You now can create a PDB lockdown profile that is based on another PDB
lockdown profile, either a static base profile or a dynamic base profile. You can
control whether subsequent changes to the base profile are reflected in the newly
created profile that uses the base profile.

Three default PDB lockown profiles have been added for this release:
PRIVATE_DBAAS, SAAS, and PUBLIC_DBAAS. These profiles benefit Cloud
environments.

A new dynamic data dictionary view, V$LOCKDOWN_RULES, is available. This view
enables the local user to see the lockdown rules that are applicable in the PDB.

This feature benefits environments that need enforced security and isolation in PDB
provisioning.

Related Topics

Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

New Authentication and Certification Parameters

This release introduces four new parameters that can be used to strengthen security
on the database.

ORACLE

The new parameters are as follows:

The ADD_SSLV3_TO_DEFAULT sqlnet.ora parameter controls the use of the Secure
Sockets Layer version 3, which can be vulnerable to Padding Oracle On
Downgraded Legacy Encryption (POODLE) attacks

The ADG_ACCOUNT _INFO_TRACKING initialization parameter controls login attempts
on Oracle Data Guard standby databases by enabling you to maintain a single
global copy of user account information across all Data Guard primary and
standby databases.

The ACCEPT_MD5_CERTS sglnet.ora parameter enables or disables the MD5
algorithm.

The ACCEPT_SHA1_CERTS sglnet.ora parameter enables or disables the SHA-1
algorithm.

Related Topics

Step 1G: Disable SSLv3 on the Server and Client (Optional)
SSLv3 refers to Secure Sockets Layer version 3.

Controlling MD5 and SHA-1 Certificate Use
You can use the sqlnet.ora file to control whether MD5 and SHA-1 signed
certificates are accepted.

Oracle Database Reference

xlix

Changes in This Release for Oracle Database Security Guide

Ability to Write Unified Audit Trail Records to SYSLOG or the Windows
Event Viewer

Starting with this release you can write unified audit trail records to SYSLOG on UNIX
or the Windows Event Viewer on Microsoft Windows.

On Microsoft Windows, you can enable or disable this behavior. On UNIX systems,
you can specify the SYSLOG facility to use and the type logging category for the
unified audit record, such as whether it is an alert or for an emergency. To configure
this behavior, you can set the UNIFIED_AUDIT_SYSTEMLOG initialization parameter.

Related Topics

* Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
You can write the unified audit trail records to SYSLOG or the Windows Event
Viewer by setting an initialization parameter.

Ability to Use Oracle Data Pump to Export and Import the Unified Audit

Trall

Starting with this release, you can include the unified audit trail in either full or partial
export and import operations using Oracle Data Pump.

There is no change to the user interface. When you perform the export or import
operation of a database, the unified audit trail is automatically included in the Data
Pump dump files.

This feature benefits users who, as in previous releases, must create dump files of
audit records.

Related Topics

* Exporting and Importing the Unified Audit Trail Using Oracle Data Pump
You can include the unified audit trail in Oracle Database Pump export and import
dump files.

Changes in Oracle Database Security 12¢c Release 2 (12.2)

Oracle Database Security Guide for Oracle Database 12c release 2 (12.2) has both
new and deprecated security features.

¢ New Features

e Deprecated Features

New Features

ORACLE

The following features are new for this release:

* Ability to Create Application Common Objects, Users, Roles, and Profiles
You now can create application common objects (metadata-linked and object-
linked), users, roles, and profiles.

ORACLE

Changes in This Release for Oracle Database Security Guide

Application Container Security Features

Application containers affect several default security features, such as privilege
grants to application common users, how application contexts are used, and so
on.

Addition of SYSRAC Administrative Privilege for Oracle Real Application Clusters
Starting with this release, the Oracle Real Applications (Oracle RAC) clusterware
agent that manages Oracle RAC uses the SYSRAC administrative privilege.

Administrative User Authentication Enhancements

Administrative user account authentication now has enhancements for password
files, password profile parameters, Secure Sockets Layer (SSL), Kerberos, and
multitenant environments.

Enhancements for the Management of Administrative Passwords

This release introduces better security for the management of administrative
passwords, by enforcing the associated administrative user’s profile password
limits.

STIG Compliance Features
To meet Security Technical Implementation Guides (STIG) compliance, Oracle
Database now provides two new user security features.

Better Security for Password Versions
In this release, Oracle Database provides several enhancements for password
authentication versions.

Ability to Automatically Lock Inactive Database User Accounts
Starting with this release, you can configure user accounts to automatically lock if
they have been inactive over a period of time.

More Flexibility in Controlling Database Link Access
Starting with this release, you have greater control in managing database link
access by users.

Ability to Control Definer's Rights Privileges for Database Links

The INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE PRIVILEGES privileges
control definer’s rights privileges for procedures that users accesse through a
database link.

PDB Lockdown Profiles to Restrict Operations on PDBs
In a multitenant environment, you now can use PDB lockdown profiles to restrict
functionality available to users in a given PDB.

Ability to Set the Identity of the Operating System User for PDBs

For multitenant environments, the PDB_0S_CREDENTIAL initialization parameter
enables a different operating system user to execute external procedures using
the EXTPROC process.

Updated Kerberos Utilities
Oracle Database now supports the updated version of the Kerberos tools from MIT
Kerberos 1.8.

Additional Security Feature Support for Transparent Sensitive Data Protection
You now can create Transparent Sensitive Data Protection policies to use unified
auditing policies, fine-grained auditing policies, and Transparent Data Encryption
column encryption.

Ability to Enable Unified Auditing for Groups of Users Through Roles
Starting with this release, you can enable audit policies on database roles.

Changes in This Release for Oracle Database Security Guide

New Audit Events for Oracle Database Real Application Security
This release provides two new audit events for Oracle Real Application Security
unified audit policies.

Ability to Capture Oracle Virtual Private Database Predicates in the Audit Trail
Oracle Virtual Private Database (VPD)-generated predicates now can be captured
in the audit trail.

Enhancements for the AUDSYS Audit Schema
The AUDSYS schema, which stores unified audit records, now has better security
and better read performance for unified auditing.

Ability to Create Application Common Objects, Users, Roles, and Profiles

You now can create application common objects (metadata-linked and object-linked),
users, roles, and profiles.

These common objects reside in the application root. This guide explains how to
manage security for application common users, roles, and profiles.

¢ See Also:

e About Common Users

* About Profiles

e Managing Common Roles and Local Roles
e Sharing Application Common Objects

e Oracle Database Administrator’s Guide

Application Container Security Features

Application containers affect several default security features, such as privilege grants
to application common users, how application contexts are used, and so on.

The following functionality is affected:

ORACLE

Application common users: In addition to other privileges, you can grant the
SYSDBA and SYSOPER administrative privileges to application common users.

Application contexts: When you create an application in the application root, you
can create an application context for use with this application. This application
context resides in the application root.

Oracle Virtual Private Database: You can create Virtual Private Database
policies that protect application common objects. These policies reside in the
application root.

Transparent Sensitive Data Protection: You can apply Transparent Sensitive
Data Protection (TSDP) policies to the current pluggable database (PDB) or to the
current application PDB only.

Transport Layer Security: If you are using Secure Sockets Layer (SSL) and plan
to use the upgraded version of SSL, which is Transport Layer Security (TLS), then

Changes in This Release for Oracle Database Security Guide

you must ensure that each PDB is able to use its own wallet with its own
certifications for TLS authentication.

Auditing: In a multitenant environment for application containers, traditional,
unified auditing, and fine-grained auditing are all affected by the use of application
containers.

Related Topics

SYSDBA and SYSOPER Privileges for Standard Database Operations
The SYSDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

Application Contexts in a Multitenant Environment
Where you create an application in a multitenant environment determines where
you must create the application context.

Oracle Virtual Private Database in a Multitenant Environment
You can create Virtual Private Database policies in an application root for use
throughout any associated application PDBs.

How a Multitenant Environment Affects Transparent Sensitive Data Protection
In a multitenant environment, you can apply Transparent Sensitive Data Protection
policies to the current PDB or current application PDB only.

Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for
application containers.

Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual
PDBs and in the root.

Fine-Grained Auditing in a Multitenant Environment
You can create fine-grained audit policies in the CDB root, application root, CDB
PDBs, and application PDBs.

Addition of SYSRAC Administrative Privilege for Oracle Real Application

Clusters

Starting with this release, the Oracle Real Applications (Oracle RAC) clusterware
agent that manages Oracle RAC uses the SYSRAC administrative privilege.

Related Topics

SYSRAC Administrative Privilege for Oracle Real Application Clusters
The SYSRAC administrative privilege is used by the Oracle Real Application
Clusters (Oracle RAC) Clusterware agent.

Administrative User Authentication Enhancements

ORACLE

Administrative user account authentication now has enhancements for password files,
password profile parameters, Secure Sockets Layer (SSL), Kerberos, and multitenant
environments.

These enhancements are as follows:

You can create password files for external users who have been granted the
SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges in addition to the
SYSDBA and SYSOPER administrative privileges. This enhancement is available in a

Changes in This Release for Oracle Database Security Guide

multitenant environment, for both local and common external administrative users,
and for external users in an SSL or Kerberos authentication configuration.

* The SYSDG administrative privilege can be used in a sharding environment.

e You can use password profile parameters, such as PASSWORD_LIFE_TIME, for
administrative user authentication.

Related Topics

e Authentication of Database Administrators by Using Their Passwords
Password files are used to authenticate database administrators.

Enhancements for the Management of Administrative Passwords

This release introduces better security for the management of administrative
passwords, by enforcing the associated administrative user’s profile password limits.

Examples of these profile limits are FAILED_LOGIN_COUNT, PASSWORD_LOCK_TIME,
PASSWORD_GRACE_TIME, and PASSWORD_LIFE_TIME.

You now can create a password file that can apply to both administrative users and
non-administrative users. When you create a password profile using the
PASSWORD_VERIFY_FUNCTION clause of the CREATE PROFILE statement, this setting now
applies to administrative users as well as non-administrative users, as long as you
create the password file with the ORAPWD utility FORMAT parameter set to 12.2.

In addition, for the ORAPWD utility, the restriction for the entries argument for the
operating system password file has been removed.

Related Topics

e Managing Passwords for Administrative Users
The passwords of administrative users have special protections, such as
password files and password complexity functions.

STIG Compliance Features

To meet Security Technical Implementation Guides (STIG) compliance, Oracle
Database now provides two new user security features.

These features are as follows:
* oral2c_stig_verify_function password complexity function
e ora_stig_profile user profile

e The following initialization parameters have changed to accommodate STIG
requirements:

— The default for SEC_PROTOCOL_ERROR_FURTHER_ACTION is now (DROP, 3).
— The default for SEC_MAX_FAILED_LOGIN_ATTEMPTS is now 3.
— The default for SQL92_SECURITY PARAMETER is now TRUE.

ORACLE liv

Changes in This Release for Oracle Database Security Guide

" See Also:

e oral2c_stig_verify_function Password Requirements
e ora_stig_profile User Profile

e Oracle Database Reference for more information about initialization
parameters

Better Security for Password Versions

In this release, Oracle Database provides several enhancements for password
authentication versions.

e The default for the SQLNET.ALLOWED _LOGON_VERSION_SERVER parameter is now 12
(Exclusive Mode) instead of 11. A setting of 12 generates both 11G and 12C
password versions. If you want to restrict the generation to the 12C password
version, which increases security for the passwords, then you can set
SQLNET .ALLOWED_LOGON_VERSION_SERVER to 12a.

Be aware that you should check the versions of the clients that connect to the
server to ensure that these clients use the 05L_NP ability. All Oracle Database
release 11.2.0.3 and later clients have the O5L_NP ability. If you have an earlier
Oracle Database client, then you must install the CPUOct2012 patch.

e The 12C password version is now generated automatically. In previous releases,
the 10G password version was generated automatically.

" See Also:

e Managing Password Case Sensitivity

e Ensuring Against Password Security Threats by Using the 12C
Password Version

e Oracle Database Upgrade Guide for information about how password
case sensitivity is affected by Oracle Database upgrades

Ability to Automatically Lock Inactive Database User Accounts

ORACLE

Starting with this release, you can configure user accounts to automatically lock if they
have been inactive over a period of time.

The CREATE USER and ALTER USER SQL statements enable you to set a new profile
parameter, INACTIVE_ACCOUNT_TIME, which enables you to automatically lock inactive
accounts.

Related Topics

e Automatically Locking Inactive Database User Accounts
The INACTIVE_ACCOUNT_TIME profile parameter locks a user account that has not
logged in to the database instance in a specified number of days.

Changes in This Release for Oracle Database Security Guide

More Flexibility in Controlling Database Link Access

Starting with this release, you have greater control in managing database link access
by users.

You can enable or disable database link access in the following areas:

e Protecting the database from man-in-the-middle attacks that access the database
through database links: To control this functionality, you can set the
OUTBOUND_DBLINK_PROTOCOLS initialization parameter.

» Controlling the ability of users to use LDAP to access data through global
database links: You can set the ALLOW_GLOBAL_DBL INKS initialization parameter.

For more information, see Network Connection Security.

Ability to Control Definer's Rights Privileges for Database Links

The INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE PRIVILEGES privileges
control definer’s rights privileges for procedures that users accesse through a
database link.

These privileges are similar to the INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
privileges.

Related Topics

e Controlling Definer's Rights Privileges for Database Links
You can control privilege grants for definer’s rights procedures if your applications
use database links and definer’s rights procedures.

PDB Lockdown Profiles to Restrict Operations on PDBs

In a multitenant environment, you now can use PDB lockdown profiles to restrict
functionality available to users in a given PDB.

PDB lockdown profiles enable you to restrict the access the user has to a set of
features individually or in a group. This feature is designed to enhance security for
situations in which identities are shared among PDBs.

Related Topics

» Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

Ability to Set the Identity of the Operating System User for PDBs

ORACLE

For multitenant environments, the PDB_0S_CREDENTIAL initialization parameter enables
a different operating system user to execute external procedures using the EXTPROC
process.

In the previous release, EXTPROC was used to create a credential object using
DBMS_CREDENTIAL for authenticating and invoking external procedures. This
functionality now is available on PDB level by associating a CREDENTIAL for the entire
PDB, which will be automatically used for any EXTPROC external procedures executed
by a database user in the PDB.

Ivi

Changes in This Release for Oracle Database Security Guide

This feature enhances security for the multitenant environment by enabling each PDB
to have its own operating system user account, instead of relying on one user, the
oracle operating system user, for all PDBs in the environment. The root will continue
to use the oracle operating system user account.

See Configuring Operating System Users for a PDB for more information.

Updated Kerberos Utilities

Oracle Database now supports the updated version of the Kerberos tools from MIT
Kerberos 1.8.

In previous releases, Oracle clients needed to be manually configured by an
administrator who configures a krb5.conf file. In this release, Oracle Database
provides a generic krb5.conf file, which is used by default. The kerb5.conf file has
parameters that enable realm and KDC information to be automatically retrieved from
the DNS information. The auto-discovery of the realm and KDC information reduces
the amount of work that you must perform to configure a client endpoint to use
Kerberos.

This enhancement provides updates to the okinit, oklist, and okdstry Kerberos
adapter command-line utilities, and provides a new utility, okcreate, which enables
you to automate the creation of keytabs from either the KDC or a service endpoint.

Related Topics

» Utilities for the Kerberos Authentication Adapter
The Oracle Kerberos authentication adapter utilities are designed for an Oracle
client with Oracle Kerberos authentication support installed.

» okcreate Utility Options for Automatic Keytab Creation
The okcreate utility automates the creation of keytabs from either the KDC or a
service endpoint.

Additional Security Feature Support for Transparent Sensitive Data Protection

ORACLE

You now can create Transparent Sensitive Data Protection policies to use unified
auditing policies, fine-grained auditing policies, and Transparent Data Encryption
column encryption.

In the previous release, you could create Transparent Sensitive Data Protection
policies that use the Oracle Data Redaction and Oracle Virtual Private Database
security features.

In addition, you now can use a separate wallet password for each pluggable database
(PDB) in a multitenant environment so that each PDB is able to use its own wallet with
its own certificates for Transparent Sensitive Data Protection authentication. The
ability to specify a distinct wallet password for each PDB enables you to better restrict
administrative access to the wallet. This functionality provides the necessary isolation
between the tenants in a multitenant environment. These tenants can be individual
companies or they can be different business units in a large corporation.

Related Topics

* Using Transparent Sensitive Data Protection Policies with Unified Auditing
The transparent sensitive data protection and unified auditing procedures can
combine the protections of these two features.

Ivii

Changes in This Release for Oracle Database Security Guide

Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing
The transparent sensitive data protection and fine-grained auditing procedures can
combine the protections of these two features.

Using Transparent Sensitive Data Protection Policies with TDE Column Encryption
The TSDP procedures and Transparent Data Encryption column encryption
statements can combine the protections of these two features.

Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for
application containers.

Ability to Enable Unified Auditing for Groups of Users Through Roles

Starting with this release, you can enable audit policies on database roles.

This feature enables the policy to be in effect for all users who have been directly
granted the role. The policy remains effective for the user as long as the user is
granted the role, and as long as the role exists.

To accommodate this enhancement, the following changes have been made:

The AUDIT and NOAUDIT statements now have a new clause, BY USERS WITH
GRANTED ROLES.

The AUDIT_UNIFIED_ENABLED POLICIES and DBA_ XS ENB_AUDIT_POLICIES data
dictionary views have the following new columns:

— ENTITY_NAME captures the user name or role name.
— ENTITY_TYPE indicates if the entity name is a USER or a ROLE.

— ENABLED_OPTION displays BY and EXCEPT for policies that are enabled on users,
but displays INVALID for policies that are enabled on roles.

The possible output for the AUDIT_UNIFIED_ENABLED_POLICIES.ENABLED_OPTION
column is now BY USER, EXCEPT USER, BY GRANTED ROLE, and INVALID.

¢ See Also:

e Enabling and Applying Unified Audit Policies to Users and Roles

* Oracle Database Reference for information about the
AUDIT_UNIFIED_ENABLED POLICIES and DBA XS ENB_AUDIT POLICIES
data dictionary views

New Audit Events for Oracle Database Real Application Security

This release provides two new audit events for Oracle Real Application Security
unified audit policies.

ORACLE

AUDIT_GRANT_PRIVILEGE audits use of the GRANT_SYSTEM_PRIVILEGE privilege.
AUDIT_REVOKE_PRIVILEGE audits use of the REVOKE_SYSTEM_PRIVILEGE privilege.

viii

Changes in This Release for Oracle Database Security Guide

Related Topics

* Oracle Database Real Application Security User, Privilege, and Role Audit Events
The unified audit trail can capture Oracle Database Real Application Security
events for users, privileges, and roles.

Ability to Capture Oracle Virtual Private Database Predicates in the Audit Trall

Oracle Virtual Private Database (VPD)-generated predicates now can be captured in
the audit trail.

This enhancement applies to the unified audit trail, fine-grained audit trail, and if
unified auditing is not enabled, the standard audit trail (DOBA_AUDIT_TRAIL). To
accommodate this enhancement, the following data dictionary views have a new
column, RLS_INFO:

e UNIFIED_AUDIT_TRAIL

» DBA_AUDIT_TRAIL (used for environments that are not yet migrated to unified
auditing)

e VSXML_AUDIT_TRAILL (used for environments that are not yet migrated to unified
auditing)

e DBA_FGA_AUDIT_TRAIL (used for environments that are not yet migrated to unified
auditing)

If multiple VPD policies are enforced on a single object, then all of the VPD policy
types, policy schema, policy names, and predicates are concatenated and stored in a
single column. To separate the VPD predicate information for each VPD policy into
individual rows in the view, a new PL/SQL package is available, DBMS_AUDIT_UTIL.

2 See Also:

e Auditing of Oracle Virtual Private Database Predicates

e Fine-Grained Auditing on Tables or Views That Have Oracle VPD
Policies

e Oracle Database Reference for information about the
UNIFIED_AUDIT_TRAIL, DBA_AUDIT_TRAIL, V$XML_AUDIT_TRAIL, and
DBA_FGA AUDIT_TRAILL data dictionary views

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_UTIL PL/SQL package

Enhancements for the AUDSYS Audit Schema

ORACLE

The AUDSYS schema, which stores unified audit records, now has better security and
better read performance for unified auditing.

In previous releases, users who had the SELECT ANY TABLE system privilege were able
to query objects in the AUDSYS schema. Starting with this release, users who have this
privilege are no longer able to query AUDSYS schema objects. Users who have been

lix

Changes in This Release for Oracle Database Security Guide

granted the SELECT ANY DICTIONARY system privilege can access objects in the
AUDSYS schema.

In addition, a new internal table is available in the AUDSYS schema. This table stores
the unified audit trail records and is designed to improve the read performance of the
unified audit trail. If you migrated to unified auditing in the previous release and still
have audit records in the previous location, then you can transfer the unified audit
records that were created in that release to this new internal table. The
DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS PL/SQL procedure, also new for
this release, can be used to transfer these records to the new internal relational table.

" See Also:

* What Is Auditing? for more information about the AUDSYS schema

e Oracle Database Upgrade Guide for information about transferring
unified audit records

Deprecated Features

The following features have been deprecated for this release:

* Deprecated Columns from the AUDIT_UNIFIED_ENABLED_POLICIES and
DBA_XS_ENB_AUDIT_POLICIES Views
The USER_NAME and ENABLED_OPT columns of the
AUDIT_UNIFIED_ENABLED_POLICIES and DBA_XS_ENB_AUDIT_POLICIES data
dictionary views are deprecated for this release.

* Deprecation of the sginet.ora KERBEROS5_CONF_MIT Parameter
The sglnet.ora KERBEROS5_CONF_MIT parameter has been deprecated starting
with this release.

e Deprecated Password Verification Functions
The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions have
been deprecated for this release.

* Deprecation of the UNIFIED_AUDIT_SGA_QUEUE_SIZE Initialization Parameter
The UNIFIED_AUDIT_SGA_QUEUE_SIZE initialization parameter has been
deprecated.

* Deprecation of the CONTAINER_GUID Parameter from the
DBMS_AUDIT_MGMT Package
As part of an internal redesign to improve audit performance, the CONTAINER_GUID
parameter has been deprecated from DBMS_AUDIT_MGMT PL/SQL package.

» Deprecation of Settings to Flush Audit Trail Records to Disk
You no longer need to manually flush audit records to disk because they are now
automatically written to a new internal relational table.

ORACLE Ix

Changes in This Release for Oracle Database Security Guide

Deprecated Columns from the AUDIT_UNIFIED_ENABLED_POLICIES and
DBA_XS_ENB_AUDIT POLICIES Views

The USER_NAME and ENABLED_OPT columns of the AUDIT_UNIFIED_ENABLED POLICIES
and DBA_XS_ENB_AUDIT_POLICIES data dictionary views are deprecated for this
release.

In this release, the USER_NAME column continues to show the names of users on whom
the policy is enabled, but for policies that are enabled on roles, the USER_NAME column
displays NULL.

The ENABLED _OPT column displays BY and EXCEPT for policies that are enabled on
users, but displays INVALID for policies that are enabled on roles. This column is
replaced by the ENABLED_OPTION column.

Related Topics

e Ability to Enable Unified Auditing for Groups of Users Through Roles
Starting with this release, you can enable audit policies on database roles.

Deprecation of the sqginet.ora KERBEROS5 CONF_MIT Parameter

The sqlnet.ora KERBEROS5 CONF_MIT parameter has been deprecated starting with
this release.

This parameter specifies whether the new Kerberos configuration format is used. In
previous releases, the default for the KERBEROS5 CONF_MIT parameter was FALSE. If the
value is TRUE, then Oracle Database uses the new Kerberos functionality that is
available with this release. If the value is set to FALSE, then non-MIT settings are used.
Because this parameter is now deprecated, only the new configuration is supported.
For backward compatibility, the okinit, oklist, and okdstry Kerberos utilities will
work with KERBEROS5_CONF_MIT set to FALSE, thereby enabling them to use the earlier
versions of these utilities. Oracle recommends that you set KERBEROS5 CONF_MIT to
TRUE so that you can take advantage of the new Kerberos functionality.

Related Topics

* Updated Kerberos Utilities
Oracle Database now supports the updated version of the Kerberos tools from MIT
Kerberos 1.8.

* Configuring Kerberos Authentication
Kerberos is a trusted third-party authentication system that relies on shared
secrets and presumes that the third party is secure.

Deprecated Password Verification Functions

ORACLE

The VERIFY_FUNCTION and VERIFY_FUNCTION_11G password verify functions have been
deprecated for this release.

These functions are deprecated because they enforce the weaker password
restrictions from earlier releases. Instead, you should use the
ORA12C_VERIFY_FUNCTION and ORA12C_STRONG_VERIFY_FUNCTION functions, which
enforce stronger, more up-to-date password verification restrictions.

Ixi

Changes in This Release for Oracle Database Security Guide

Related Topics

* verify_function_11G Function Password Requirements
The verify_function_11G function originated in Oracle Database Release 11g.

e oral2c_verify_function Password Requirements
The oral2c_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

e oral2c_strong_verify_function Function Password Requirements
The oral2c_strong_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

Deprecation of the UNIFIED_AUDIT_SGA_QUEUE_SIZE Initialization
Parameter

The UNIFIED_AUDIT_SGA QUEUE_SIZE initialization parameter has been deprecated.

This parameter is no longer necessary because starting with this release, Oracle
Database auditing no longer depends on the system global area (SGA)-based queues
to write unified audit records.

Related Topics

* Writing the Unified Audit Trail Records to the AUDSYS Schema
Oracle Database automatically writes audit records to an internal relational table in
the AUDSYS schema.

Deprecation of the CONTAINER_GUID Parameter from the
DBMS_AUDIT_MGMT Package

As part of an internal redesign to improve audit performance, the CONTAINER_GUID
parameter has been deprecated from DBMS_AUDIT_MGMT PL/SQL package.

This parameter is no longer necessary. This deprecation affects the following
DBMS_AUDIT_MGMT procedures:

* DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL
* DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP
e DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP

" See Also:

e Purging Audit Trail Records

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_MGMT PL/SQL package

Deprecation of Settings to Flush Audit Trail Records to Disk

You no longer need to manually flush audit records to disk because they are now
automatically written to a new internal relational table.

ORACLE Ixii

ORACLE

Changes in This Release for Oracle Database Security Guide

This enhancement enables the flushing process to bypass the common logging
infrastructure queues. The deprecated settings are as follows:

o DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL procedure

e AUDIT_TRAIL_WRITE mode of the AUDIT_TRAIL_PROPERTY parameter of the
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY procedure

Related Topics

* Writing the Unified Audit Trail Records to the AUDSYS Schema
Oracle Database automatically writes audit records to an internal relational table in
the AUDSYS schema.

Iii

Introduction to Oracle Database Security

Oracle Database provides a rich set of default security features to manage user
accounts, authentication, privileges, application security, encryption, network traffic,
and auditing.

e About Oracle Database Security
You can use the default Oracle Database features to configure security in several
areas for your Oracle Database installation.

e Additional Oracle Database Security Resources
In addition to the security resources described in this guide, Oracle Database
provides several other database security products.

About Oracle Database Security

ORACLE

You can use the default Oracle Database features to configure security in several
areas for your Oracle Database installation.

The areas in which you can configure security are as follows:

* User accounts. When you create user accounts, you can secure them in a variety
of ways. You can also create password profiles to better secure password policies
for your site. Managing Security for Oracle Database Users, describes how to
manage user accounts.

* Authentication methods. Oracle Database provides several ways to configure
authentication for users and database administrators. For example, you can
authenticate users on the database level, from the operating system, and on the
network. Configuring Authentication, describes how authentication in Oracle
Database works.

» Privileges and roles. You can use privileges and roles to restrict user access to
data. The following chapters describe how to manage privileges and roles:

— Configuring Privilege and Role Authorization

— Managing Security for Definer's Rights and Invoker's Rights

— Managing Fine-Grained Access in PL/SQL Packages and Types

— Managing Security for a Multitenant Environment in Enterprise Manager

* Application security. The first step to creating a database application is to ensure
that it is properly secure. Managing Security for Application Developers, discusses
how to incorporate application security into your application security policies.

* User session information using application context. An application context is a
name-value pair that holds the session information. You can retrieve session
information about a user, such as the user name or terminal, and restrict database
and application access for that user based on this information. Using Application
Contexts to Retrieve User Information, describes how to use application contexts.

- Database access on the row and column level using Virtual Private
Database. A Virtual Private Database policy dynamically imbeds a WHERE

1-1

Chapter 1
About Oracle Database Security

predicate into SQL statements the user issues. Using Oracle Virtual Private
Database to Control Data Access, describes how to create and manage Virtual
Private Database policies.

» Classify and protect data in different categories. You can find all table columns
in a database that hold sensitive data (such as credit card or Social Security
numbers), classify this data, and then create a policy that protects this data as a
whole for a given class. Using Transparent Sensitive Data Protection , explains
how to create Transparent Sensitive Data Protection policies.

* Network data encryption. Manually Encrypting Data, explains how to use the
DBMS_CRYPTO PL/SQL package to encrypt data as it travels on the network to
prevent unauthorized access to that data. You can configure native Oracle Net
Services data encryption and integrity for both servers and clients, which are
described in Configuring Oracle Database Native Network Encryption and Data
Integrity.

e Thin JDBC client network configuration. You can configure thin Java Database
Connectivity (JDBC) clients to securely connect to Oracle databases. Configuring
the Thin JDBC Client Network, provides detailed information.

e Strong authentication. You can configure your databases to use strong
authentication with Oracle authentication adapters that support various third-party
authentication services, including SSL with digital certificates. Oracle Database
provides the following strong authentication support:

— Centralized authentication and single sign-on.

— Kerberos

— Remote Authentication Dial-in User Service (RADIUS)
— Secure Sockets Layer (SSL)

The following chapters cover strong authentication:

— Introduction to Strong Authentication

— Strong Authentication Administration Tools

— Configuring Kerberos Authentication

— Configuring Secure Sockets Layer Authentication
— Configuring RADIUS Authentication

— Customizing the Use of Strong Authentication

« Auditing database activities. You can audit database activities in general terms,
such as auditing all SQL statements, SQL privileges, schema objects, and network
activity. Or, you can audit in a granular manner, such as when the IP addresses
from outside the corporate network is being used. This chapter also explains how
to purge the database audit trail. The following chapters describe how to configure
and administer database auditing.

— Introduction to Auditing
— Configuring Audit Policies
— Administering the Audit Trail

In addition, Keeping Your Oracle Database Secure, provides guidelines that you
should follow when you secure your Oracle Database installation.

ORACLE 1-2

Chapter 1
Additional Oracle Database Security Resources

Additional Oracle Database Security Resources

In addition to the security resources described in this guide, Oracle Database provides
several other database security products.

These products are as follows:

Oracle Advanced Security. See Oracle Database Advanced Security Guide for
information about Transparent Data Encryption and Oracle Data Redaction.

Oracle Label Security. Oracle Label Security applies classification labels to data,
allowing you to filter user access to data at the row level. See Oracle Label
Security Administrator's Guide for detailed information about Oracle Label
Security.

Oracle Database Vault. Oracle Database Vault provides fine-grained access
control to your sensitive data, including protecting data from privileged users.
Oracle Database Vault Administrator’s Guide describes how to use Oracle
Database Vault.

Oracle Audit Vault and Database Firewall. Oracle Audit Vault and Database
Firewall collects database audit data from sources such as Oracle Database audit
trail tables, database operating system audit files, and database redo logs. Using
Oracle Audit Vault and Database Firewall, you can create alerts on suspicious
activities, and create reports on the history of privileged user changes, schema
modifications, and even data-level access. Oracle Audit Vault and Database
Firewall Administrator's Guide explains how to administer Oracle Audit Vault and
Database Firewall.

Oracle Enterprise User Security. Oracle Enterprise User Security enables you to
manage user security at the enterprise level. Oracle Database Enterprise User
Security Administrator's Guide explains how to configure Oracle Enterprise User
Security.

Oracle Enterprise Manager Data Masking and Subsetting Pack. Data Masking
and Subsetting Pack helps reduce this risk by irreversibly replacing the original
sensitive data with fictitious data so that production data can be shared safely with
IT developers or offshore business partners. See Oracle Database Testing Guide
for additional information.

In addition to these products, you can find the latest information about Oracle
Database security, such as new products and important information about security
patches and alerts, by visiting the Security Technology Center on Oracle Technology
Network at

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

ORACLE

1-3

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Managing User Authentication
and Authorization

ORACLE

Part | describes how to manage user authentication and authorization.

Managing Security for Oracle Database Users
You can manage the security for Oracle Database users in many ways, such as
enforcing restrictions on the way that passwords are created.

Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to
the database.

Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Configuring Centrally Managed Users with Microsoft Active Directory

Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

Managing Security for Definer's Rights and Invoker's Rights
Invoker’s rights and definer’s rights have several security advantages when used
to control access to privileges to run user-created procedures.

Managing Fine-Grained Access in PL/SQL Packages and Types
Oracle Database provides PL/SQL packages and types for fine-grained access to
control access to external network services and wallets.

Managing Security for a Multitenant Environment in Enterprise Manager
You can manage common and local users and roles for a multitenant environment
by using Oracle Enterprise Manager.

Managing Security for Oracle Database

Users

You can manage the security for Oracle Database users in many ways, such as
enforcing restrictions on the way that passwords are created.

e About User Security
You can secure users accounts through strong passwords and by specifying
special limits for the users.

* Creating User Accounts
A user account can have restrictions such as profiles, a default role, and
tablespace restrictions.

* Altering User Accounts
The ALTER USER statement modifies user accounts, such their default tablespace
or profile, or changing a user's password.

* Configuring User Resource Limits
A resource limit defines the amount of system resources that are available for a
user.

* Dropping User Accounts
You can drop user accounts if the user is not in a session, and if the user has
objects in the user’s schema.

» Database User and Profile Data Dictionary Views
Oracle Database provides a set of data dictionary views that provide information
about the settings that you used to create users and profiles.

About User Security

ORACLE

You can secure users accounts through strong passwords and by specifying special
limits for the users.

Each Oracle database has a list of valid database users. To access a database, a user
must run a database application, and connect to the database instance using a valid
user name defined in the database.

When you create user accounts, you can specify limits to the user account. You can
also set limits on the amount of various system resources available to each user as
part of the security domain of that user. Oracle Database provides a set of database
views that you can query to find information such as resource and session information.
This chapter also describes profiles. A profile is collection of attributes that apply to a
user. It enables a single point of reference for any of multiple users that share those
exact attributes.

Oracle Database provides a set of predefined administrative, non-administrative, and
sample schema accounts. The Oracle Database installation guides provide a listing of
these accounts. To find the status of these accounts, query the USERNAME and
ACCOUNT_STATUS columns of the DBA_USERS data dictionary view.

2-1

Chapter 2
Creating User Accounts

Related Topics

Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Creating User Accounts

A user account can have restrictions such as profiles, a default role, and tablespace
restrictions.

About Common Users and Local Users
In a multitenant environment, CDB common users and application common have
access to their respective containers, and local users are specific to a PDB.

Who Can Create User Accounts?
Users who has been granted the CREATE USER system privilege can create user
accounts, including user accounts to be used as proxy users.

Creating a New User Account That Has Minimum Database Privileges
When you create a new user account, you should enable this user to access the
database.

Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as
naming conventions and whether the name is unique.

Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

Default Tablespace for the User
A default tablespace stores objects that users create.

Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration
of a user session.

Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and
password access to the database.

Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

Creating a Default Role for the User
A default role is automatically enabled for a user when the user creates a session.

About Common Users and Local Users

ORACLE

In a multitenant environment, CDB common users and application common have
access to their respective containers, and local users are specific to a PDB.

About Common Users
Oracle provides two types of common users: CDB common users and application
common users.

2-2

Chapter 2
Creating User Accounts

* How Plugging in PDBs Affects CDB Common Users
Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied
administrative and user-created accounts and privileges.

* About Local Users
In a multitenant environment, a local user is a database user that exists only in a
single PDB.

About Common Users

ORACLE

Oracle provides two types of common users: CDB common users and application
common users.

A CDB common user is a database user whose single identity and password are
known in the CDB root and in every existing and future pluggable database (PDB),
including any application roots. All Oracle-supplied administrative user accounts, such
as SYS and SYSTEM, are CDB common users and can navigate across the system
container. CDB common users can have different privileges in different PDBs. For
example, the user SYSTEM can switch between PDBs and use the privileges that are
granted to SYSTEM in the current PDB. However, if one of the PDBs is Oracle Database
Vault-enabled, then the Database Vault restrictions, such as SYSTEM not being allowed
to create user accounts, apply to SYSTEM when this user is connected to that PDB.
Oracle does not recommend that you change the privileges of the Oracle-supplied
CDB common users.

A CDB common user can perform all tasks that an application common user can
perform, provided that appropriate privileges have been granted to that user.

An application common user is a user account that is created in an application root,
and is common only within this application container. In other words, the application
common user does not have access to the entire CDB environment like CDB common
users. An application common user is responsible for activities such as creating (which
includes plugging), opening, closing, unplugging, and dropping application PDBs. This
user can create application common objects in the application root. You can create an
application common user only when you are connected to an application root. The
ability for users to access the application common objects is subject to the same
privileges as local and CDB common objects. For example, a local user in a PDB that
is associated with an application root has access to only the objects in that PDB for
which the user has privileges. In the application root itself, you can commonly grant a
privilege on a CDB common object that will apply across the application container.

Both of these types of common users are responsible for managing the common
objects in their respective roots. If the CDB common user or the application common
user has the appropriate privileges, then this user can perform operations in PDBs as
well, such as granting privileges to local users. These users can also locally grant
common users different privileges in each container.

Both CDB and application common users can perform the following activities:

* Granting privileges to common users or common roles. That is, a CDB common
user can grant a privilege to a common user or role, and the scope within which
this privilege applies is determined by the container (CDB root, application root, or
PDB) in which the statement is issued and whether the privilege is granted
commonly (in the CDB root or the application root). A CDB common user
connected to an application root can commonly grant a privilege on a CDB
common object, and that privilege will apply across the application container.

2-3

Chapter 2
Creating User Accounts

The following diagram illustrates the access hierarchy with CDB common users,
application common users, and local users:

cbB

Root (CDB$ROOT)

=

B B |
“ TN A)
|
I5E 5
|
|

*j j |
PDBs ij ﬁ j E{ i
|

|

Application PDBs

CDB common users are defined in the CDB root and may be able to access all
PDBs within the CDB, including application roots and their application PDBs.
Application common users are defined in the application root and have access to
the PDBs that belong to the application container. Local users in either the CDB
PDBs or the application PDBs have access only to the PDBs in which the local
user resides.

* The state of a PDB can be altered by a suitably privileged user who can issue the
ALTER PLUGGABLE DATABASE statement from the CDB root, from an application root
(if a PDB is an application PDB that belongs to the application container), or from
a PDB itself.

One difference between CDB common users and application common users is that
only a CDB common user can run an ALTER DATABASE statement that specifies the
recovery clauses that apply to the entire CDB.

¢ See Also:

e About Creating Common User Accounts

e About Commonly and Locally Granted Privileges for more information
about how privileges work in with PDBs

e Oracle Database Concepts for more conceptual information about CDB
common users and application common users

How Plugging in PDBs Affects CDB Common Users

Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied administrative
and user-created accounts and privileges.

ORACLE 2.4

Chapter 2
Creating User Accounts

This affects the passwords of these CDB common user accounts, and privileges of all
accounts in the newly plugged-in database.

The following actions take place:

e The Oracle-supplied administrative accounts are merged with the existing
common user accounts.

e User-created accounts are merged with the existing user-created common user
accounts.

e The passwords of the existing CDB common user accounts take precedence over
the passwords for the accounts from the non-CDB.

e If you had modified the privileges of a user account in its original non-CDB, then
these privileges are saved, but they only apply to the PDB that was created when
the PDB was plugged into the CDB, as locally granted privileges. For example,
suppose you had granted the user SYSTEM a role called hr_mgr in the non-CDB
dbl. After the dbl database has been added to a CDB, then SYSTEM can only use
the hr_mgr role in the dbl PDB, and not in any other PDBs.

The following two scenarios are possible when you plug a PDB (for example, pdb_1)
from one CDB (cdb_1) to a another CDB (cdb_2):

e cdb_1 has the common user c##cdbl _user. cdb_2 does not have this user.

c#ttcdbl _user remains in PDB_1 but this account is locked. To resurrect this
account, you must close pdb_1, recreate common user c##cdbl_user in the root of
cdb_2, and then re-open pdb_1.

e cdb_1 and cdb_2 both have common user c##common_user.

Both c##common_user accounts are merged. c##common_user retains its password
in cdb_2. Any privileges assigned to it in cdb_2 but not in cdb_1 are retained locally
in pdb_1.

About Local Users

ORACLE

In a multitenant environment, a local user is a database user that exists only in a
single PDB.

Local users can have administrative privileges, but these privileges apply only in the
PDB in which the local user account was created. A local user account has the
following characteristics, which distinguishes it from common user accounts:

* Local user accounts cannot create common user accounts or commonly grant
them privileges. A common user with the appropriate privileges can create and
modify common or local user accounts and grant and revoke privileges, commonly
or locally. A local user can create and modify local user accounts or locally grant
privileges to common or local users in a given PDB.

* You can grant local user accounts common roles. However, the privileges
associated with the common role only apply to the local user's PDB.

* The local user account must be unique only within its PDB.

* With the appropriate privileges, a local user can access objects in a common
user's schema. For example, a local user can access a table within the schema of
a common user if the common user has granted the local user privileges to access
it.

* You can editions-enable a local user account but not a common user account.

2-5

Chapter 2
Creating User Accounts

¢ See Also:

e About Creating Local User Accounts

e Oracle Database Concepts for more conceptual information about local
users

Who Can Create User Accounts?

Users who has been granted the CREATE USER system privilege can create user
accounts, including user accounts to be used as proxy users.

Because the CREATE USER system privilege is a powerful privilege, a database
administrator or security administrator is usually the only user who has this system
privilege.

If you want to create users who themselves have the privilege to create users, then
include the WITH ADMIN OPTION clause in the GRANT statement. For example:

GRANT CREATE SESSION TO Ibrown WITH ADMIN OPTION;

As with all user accounts to whom you grant privileges, grant these privileges to
trusted users only.

In a multitenant environment, you must have the commonly granted CREATE USER
system privilege to create common user accounts. To create local user accounts, you
must have a commonly granted CREATE USER privilege or a locally granted CREATE
USER privilege in the PDB in which the local user account will be created.

< Note:

As a security administrator, you should create your own roles and assign
only those privileges that are needed. For example, many users formerly
granted the CONNECT privilege did not need the additional privileges CONNECT
used to provide. Instead, only CREATE SESSION was actually needed. By
default, the SET CONTAINER privilege is granted to CONNECT role.

Creating organization-specific roles gives an organization detailed control of
the privileges it assigns, and protects it in case Oracle Database changes the
roles that it defines in future releases.

Related Topics

* Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

ORACLE 2-6

Chapter 2
Creating User Accounts

Creating a New User Account That Has Minimum Database Privileges

When you create a new user account, you should enable this user to access the
database.

ORACLE

1.

Use the CREATE USER statement to create a new user account.

For example:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE example
QUOTA 10M ON example
TEMPORARY TABLESPACE temp
QUOTA 5M ON system
PASSWORD EXPIRE;

Follow the guidelines in Minimum Requirements for Passwords to replace
passwor d with a password that is secure.

This example creates a local user account and specifies the user password,
default tablespace, temporary tablespace where temporary segments are created,
tablespace quotas, and profile.

At minimum, grant the user the CREATE SESSION privilege so that the user can
access the database instance.

GRANT CREATE SESSION TO jward;
A newly created user cannot connect to the database until he or she has the

CREATE SESSION privilege. If the user must access Oracle Enterprise Manager,
then you should also grant the user the SELECT ANY DICTIONARY privilege.

Related Topics

Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as
naming conventions and whether the name is unique.

Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

Default Tablespace for the User
A default tablespace stores objects that users create.

Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration
of a user session.

Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and
password access to the database.

2-7

Chapter 2
Creating User Accounts

Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

Restrictions on Creating the User Name for a New Account

When you specify a name for a user account, be aware of restrictions such as naming
conventions and whether the name is unique.

Uniqueness of User Names
Each user has an associated schema; within a schema, each schema object must
have a unique name.

User Names in a Multitenant Environment
Within each PDB, a user name must be unigue with respect to other user names
and roles in that PDB.

Case Sensitivity for User Names
How you create a user name controls the case sensitivity in which the user name
is stored in the database.

Uniqueness of User Names

Each user has an associated schema; within a schema, each schema object must
have a unique name.

Oracle Database will prevent you from creating a user name if it is already exists. You
can check existing names by querying the USERNAME column of the DBA_USERS data
dictionary view.

User Names in a Multitenant Environment

Within each PDB, a user name must be unique with respect to other user names and
roles in that PDB.

Note the following restrictions:

For common user names, names for user-created common users must begin with
a common user prefix. By default, for CDB common users, this prefix is C##. For
application common users, this prefix is an empty string. This means that there are
no restrictions on the name that can be assigned to an application common user
other than that it cannot start with the prefix reserved for CDB common users. For
example, you could name a CDB common user c##hr_admin and an application
common user hr_admin.

The COMMON_USER_PREFIX parameter in CDBSROOT defines the common user prefix.
You can change this setting, but do so only with great care.

For local user names, the name cannot start with C## (or c##)

A user and a role cannot have the same name.

Case Sensitivity for User Names

How you create a user name controls the case sensitivity in which the user name is
stored in the database.

For example:

ORACLE

2-8

Chapter 2
Creating User Accounts

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
PROFILE clerk
CONTAINER = CURRENT;

User jward is stored in the database in upper-case letters. For example:

SELECT USERNAME FROM ALL_USERS;

USERNAME

However, if you enclose the user name in double quotation marks, then the name is
stored using the case sensitivity that you used for the name. For example:

CREATE USER *jward" IDENTIFIED BY password;

So, when you query the ALL_USERS data dictionary view, you will find that the user
account is stored using the case that you used to create it.

SELECT USERNAME FROM ALL_USERS;

USERNAME

User JWARD and user jward are both stored in the database as separate user
accounts. Later on, if you must modify or drop the user that you had created using
double quotation marks, then you must enclose the user name in double quotation
marks.

For example:

DROP USER "jward";

Assignment of User Passwords

ORACLE

The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

Ensure that you create a secure password.

In the example in Creating a New User Account That Has Minimum Database
Privileges, the new local user is authenticated using the database. In this case, the
connecting user must supply the correct password to the database to connect
successfully.

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts

QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts

2-9

Chapter 2
Creating User Accounts

PROFILE clerk
CONTAINER = CURRENT;

Related Topics

* Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

* Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Default Tablespace for the User

A default tablespace stores objects that users create.

e About Assigning a Default Tablespace for a User
Each user should have a default tablespace.

« DEFAULT TABLESPACE Clause for Assigning a Default Tablespace
The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default
tablespace to the user.

About Assigning a Default Tablespace for a User

ORACLE

Each user should have a default tablespace.

When a schema object is created in the user's schema and the DDL statement does
not specify a tablespace to contain the object, the Oracle Database stores the object in
the user's default tablespace.

Tablespaces enable you to separate user data from system data, such as the data that
is stored in the SYSTEM tablespace. You use the CREATE USER or ALTER USER statement
to assign a default tablespace to a user. The default setting for the default tablespaces
of all users is the SYSTEM tablespace. If a user does not create objects, and has no
privileges to do so, then this default setting is fine. However, if a user is likely to create
any type of object, then you should specifically assign the user a default tablespace,
such as the USERS tablespace. Using a tablespace other than SYSTEM reduces
contention between data dictionary objects and user objects for the same data files. In
general, do not store user data in the SYSTEM tablespace.

You can use the CREATE TABLESPACE SQL statement to create a permanent default
tablespace other than SYSTEM at the time of database creation, to be used as the
database default for permanent objects. By separating the user data from the system
data, you reduce the likelihood of problems with the SYSTEM tablespace, which can in
some circumstances cause the entire database to become nonfunctional. This default
permanent tablespace is not used by system users, that is, SYS, SYSTEM, and OUTLN,
whose default permanent tablespace is SYSTEM. A tablespace designated as the
default permanent tablespace cannot be dropped. To accomplish this goal, you must
first designate another tablespace as the default permanent tablespace. You can use
the ALTER TABLESPACE SQL statement to alter the default permanent tablespace to
another tablespace. Be aware that this will affect all users or objects created after the
ALTER DDL statement is executed.

You can also set a user default tablespace during user creation, and change it later
with the ALTER USER statement. Changing the user default tablespace affects only
objects created after the setting is changed.

2-10

Chapter 2
Creating User Accounts

When you specify the default tablespace for a user, also specify a quota on that
tablespace.

DEFAULT TABLESPACE Clause for Assigning a Default Tablespace

The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default
tablespace to the user.

In the following CREATE USER statement, the default tablespace for local user jward is
data_ts:

CREATE USER jward

IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts

QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
PROFILE clerk

CONTAINER = CURRENT;

Related Topics

e Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Tablespace Quotas for a User

The tablespace quota defines how much space to provide for a user's tablespace.

* About Assigning a Tablespace Quota for a User
You can assign each user a tablespace quota for any tablespace, except a
temporary tablespace.

* CREATE USER Statement for Assigning a Tablespace Quota
The QUOTA clause of the CREATE USER statement assigns the quotas for a
tablespace.

» Restriction of the Quota Limits for User Objects in a Tablespace
You can restrict the quota limits for user objects in a tablespace so that the current
guota is zero.

e Grants to Users for the UNLIMITED TABLESPACE System Privilege
To permit a user to use an unlimited amount of any tablespace in the database,
grant the user the UNLIMITED TABLESPACE system privilege.

About Assigning a Tablespace Quota for a User

ORACLE

You can assign each user a tablespace quota for any tablespace, except a temporary
tablespace.

Assigning a quota accomplishes the following:

e Users with privileges to create certain types of objects can create those objects in
the specified tablespace.

e Oracle Database limits the amount of space that can be allocated for storage of a
user's objects within the specified tablespace to the amount of the quota.

2-11

Chapter 2
Creating User Accounts

By default, a user has no quota on any tablespace in the database. If the user has the
privilege to create a schema object, then you must assign a quota to allow the user to
create objects. At a minimum, assign users a quota for the default tablespace, and
additional quotas for other tablespaces in which they can create objects. The
maximum amount of space that you can assign for a tablespace is 2 TB. If you need
more space, then specify UNLIMITED for the QUOTA clause.

You can assign a user either individual quotas for a specific amount of disk space in
each tablespace or an unlimited amount of disk space in all tablespaces. Specific
guotas prevent a user's objects from using too much space in the database.

You can assign quotas to a user tablespace when you create the user, or add or
change quotas later. (You can find existing user quotas by querying the
USER_TS_QUOTAS view.) If a new quota is less than the old one, then the following
conditions remain true:

» If auser has already exceeded a new tablespace quota, then the objects of a user
in the tablespace cannot be allocated more space until the combined space of
these objects is less than the new quota.

» If a user has not exceeded a new tablespace quota, or if the space used by the
objects of the user in the tablespace falls under a new tablespace quota, then the
user's objects can be allocated space up to the new quota.

CREATE USER Statement for Assigning a Tablespace Quota

The QUOTA clause of the CREATE USER statement assigns the quotas for a tablespace.

The following CREATE USER statement assigns quotas for the test_ts and data_ts
tablespaces:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 500K ON data_ts
QUOTA 100M ON test_ts
TEMPORARY TABLESPACE temp_ts
PROFILE clerk
CONTAINER = CURRENT;

Restriction of the Quota Limits for User Objects in a Tablespace

You can restrict the quota limits for user objects in a tablespace so that the current
guota is zero.

To restrict the quote limits, use the ALTER USER SQL statement.

After a quota of zero is assigned, the objects of the user in the tablespace remain, and
the user can still create new objects, but the existing objects will not be allocated any
new space. For example, you could not insert data into one of this user's existing
tables. The operation will fail with an ORA-1536 space quota exceeded for tables
error.

Grants to Users for the UNLIMITED TABLESPACE System Privilege

To permit a user to use an unlimited amount of any tablespace in the database, grant
the user the UNLIMITED TABLESPACE system privilege.

ORACLE 2-12

Chapter 2
Creating User Accounts

The UNLIMITED TABLESPACE privilege overrides all explicit tablespace quotas for the
user. If you later revoke the privilege, then you must explicitly grant quotas to
individual tablespaces. You can grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, consider the
consequences of doing so.

Advantage:

* You can grant a user unlimited access to all tablespaces of a database with one
statement.

Disadvantages:

e The privilege overrides all explicit tablespace quotas for the user.

* You cannot selectively revoke tablespace access from a user with the UNLIMITED
TABLESPACE privilege. You can grant selective or restricted access only after
revoking the privilege.

Temporary Tablespaces for the User

A temporary tablespace contains transient data that persists only for the duration of a
user session.

* About Assigning a Temporary Tablespace for a User
You should assign each user a temporary tablespace.

* TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace
The TEMPORARY TABLESPACE clause in the CREATE USER statement assigns a user a
temporary tablespace.

About Assigning a Temporary Tablespace for a User

You should assign each user a temporary tablespace.

When a user executes a SQL statement that requires a temporary segment, Oracle
Database stores the segment in the temporary tablespace of the user. These
temporary segments are created by the system when performing sort or join
operations. Temporary segments are owned by SYS, which has resource privileges in
all tablespaces.

To create a temporary tablespace, you can use the CREATE TEMPORARY TABLESPACE
SQL statement.

If you do not explicitly assign the user a temporary tablespace, then Oracle Database
assigns the user the default temporary tablespace that was specified at database
creation, or by an ALTER DATABASE statement at a later time. If there is no default
temporary tablespace explicitly assigned, then the default is the SYSTEM tablespace or
another permanent default established by the system administrator. Assigning a
tablespace to be used specifically as a temporary tablespace eliminates file contention
among temporary segments and other types of segments.

ORACLE 2-13

Chapter 2
Creating User Accounts

Note:

If your SYSTEM tablespace is locally managed, then users must be assigned a
specific default (locally managed) temporary tablespace. They may not be
allowed to default to using the SYSTEM tablespace because temporary objects
cannot be placed in locally managed permanent tablespaces.

You can set the temporary tablespace for a user at user creation, and change it later
using the ALTER USER statement. You can also establish tablespace groups instead of
assigning individual temporary tablespaces.

" See Also:

Oracle Database Administrator’'s Guide for more information about temporary
tablespaces and using tablespace groups

TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace

The TEMPORARY TABLESPACE clause in the CREATE USER statement assigns a user a
temporary tablespace.

In the following example, the temporary tablespace of jward is temp_ts, a tablespace
created explicitly to contain only temporary segments.

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
PROFILE clerk
CONTAINER = CURRENT;

Profiles for the User

ORACLE

A profile is a set of limits, defined by attributes, on database resources and password
access to the database.

The profile can be applied to multiple users, enabling them to share these attributes.

You can specify a profile when you create a user. The PROFILE clause of the CREATE
USER statement assigns a user a profile. If you do not specify a profile, then Oracle
Database assigns the user a default profile.

For example:

CREATE USER jward
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts

2-14

Chapter 2
Creating User Accounts

PROFILE clerk
CONTAINER = CURRENT;

In a multitenant environment, different profiles can be assigned to a common user in
the root and in a PDB. When the common user logs in to the PDB, a profile whose
setting applies to the session depends on whether the settings are password-related
or resource-related.

» Password-related profile settings are fetched from the profile that is assigned to
the common user in the root. For example, suppose you assign a common profile
ct#prof (in which FAILED_LOGIN_ATTEMPTS is set to 1) to common user c#fadmin
in the root. In a PDB that user is assigned a local profile local _prof (in which
FAILED LOGIN_ATTEMPTS is setto 6.) Common user c##admin is allowed only one
failed login attempt when he or she tries to log in to the PDB where loc_prof is
assigned to him.

» Resource-related profile settings specified in the profile assigned to a user in a
PDB get used without consulting resource-related settings in a profile assigned to
the common user in the root. For example, if the profile local prof that is
assigned to user c##admin in a PDB has SESSIONS_PER_USER set to 2, then
c##admin is only allowed only 2 concurrent sessions when he or she logs in to the
PDB loc_prof is assigned to him, regardless of value of this setting in a profile
assigned to him in the root.

Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Creation of a Common User or a Local User

The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

e About Creating Common User Accounts
Be aware of common user account restrictions such as where they can be
created, naming conventions, and objects stored in their schemas.

« CREATE USER Statement for Creating a Common User Account
The CREATE USER statement CONTAINER=ALL clause can be used to create a
common user account.

* About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

» CREATE USER Statement for Creating a Local User Account
The CREATE USER statement CONTAINER clause can be used to create a local user
account.

About Creating Common User Accounts

Be aware of common user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

To create a common user account, follow these rules:

ORACLE 2-15

Chapter 2
Creating User Accounts

To create a CDB common user, you must be connected to the CDB root and have
the commonly granted CREATE USER system privilege.

To create an application common user, you must be connected to the application
root and have the commonly granted CREATE USER system privilege.

You can run the CREATE USER ... CONTAINER = ALL statement to create an
application common user in the application root. Afterward, you must synchronize
the application so that this user can be visible in the application PDB. For
example, for an application named saas_sales_app:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

The name that you give the common user who connects to the CDB root must
begin with the prefix that is defined in the COMMON_USER_PREFIX parameter in the
CDB root, which by default is C##. (You can modify this parameter, but only do so
with great caution.) It must contain only ASCII or EBCDIC characters. This naming
requirement does not apply to the names of existing Oracle-supplied user
accounts, such as SYS or SYSTEM. To find the names of existing user accounts,
query the ALL_USERS, CDB_USERS, DBA_USERS, and USER_USERS data dictionary
views.

The name that you give the common user who connects to the application root
must follow the naming conventions for standard user accounts. By default, the
COMMON_USER_PREFIX parameter in the application root is set to an empty string. In
other words, you can create a user named hr_admin in the application root but not
a user named c##hr_admin.

To explicitly designate a user account as a CDB or an application common user, in
the CREATE USER statement, specify the CONTAINER=ALL clause. If you are logged
into the CDB or application root, and if you omit the CONTAINER clause from your
CREATE USER statement, then the CONTAINER=ALL clause is implied.

Do not create objects in the schemas of common users for a CDB. Instead, you
can create application common objects. These are objects whose metadata, and
in case of data links or extended data links, data, is shared between all application
PDBs that belong to the application container. You must create the application
common object in the root of an application container.

If you specify the DEFAULT TABLESPACE, TEMPORARY TABLESPACE, QUOTA. . .ON, and
PROFILE clauses in the CREATE USER statement for a CDB or an application
common user account, then you must ensure that these objects—tablespaces,
tablespace groups, and profiles—exist in all containers of the CDB for a CDB
common user, or in the application root and all PDBs of an application container
for an application common user.

CREATE USER Statement for Creating a Common User Account

ORACLE

The CREATE USER statement CONTAINER=ALL clause can be used to create a common
user account.

You must be in the CDB root to create a CDB common user account and the
application root to create an application common user account.

The following example shows how to create a CDB common user account from the
CDB root by using the CONTAINER clause, and then granting the user the SET
CONTAINER and CREATE SESSION privileges. Common users must have the SET
CONTAINER system privilege to navigate between containers. When you create the

2-16

Chapter 2
Creating User Accounts

account, there is a single common password for this common user across all
containers.

CONNECT SYSTEM
Enter password: password
Connected.

CREATE USER c##thr_admin
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts

QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO c##hr_admin
CONTAINER = ALL;

The next example shows how to create an application common user in the application
root (app_root) by using the CONTAINER clause, and then granting the user the SET
CONTAINER, and CREATE SESSION system privileges. Finally, to synchronize this user so
that it is visible in the application PDBs, the ALTER PLUGGABLE DATABASE APPLICATION
APP$CON SYNC statement is run.

CONNECT SYSTEM@app_root
Enter password: password
Connected.

CREATE USER app_admin
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON temp_ts

QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO app_admin CONTAINER = ALL;
CONNECT SYSTEM@app_hr_pdb

Enter password: password

Connected.

ALTER PLUGGABLE DATABASE APPLICATION APP$CON SYNC;

Related Topics

* About Common Users
Oracle provides two types of common users: CDB common users and application
common users.

» Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

About Creating Local User Accounts

Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

To create a local user account, follow these rules:

ORACLE 2-17

Chapter 2
Creating User Accounts

* To create a local user account, you must be connected to the PDB in which you
want to create the account, and have the CREATE USER privilege.

e The name that you give the local user must not start with a prefix that is reserved
for common users, which by default is C## for CDB common users.

* You can include CONTAINER=CURRENT in the CREATE USER statement to specify the
user as a local user. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

* You cannot have common users and local users with the same name. However,
you can use the same name for local users in different PDBs. To find the names of
existing user accounts, query the ALL_USERS, CDB_USERS, DBA_USERS, and
USER_USERS data dictionary views.

Both common and local users connected to a PDB can create local user accounts,
as long as they have the appropriate privileges.

CREATE USER Statement for Creating a Local User Account

The CREATE USER statement CONTAINER clause can be used to create a local user
account.

You must create the local user account in the PDB where you want this account to
reside.

The following example shows how to create a local user account using the CONTAINER
clause.

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

CREATE USER kmurray
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
PROFILE hr_profile
CONTAINER = CURRENT;

Related Topics

e Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

* About Local Users
In a multitenant environment, a local user is a database user that exists only in a
single PDB.

Creating a Default Role for the User

ORACLE

A default role is automatically enabled for a user when the user creates a session.

You can assign a user zero or more default roles. You cannot set default roles for a
user in the CREATE USER statement. When you first create a user, the default role
setting for the user is ALL, which causes all roles subsequently granted to the user to
be default roles.

2-18

Chapter 2
Altering User Accounts

* Use the ALTER USER statement to change the default roles for the user.
For example:

GRANT USER rdale clerk_mgr;

ALTER USER rdale DEFAULT ROLE clerk_mgr;

Before a role can be made the default role for a user, that user must have been
already granted the role.

Related Topics

* Managing User Roles
A user role is a named collection of privileges that you can create and assign to
other users.

Altering User Accounts

The ALTER USER statement modifies user accounts, such their default tablespace or
profile, or changing a user's password.

e About Altering User Accounts
Changing user security settings affects the future user sessions, not the current
session.

 ALTER USER Statement for Altering Common or Local User Accounts
The ALTER USER statement can alter both common and local user accounts.

* Changing Non-SYS User Passwords
Users can change their own passwords but to change other users' passwords,
they must have the correct privileges.

* Changing the SYS User Password
To change the SYS user password, you must use the ORAPWD command line utility.

About Altering User Accounts

Changing user security settings affects the future user sessions, not the current
session.

In most cases, you can alter user security settings with the ALTER USER SQL
statement. Users can change their own passwords. However, to change any other
option of a user security domain, you must have the ALTER USER system privilege.
Security administrators are typically the only users that have this system privilege, as it
allows a modification of any user security domain. This privilege includes the ability to
set tablespace quotas for a user on any tablespace in the database, even if the user
performing the modification does not have a quota for a specified tablespace.

In a multitenant environment, you must have the commonly granted ALTER USER
system privilege to alter common user accounts. To alter local user accounts, you
must have a commonly granted ALTER USER privilege or a locally granted ALTER USER
privilege in the PDB in which the local user account resides.

ALTER USER Statement for Altering Common or Local User Accounts

The ALTER USER statement can alter both common and local user accounts.

ORACLE 2-19

Chapter 2
Altering User Accounts

You cannot change an existing common user account to be a local user account, or
vice versa. In this case, you must create a new account, as either a common user
account or a local user account.

The following example shows how to use the ALTER USER statement to restrict user
c#thr_admin’s ability to view V$SESSION rows to those that pertain to sessions that are
connected to CDB$ROOT, and to the emp_db and hr_db PDBs.

CONNECT SYSTEM
Enter password: password
Connected.

ALTER USER c##hr_admin

DEFAULT TABLESPACE data_ts

TEMPORARY TABLESPACE temp_ts

QUOTA 100M ON data_ts

QUOTA O ON test_ts

SET CONTAINER_DATA = (emp_db, hr_db) FOR V$SESSION
CONTAINER = CURRENT;

The ALTER USER statement here changes the security settings for the user
c#thr_admin as follows:

e DEFAULT TABLESPACE and TEMPORARY TABLESPACE are set explicitly to data_ts and
temp_ts, respectively.

* QUOTA 100M gives the data_ts tablespace 100 MB.
e QUOTA 0 revokes the quota on the temp_ts tablespace.

e SET CONTAINER_DATA enables user c##hr_admin to have access to data related to
the emp_db and hr_db PDBs as well as the root when he queries the VSSESSION
view from the root.

Related Topics

e Oracle Database SQL Language Reference

Changing Non-SYS User Passwords

Users can change their own passwords but to change other users' passwords, they
must have the correct privileges.

* About Changing Non-SYS User Passwords
Users can use either the PASSWORD command or ALTER USER statement to change
a password.

e Using the PASSWORD Command or ALTER USER Statement to Change a
Password
Most users can change their own passwords with the SQL*Plus PASSWORD
command or the ALTER USER SQL statement.

About Changing Non-SYS User Passwords

ORACLE

Users can use either the PASSWORD command or ALTER USER statement to change a
password.

No special privileges (other than those to connect to the database and create a
session) are required for a user to change his or her own password. Encourage users

2-20

Chapter 2
Altering User Accounts

to change their passwords frequently. You can find existing users for the current
database instance by querying the ALL_USERS view.

For better security, use the PASSWORD command to change the account's password.
The ALTER USER statement displays the new password on the screen, where it can be
seen by any overly curious coworkers. The PASSWORD command does not display the
new password, so it is only known to you, not to your co-workers. In both cases, the
password is encrypted on the network.

Users must have the PASSWORD and ALTER USER privilege to switch between methods
of authentication. Usually, only an administrator has this privilege.

Related Topics

* Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

e Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

» Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to
the database.

Using the PASSWORD Command or ALTER USER Statement to Change a
Password

Most users can change their own passwords with the SQL*Plus PASSWORD command or
the ALTER USER SQL statement.

In a multitenant environment, a CDB common user must change his or her password
in the CDB root, and an application common user must change his or her password in
the application root.

» Use one of the following methods to change a user’s password:

— To use the SQL*Plus PASSWORD command to change a password, supply the
user's name, and when prompted, enter the new password.

For example:

PASSWORD andy

Changing password for andy
New password: password
Retype new password: password

— Touse the ALTER USER SQL statement change a password, include the
IDENTIFIED BY clause.

For example:

ALTER USER andy IDENTIFIED BY password;

Changing the SYS User Password

To change the SYS user password, you must use the ORAPWD command line utility.

* About Changing the SYS User Password
The ORAPWD command line utility can create a new password file that contains the
SYS user password.

ORACLE 2-21

Chapter 2
Altering User Accounts

* ORAPWD Utility for Changing the SYS User Password
The ORAPWD utility enables you to change the SYS user password.

About Changing the SYS User Password

The ORAPWD command line utility can create a new password file that contains the SYS
user password.

Note the following:

» Before you can change the password of the SYS user account, a password file
must exist for this account.

e The SYS user account is used by most of the internal recursive SQL. Therefore, if
you try to use the ALTER USER statement to change this password while the
database is open, then there is a chance that deadlocks will result. To prevent this
problem, when you migrate a password file, set the ORAPWD sys option to y. Use
the following syntax:

orapwd input_file=input _file_nane file=file_name sys=y force=y
Enter password for SYS: new_password

» If you try to use ALTER USER to change the SYS user password, and if the instance
initialization parameter REMOTE_LOGIN_PASSWORDFILE has been set to SHARED, then
you cannot change the SYS password. The ALTER USER statement fails with an
ORA-28046: Password change for SYS disallowed error.

* New accounts are created with created with the SHA-2 (SHA-512) verifier. You can
identify these accounts by querying the PASSWORD_VERSIONS column of the
DBA_USERS data dictionary view. (These password versions are listed as 12C in the
view's output.) Because this verifier is too large to fit in the original password file
format, the password file must be created in the extended format, by using the
format=12 argument in the ORAPWD command. Otherwise, if you try to use the
PASSWORD command to change the SYS password, then an ORA-28017: The
password file is not in the extended format error will be raised.

* Inan Oracle Real Application Clusters (Oracle RAC) environment, store the
password in the ASM disk group so that it can be shared by multiple Oracle RAC
instances.

Related Topics

» Ensuring Against Password Security Threats by Using the 12C Password Version
The 12C password version enables users to create complex passwords that meet
compliance standards.

e Oracle Database Administrator’s Guide

ORAPWD Utility for Changing the SYS User Password

ORACLE

The ORAPWD utility enables you to change the SYS user password.

You can use the ORAPWD utility with the INPUT_FILE parameter to change the SYS user
password. To migrate the password files to a specific format, include the FORMAT
option. By default, the format is 12.2 if you do not specify the FORMAT option.

Using the ALTER USER statement to change SYS password when the database is open
could lead to deadlocks. Instead, use the ORAPWD utility to change the SYS user
password. To set a new password for the SYS user using the ORAPWD utility, set the SYS

2-22

Chapter 2
Configuring User Resource Limits

option to Y (yes), use the INPUT_FILE parameter to specify the current password file
name, and use the FILE parameter to create the password file to which the original
password file is migrated. For example:

ORAPWD INPUT_FILE="orapworcl® FILE="orapwd® SYS=Y
Enter password for SYS: new_password

If you do not want to migrate the password file to a different format, then you can
specify the same format as the input_file. For example, assuming that the input file
orapworcl format is 12 and you want to change the SYS user password:

ORAPWD INPUT_FILE="orapworcl® FILE="orapwd" FORMAT=12 SYS=Y
Enter password for SYS: new_password

" See Also:

Oracle Database Administrator’'s Guide for more information about the
ORAPWD utility

Configuring User Resource Limits

A resource limit defines the amount of system resources that are available for a user.

* About User Resource Limits
You can set limits on the amount of system resources available to each user as
part of the security domain of that user.

* Types of System Resources and Limits
You can limit several types of system resources, including CPU time and logical
reads, at the session level, call level, or both.

» Values for Resource Limits of Profiles
Before you create profiles and set resource limits, you should determine
appropriate values for each resource limit.

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

About User Resource Limits

ORACLE

You can set limits on the amount of system resources available to each user as part of
the security domain of that user.

By doing so, you can prevent the uncontrolled consumption of valuable system
resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because user consumption of system resources is less likely to have a
detrimental impact.

2-23

Chapter 2
Configuring User Resource Limits

You manage user resource limits by using Database Resource Manager. You can set
password management preferences using profiles, either set individually or using a
default profile for many users. Each Oracle database can have an unlimited number of
profiles. Oracle Database allows the security administrator to enable or disable the
enforcement of profile resource limits universally.

Setting resource limits causes a slight performance degradation when users create
sessions, because Oracle Database loads all resource limit data for each user upon
each connection to the database.

¢ See Also:

Oracle Database Administrator’s Guide for information about setting
resource limits

Types of System Resources and Limits

You can limit several types of system resources, including CPU time and logical reads,
at the session level, call level, or both.

e Limits to the User Session Level
When a user connects to a database, a session is created. Sessions use CPU
time and memory, on which you can set limits.

e Limits to Database Call Levels
Each time a user runs a SQL statement, Oracle Database performs several steps
to process the statement.

e Limits to CPU Time
When SQL statements and other calls are made to an Oracle database, CPU time
is necessary to process the call.

e Limits to Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.

e Limits to Other Resources
You can control limits for user concurrent sessions and idle time.

Limits to the User Session Level

ORACLE

When a user connects to a database, a session is created. Sessions use CPU time
and memory, on which you can set limits.

You can set several resource limits at the session level. If a user exceeds a session-
level resource limit, then Oracle Database terminates (rolls back) the current
statement and returns a message indicating that the session limit has been reached.
At this point, all previous statements in the current transaction are intact, and the only
operations the user can perform are COMMIT, ROLLBACK, or disconnect (in this case, the
current transaction is committed). All other operations produce an error. Even after the
transaction is committed or rolled back, the user cannot accomplish any more work
during the current session.

2-24

Chapter 2
Configuring User Resource Limits

Limits to Database Call Levels

Each time a user runs a SQL statement, Oracle Database performs several steps to
process the statement.

During the SQL statement processing, several calls are made to the database as a
part of the different execution phases. To prevent any one call from using the system
excessively, Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, then Oracle Database halts the processing
of the statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user session remains
connected.

Limits to CPU Time

When SQL statements and other calls are made to an Oracle database, CPU time is
necessary to process the call.

Average calls require a small amount of CPU time. However, a SQL statement
involving a large amount of data or a runaway query can potentially use a large
amount of CPU time, reducing CPU time available for other processing.

To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the
CPU time for each call and the total amount of CPU time used for Oracle Database
calls during a session. The limits are set and measured in CPU one-hundredth
seconds (0.01 seconds) used by a call or a session.

Limits to Logical Reads

Input/output (1/O) is one of the most expensive operations in a database system.

SQL statements that are I/O-intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, you can limit the logical data block reads
for each call and for each session. Logical data block reads include data block reads
from both memory and disk. The limits are set and measured in number of block reads
performed by a call or during a session.

Limits to Other Resources

ORACLE

You can control limits for user concurrent sessions and idle time.
Limits to other resources are as follows:

* You can limit the number of concurrent sessions for each user. Each user
can create only up to a predefined number of concurrent sessions.

* You can limit the idle time for a session. If the time between calls in a session
reaches the idle time limit, then the current transaction is rolled back, the session
is terminated, and the resources of the session are returned to the system. The
next call receives an error that indicates that the user is no longer connected to the
instance. This limit is set as a number of elapsed minutes.

2-25

Chapter 2
Configuring User Resource Limits

Note:

Shortly after a session is terminated because it has exceeded an idle
time limit, the process monitor (PMON) background process cleans up
after the terminated session. Until PMON completes this process, the
terminated session is still counted in any session or user resource limit.

* You can limit the elapsed connect time for each session. If the duration of a

session exceeds the elapsed time limit, then the current transaction is rolled back,
the session is dropped, and the resources of the session are returned to the
system. This limit is set as a number of elapsed minutes.

" Note:

Oracle Database does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so reduces system performance.
Instead, it checks every few minutes. Therefore, a session can exceed
this limit slightly (for example, by 5 minutes) before Oracle Database
enforces the limit and terminates the session.

* You can limit the amount of private System Global Area (SGA) space (used
for private SQL areas) for a session. This limit is only important in systems that
use the shared server configuration. Otherwise, private SQL areas are located in
the Program Global Area (PGA). This limit is set as a number of bytes of memory
in the SGA of an instance. Use the characters K or M to specify kilobytes or
megabytes.

¢ See Also:

Oracle Database Administrator’'s Guide for detailed information about
managing resources

Values for Resource Limits of Profiles

ORACLE

Before you create profiles and set resource limits, you should determine appropriate
values for each resource limit.

You can base the resource limit values on the type of operations a typical user
performs. For example, if one class of user does not usually perform a high number of
logical data block reads, then use the ALTER RESOURCE COST SQL statement to set the
LOGICAL_READS PER_SESSION setting conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage. For
example, the database or security administrator can use the AUDIT SESSION clause to
gather information about the limits CONNECT_TIME, LOGICAL_READS_PER_SESSION.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise
Manager (or SQL*PIlus), specifically the Statistics monitor.

2-26

Chapter 2
Configuring User Resource Limits

Managing Resources with Profiles

A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

e About Profiles
A profile is a collection of attributes that apply to a user.

e ora_stig_profile User Profile
The ora_stig_profile user profile is designed for Security Technical
Implementation Guides compliance.

* Creating a Profile
A profile can encompass limits for a specific category, such as limits on passwords
or limits on resources.

» Creating a CDB Profile or an Application Profile
The CREATE PROFILE or ALTER PROFILE statement CONTAINER=ALL clause can
create a profile in a CDB or application root.

» Assigning a Profile to a User
After you create a profile, you can assign it to users.

» Dropping Profiles
You can drop a profile, even if it is currently assigned to a user.

About Profiles

ORACLE

A profile is a collection of attributes that apply to a user.

The profile is used to enable a single point of reference for multiple users who share
these attributes.

You should assign a profile to each user. Each user can have only one profile, and
creating a new one supersedes an earlier assignment.

You can create and manage user profiles only if resource limits are a requirement of
your database security policy. To use profiles, first categorize the related types of
users in a database. Just as roles are used to manage the privileges of related users,
profiles are used to manage the resource limits of related users. Determine how many
profiles are needed to encompass all categories of users in a database and then
determine appropriate resource limits for each profile.

User profiles in Oracle Internet Directory contain attributes pertinent to directory usage
and authentication for each user. Similarly, profiles in Oracle Label Security contain
attributes useful in label security user administration and operations management.
Profile attributes can include restrictions on system resources. You can use Database
Resource Manager to set these types of resource limits.

In a multitenant environment, profiles are useful for the administration and operations
performed in the container databases (CDBs) and application containers, as well as
their associated pluggable databases (PDBs). For both CDB and application
containers, if you define a common profile, then the profile applies to the entire
container and not outside this container. If you create a local profile, then it applies to
that PDB only.

Profile resource limits are enforced only when you enable resource limitation for the
associated database. Enabling this limitation can occur either before starting the

2-27

Chapter 2
Configuring User Resource Limits

database (using the RESOURCE_LIMIT initialization parameter) or while it is open (using
the ALTER SYSTEM statement).

Though password parameters reside in profiles, they are unaffected by
RESOURCE_LIMIT or ALTER SYSTEM and password management is always enabled. In
Oracle Database, Database Resource Manager primarily handles resource allocations
and restrictions.

Any authorized database user can create, assign to users, alter, and drop a profile at
any time (using the CREATE USER or ALTER USER statement). Profiles can be assigned
only to users and not to roles or other profiles. Profile assignments do not affect
current sessions; instead, they take effect only in subsequent sessions.

To find information about current profiles, query the DBA_PROFILES view.

¢ See Also:

Oracle Database Administrator’s Guide for detailed information about
managing resources

ora_stig_profile User Profile

The ora_stig_profile user profile is designed for Security Technical Implementation
Guides compliance.

The ora_stig_profile user profile addresses STIG requirements such as the need
for a password complexity function, maximum failed login attempts, reuse time, and
other requirements. The definition for this profile is as follows:

CREATE PROFILE ora_stig_profile

password_life_time 60
password_grace_time 5
password_reuse_time 365
password_reuse_max 10
failed_login_attempts 3
password_lock_time unlimited
inactive_account_time 35
idle_time 15

password_verify_function oral2c_stig_verify function;

Creating a Profile

ORACLE

A profile can encompass limits for a specific category, such as limits on passwords or
limits on resources.

To create a profile, you must have the CREATE PROFILE system privilege. To find all
existing profiles, you can query the DBA_PROFILES view.

e Use the CREATE PROFILE statement to create a profile.
For example, to create a profile that defines password limits:

CREATE PROFILE password_prof LIMIT
FAILED_LOGIN_ATTEMPTS 6
PASSWORD_LIFE_TIME 60
PASSWORD_REUSE_TIME 60

2-28

Chapter 2
Configuring User Resource Limits

PASSWORD_REUSE_MAX 5
PASSWORD_LOCK_TIME 1/24
PASSWORD_GRACE_TIME 10
PASSWORD_VERIFY_FUNCTION DEFAULT;

The following example shows how to create a resource limits profile.

CREATE PROFILE app_user LIMIT

SESSIONS_PER_USER UNLIMITED
CPU_PER_SESSION UNLIMITED
CPU_PER_CALL 3500
CONNECT_TIME 50

LOGICAL_READS_PER SESSION DEFAULT
LOGICAL_READS_PER CALL 1200

PRIVATE_SGA 20K
COMPOSITE_LIMIT 7500000;
¢ See Also:

Oracle Database SQL Language Reference for more information about the
CREATE PROFILE SQL statement

Creating a CDB Profile or an Application Profile

The CREATE PROFILE or ALTER PROFILE statement CONTAINER=ALL clause can create a
profile in a CDB or application root.

You cannot create local profiles in the CDB root or the application root. The profile that
you create will be applied to all PDBs that are associated with the CDB root or the
application root. Create the profile using the same parameters that you would in a non-
multitenant environment.

* To create a profile in a CDB root or an application root, optionally include the
CONTAINER=ALL clause in the CREATE PROFILE or ALTER PROFILE statement.

The CONTAINER=ALL clause is optional because it is the default when the statement
is processed.

For example:

CREATE PROFILE password_prof LIMIT
FAILED_LOGIN_ATTEMPTS 6
PASSWORD_LIFE_TIME 60
PASSWORD_REUSE_TIME 60
PASSWORD_REUSE_MAX 5
PASSWORD_LOCK_TIME 1/24
PASSWORD_GRACE_TIME 10
PASSWORD_VERIFY_FUNCTION DEFAULT
CONTAINER=ALL;

Assigning a Profile to a User

After you create a profile, you can assign it to users.

You can assign a profile to a user who has already been assigned a profile, but the
most recently assigned profile takes precedence. When you assign a profile to an

ORACLE 2-29

Chapter 2
Dropping User Accounts

external user or a global user, the password parameters do not take effect for that
user.

To find the profiles that are currently assigned to users, you can query the DBA_USERS
view.

» Use the ALTER USER statement to assign the profile to a user.
For example:

ALTER USER psmith PROFILE app_user;

Dropping Profiles

You can drop a profile, even if it is currently assigned to a user.

When you drop a profile, the drop does not affect currently active sessions. Only
sessions that were created after a profile is dropped use the modified profile
assignments. To drop a profile, you must have the DROP PROFILE system privilege.
You cannot drop the default profile.

* Use the SQL statement DROP PROFILE to drop a profile. To drop a profile that is
currently assigned to a user, use the CASCADE option.

For example:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically is assigned to
the DEFAULT profile. The DEFAULT profile cannot be dropped.

" See Also:

Oracle Database SQL Language Reference for more information about the
DROP PROFILE SQL statement

Dropping User Accounts

ORACLE

You can drop user accounts if the user is not in a session, and if the user has objects
in the user’s schema.

* About Dropping User Accounts
Before you drop a user account, you must ensure that you have the appropriate
privileges for doing so.

* Terminating a User Session
A user who is connected to a database cannot be dropped.

» About Dropping a User After the User Is No Longer Connected to the Database
After a user is disconnected from the database, you can use the DROP USER
statement to drop the user.

» Dropping a User Whose Schema Contains Objects
Before you drop a user whose schema contains objects, carefully investigate the
implications of dropping these schema objects.

2-30

Chapter 2
Dropping User Accounts

About Dropping User Accounts

Before you drop a user account, you must ensure that you have the appropriate
privileges for doing so.

To drop a user account in any environment, you must have the DROP USER system
privilege. In a multitenant environment, you must have the commonly granted DROP
USER system privilege to drop common user accounts. To drop local user accounts,
you must have a commonly granted DROP USER privilege or a locally granted DROP
USER privilege in the PDB in which the local user account resides.

When you drop a user account, Oracle Database removes the user account and
associated schema from the data dictionary. It also immediately drops all schema
objects contained in the user schema, if any.

Note:

e If a user schema and associated objects must remain but the user must
be denied access to the database, then revoke the CREATE SESSION
privilege from the user.

e Do not attempt to drop the SYS or SYSTEM user. Doing so corrupts your
database.

Terminating a User Session

A user who is connected to a database cannot be dropped.

You must first terminate the user session (or the user can exit the session) before you
can drop the user.

1. Query the V$SESSION dynamic view to find the session ID of the user whose
session you want to terminate.

For example:

SELECT SID, SERIAL#, USERNAME FROM V$SESSION;

SID SERIAL# USERNAME

127 55234 ANDY

2. Use the ALTER SYSTEM SQL statement to stop the session for the user, based on
the SID and SERIAL# settings of the VSSESSION view.

For example:
ALTER SYSTEM KILL SESSION *127, 55234*;

ORACLE 2-31

Chapter 2
Database User and Profile Data Dictionary Views

" See Also:

Oracle Database Administrator’s Guide for more information about
terminating sessions

About Dropping a User After the User Is No Longer Connected to the

Database

After a user is disconnected from the database, you can use the DROP USER statement
to drop the user.

To drop a user and all the user schema objects (if any), you must have the DROP USER
system privilege. Because the DROP USER system privilege is powerful, a security
administrator is typically the only type of user that has this privilege.

If the schema of the user contains any dependent schema objects, then use the
CASCADE option to drop the user and all associated objects and foreign keys that
depend on the tables of the user successfully. If you do not specify CASCADE and the
user schema contains dependent objects, then an error message is returned and the
user is not dropped.

Dropping a User Whose Schema Contains Objects

Before you drop a user whose schema contains objects, carefully investigate the
implications of dropping these schema objects.

1. Query the DBA_OBJECTS data dictionary view to find the objects that are owned by
the user.

For example:
SELECT OWNER, OBJECT NAME FROM DBA OBJECTS WHERE OWNER LIKE "ANDY®";
Enter the user name in capital letters. Pay attention to any unknown cascading

effects. For example, if you intend to drop a user who owns a table, then check
whether any views or procedures depend on that particular table.

2. Use the DROP USER SQL statement with the CASCADE clause to drop the user and
all associated objects and foreign keys that depend on the tables that the user
owns.

For example:

DROP USER andy CASCADE;

Database User and Profile Data Dictionary Views

ORACLE

Oracle Database provides a set of data dictionary views that provide information about
the settings that you used to create users and profiles.

« Data Dictionary Views That List Information About Users and Profiles
Oracle Database provides a set of data dictionary views that contain information
about database users and profiles.

2-32

Chapter 2
Database User and Profile Data Dictionary Views

* Query to Find All Users and Associated Information
The DBA_USERS data dictionary view shows all users and their associated
information as defined in the database.

e Query to List All Tablespace Quotas
The DBA_TS_QUOTAS data dictionary view lists all tablespace quotas assigned to

each user.

* Query to List All Profiles and Assigned Limits
The DBA_PROFILE view lists all profiles in the database and associated settings for
each limit in each profile.

* Query to View Memory Use for Each User Session
The V$SESSION dynamic view lists the memory use for each user session.

Data Dictionary Views That List Information About Users and Profiles

Oracle Database provides a set of data dictionary views that contain information about
database users and profiles.

ORACLE

Table 2-1 lists these data dictionary views. For detailed information about these views,
see Oracle Database Reference.

Table 2-1 Data Dictionary Views That Display Information about Users and

Profiles
__|
View Description

ALL_OBJECTS Describes all objects accessible to the current user

ALL_USERS Lists users visible to the current user, but does not describe

DBA_PROFILES
DBA_TS_QUOTAS
DBA_OBJECTS

DBA_USERS
DBA_USERS_WITH_DEFPWD
PROXY_USERS
RESOURCE_COST

USER_PASSWORD_LIMITS

USER_RESOURCE_LIMITS
USER_TS_QUOTAS
USER_OBJECTS
USER_USERS

V$SESSION

V$SESSTAT

V$STATNAME

them

Displays all profiles and their limits

Describes tablespace quotas for users

Describes all objects in the database

Describes all users of the database

Lists all user accounts that have default passwords
Describes users who can assume the identity of other users

Lists the cost for each resource in terms of CPUs for each
session, reads for each session, connection times, and SGA

Describes the password profile parameters that are assigned to
the user

Displays the resource limits for the current user
Describes tablespace quotas for users

Describes all objects owned by the current user
Describes only the current user

Lists session information for the current database session
Displays user session statistics

Displays decoded statistic names for the statistics shown in the
V$SESSTAT view

2-33

Chapter 2
Database User and Profile Data Dictionary Views

The following sections present examples of using these views. These examples
assume that the following statements have been run. The users are all local users.

CREATE PROFILE clerk LIMIT
SESSIONS_PER_USER 1
IDLE_TIME 30
CONNECT_TIME 600;

CREATE USER jfee
IDENTIFIED BY password
DEFAULT TABLESPACE example
TEMPORARY TABLESPACE temp
QUOTA 500K ON example
PROFILE clerk
CONTAINER = CURRENT;

CREATE USER dcranney
IDENTIFIED BY password
DEFAULT TABLESPACE example
TEMPORARY TABLESPACE temp
QUOTA unlimited ON example
CONTAINER = CURRENT;

CREATE USER userscott
IDENTIFIED BY password
CONTAINER = CURRENT;

Query to Find All Users and Associated Information

The DBA_USERS data dictionary view shows all users and their associated information
as defined in the database.

For detailed information about the DBA_USERS view, see Oracle Database Reference.

For example:

col username format all

col profile format al0

col account_status format al9

col authentication_type format a29

SELECT USERNAME, PROFILE, ACCOUNT_STATUS, AUTHENTICATION_TYPE FROM DBA_USERS;

USERNAME PROFILE ACCOUNT_STATUS AUTHENTICATION_TYPE
SYS DEFAULT OPEN PASSWORD

SYSTEM DEFAULT OPEN PASSWORD

USERSCOTT DEFAULT OPEN PASSWORD

JFEE CLERK OPEN GLOBAL

DCRANNEY DEFAULT OPEN EXTERNAL

Query to List All Tablespace Quotas

ORACLE

The DBA_TS_QUOTAS data dictionary view lists all tablespace quotas assigned to each
user.

For detailed information about this view, see Oracle Database Reference.

For example:

2-34

Chapter 2
Database User and Profile Data Dictionary Views

SELECT * FROM DBA_TS_QUOTAS;

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS

EXAMPLE JFEE 0 512000 0 250
EXAMPLE DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES
column. This number is always a multiple of the database block size, so if you specify
a tablespace quota that is not a multiple of the database block size, then it is rounded
up accordingly. Unlimited quotas are indicated by -1.

Query to List All Profiles and Assigned Limits

The DBA_PROFILE view lists all profiles in the database and associated settings for
each limit in each profile.

For detailed information about this view, see Oracle Database Reference.
For example:

SELECT * FROM DBA_PROFILES
ORDER BY PROFILE;

PROFILE RESOURCE_NAME RESOURCE_TYPE ~ LIMIT
CLERK COMPOSITE_LIMIT KERNEL DEFAULT
CLERK FAILED_LOGIN_ATTEMPTS PASSWORD DEFAULT
CLERK PASSWORD_LIFE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_MAX PASSWORD DEFAULT
CLERK PASSWORD_VERIFY_FUNCTION PASSWORD DEFAULT
CLERK PASSWORD_LOCK_TIME PASSWORD DEFAULT
CLERK PASSWORD_GRACE_TIME PASSWORD DEFAULT
CLERK PRIVATE_SGA KERNEL DEFAULT
CLERK CONNECT_TIME KERNEL 600

CLERK IDLE_TIME KERNEL 30

CLERK LOGICAL_READS_PER_CALL KERNEL DEFAULT
CLERK LOGICAL_READS_PER_SESSION KERNEL DEFAULT
CLERK CPU_PER_CALL KERNEL DEFAULT
CLERK CPU_PER_SESSION KERNEL DEFAULT
CLERK SESSIONS_PER_USER KERNEL 1

DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1

DEFAULT PASSWORD_GRACE_TIME PASSWORD 7

DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED

32 rows selected.

ORACLE 2-35

Chapter 2
Database User and Profile Data Dictionary Views

To find the default profile values, you can run the following query:

SELECT * FROM DBA_PROFILES WHERE PROFILE = "DEFAULT";

PROFILE RESOURCE_NAME RESOURCE_TYPE LIMIT
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_T IME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1

DEFAULT PASSWORD_GRACE_T IME PASSWORD 7

16 rows selected.

Query to View Memory Use for Each User Session

ORACLE

The V$SESSION dynamic view lists the memory use for each user session.
For detailed information on this view, see Oracle Database Reference.

The following query lists all current sessions, showing the Oracle Database user and
current User Global Area (UGA) memory use for each session:

SELECT USERNAME, VALUE || "bytes®™ "Current UGA memory"
FROM V$SESSION sess, V$SESSTAT stat, VSSTATNAME name
WHERE sess.SID = stat.SID
AND stat.STATISTIC# = name.STATISTIC#
AND name.NAME = "session uga memory";

USERNAME Current UGA memory
18636bhytes
17464bytes
19180bytes
18364bytes
39384bytes
35292bytes
17696bytes
15868hytes

USERSCOTT 42244bytes

SYS 98196bytes

SYSTEM 30648bytes

11 rows selected.

To see the maximum UGA memory allocated to each session since the instance
started, replace "session uga memory® in the preceding query with "session uga
memory max" .

2-36

Configuring Authentication

ORACLE

Authentication means to verify the identity of users or other entities that connect to the
database.

About Authentication
Authentication means verifying the identity of a user, device, or other entity who
wants to use data, resources, or applications.

Configuring Password Protection
You can secure user passwords in a variety of ways, such as controlling the
password creation requirements or using password management policies.

Authentication of Database Administrators
You can authenticate database administrators by using strong authentication, from
the operating system, or from the database using passwords.

Database Authentication of Users
Database authentication of users entails using information within the database
itself to perform the authentication.

Schema Only Accounts
You can create schema only accounts, that is, the schema user has no password.

Operating System Authentication of Users
Oracle Database can authenticate by using information that is maintained by the
operating system.

Network Authentication of Users
You can authenticate users over a network by using Secure Sockets Layer with
third-party services.

Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to
be operating system users for a PDB.

Global User Authentication and Authorization
Global user authentication and authorization enables you to centralize the
management of user-related information.

Configuring an External Service to Authenticate Users and Passwords
An external service (the operating system or the network) can administer
passwords and authenticate users.

Multitier Authentication and Authorization
Oracle Database secures middle-tier applications by limiting privileges, preserving
client identities through all tiers, and auditing actions by clients.

Administration and Security in Clients, Application Servers, and Database Servers
In a multitier environment, an application server provides data for clients and
serves as an interface to one or more database servers.

Preserving User Identity in Multitiered Environments
You can use middle tier servers for proxy authentication and client identifiers to
identify application users who are not known to the database.

3-1

Chapter 3
About Authentication

» User Authentication Data Dictionary Views
Oracle Database provides data dictionary views that list information about user
authentication, such as roles that users have or profiles they use.

About Authentication

Authentication means verifying the identity of a user, device, or other entity who wants
to use data, resources, or applications.

Validating this identity establishes a trust relationship for further interactions.
Authentication also enables accountability by making it possible to link access and
actions to specific identities. After authentication, authorization processes can allow or
limit the levels of access and action permitted to that entity.

You can authenticate both database and nondatabase users for an Oracle database.
For simplicity, the same authentication method is generally used for all database
users, but Oracle Database allows a single database instance to use any or all
methods. Oracle Database requires special authentication procedures for database
administrators, because they perform special database operations. Oracle Database
also encrypts passwords during transmission to ensure the security of network
authentication.

After authentication, authorization processes can allow or limit the levels of access and
action permitted to that entity.

Related Topics

» Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Configuring Password Protection

ORACLE

You can secure user passwords in a variety of ways, such as controlling the password
creation requirements or using password management policies.

e What Are the Oracle Database Built-in Password Protections?
Oracle Database provides a set of built-in password protections designed to
protect your users' passwords.

e Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

e Creating a Password by Using the IDENTIFIED BY Clause
SQL statements that accept the IDENTIFIED BY clause also enable you to create
passwords.

» Using a Password Management Policy
A password management policy can create and enforce a set of restrictions that
can better secure user passwords.

* Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

* Managing Password Case Sensitivity
You can manage the password case sensitivity for passwords from user accounts
from previous releases.

3-2

Chapter 3
Configuring Password Protection

Ensuring Against Password Security Threats by Using the 12C Password Version
The 12C password version enables users to create complex passwords that meet
compliance standards.

Managing the Secure External Password Store for Password Credentials
The secure external password store is a client-side wallet that is used to store
password credentials.

Managing Passwords for Administrative Users
The passwords of administrative users have special protections, such as
password files and password complexity functions.

What Are the Oracle Database Built-in Password Protections?

Oracle Database provides a set of built-in password protections designed to protect
your users' passwords.

ORACLE

These password protections are as follows:

Password encryption. Oracle Database automatically and transparently encrypts
passwords during network (client-to-server and server-to-server) connections,
using Advanced Encryption Standard (AES) before sending them across the
network. However, a password that is specified within a SQL statement (such as
CREATE USER user _name IDENTIFIED BY password;) is still transmitted across the
network in clear text in the network trace files. For this reason, you should have
native network encryption enabled or configure Secure Sockets Layer (SSL)
encryption.

Password complexity checking. In a default installation, Oracle Database
provides the oral2c_verify_function and oral2c_strong_verify function
password verification functions to ensure that new or changed passwords are
sufficiently complex to prevent intruders who try to break into the system by
guessing passwords. You must manually enable password complexity checking.
You can further customize the complexity of your users' passwords. See About
Password Complexity Verification for more information.

Preventing passwords from being broken. If a user tries to log in to Oracle
Database multiple times using an incorrect password, Oracle Database delays
each login by one second. This protection applies for attempts made from different
IP addresses or multiple client connections. This feature significantly decreases
the number of passwords that an intruder would be able to try within a fixed time
period when attempting to log in. The failed login delay slows down each failed
login attempt, increasing the overall time that is required to perform a password-
guessing attack, because such attacks usually require a very large number of
failed login attempts.

For non-administrative logins, Oracle Database protects against concurrent
password guessing attacks by setting an exclusive lock for the failed login delay.
This prevents an intruder from attempting to sidestep the failed login delay when
the intruder tries the next concurrent guess in a different database session as
soon as the first guess fails and is delayed.

By holding an exclusive lock on the account that is being attacked, Oracle
Database mitigates concurrent password guessing attacks, but this can
simultaneously leave the account vulnerable to denial-of-service (DoS) attacks. To
remedy this problem, you should create a password profile where the
FAILED_LOGIN_ATTEMPTS parameter is set to UNLIMITED, and then apply this
password profile to the user account. The value UNLIMITED for the

3-3

Chapter 3
Configuring Password Protection

FAILED_LOGIN_ATTEMPTS parameter setting disables failed login delays and does
not limit the number of failed login attempts. For these types of accounts, Oracle
recommends that you use a long random password.

The concurrent password-guessing attack protection does not apply to
administrative user connections, because these kinds of connections must remain
available at all times and be immune to denial-of-service attacks. Hence, Oracle
recommends that you choose long passwords for any administrative privileged
account.

e Enforced case sensitivity for passwords. Passwords are case sensitive. For
example, the password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.
See Managing Password Case Sensitivity for information about how case
sensitivity works, and how it affects password files and database links.

» Passwords hashed using the 12C password version. To verify the user's
password and enforce case sensitivity in password creation, Oracle Database
uses the 12C password version, which is based on a de-optimized algorithm that
involves Password-Based Key Derivation Function (PBKDF2) and the SHA-512
cryptographic hash functions. See Ensuring Against Password Security Threats by
Using the 12C Password Version for more information.

See Also:

Guidelines for Securing Passwords for advice about securing passwords

Minimum Requirements for Passwords

Oracle provides a set of minimum requirements for passwords.

Passwords can be at most 30 bytes long. There are a variety of ways that you can
secure passwords, ranging from requiring passwords to be of a sensible length to
creating custom password complexity verification scripts that enforce the password
complexity policy requirements that apply at your site.

Related Topics

* Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Creating a Password by Using the IDENTIFIED BY Clause

ORACLE

SQL statements that accept the IDENTIFIED BY clause also enable you to create
passwords.

* To create passwords for users, use the CREATE USER, ALTER USER, GRANT CREATE
SESSION, or CREATE DATABASE LINK SQL statement.

The following SQL statements create passwords with the IDENTIFIED BY clause.

CREATE USER psmith IDENTIFIED BY password;

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

ALTER USER psmith IDENTIFIED BY password;

CREATE DATABASE LINK AUTHENTICATED BY psmith IDENTIFIED BY password;

3-4

Chapter 3
Configuring Password Protection

Related Topics

e About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using a Password Management Policy

ORACLE

A password management policy can create and enforce a set of restrictions that can
better secure user passwords.

e About Managing Passwords
Database security systems that depend on passwords require that passwords be
kept secret at all times.

* Finding User Accounts That Have Default Passwords
The DBA_USERS_WITH_DEFPWD data dictionary view can find user accounts that use
default passwords.

» Password Settings in the Default Profile
A profile is a collection of parameters that sets limits on database resources.

* Using the ALTER PROFILE Statement to Set Profile Limits
You can modify profile limits such as failed login attempts, password lock times,
password reuse, and several other settings.

» Disabling and Enabling the Default Password Security Settings
Oracle provides scripts that you can use to disable and enable the default
password security settings.

* Automatically Locking Inactive Database User Accounts
The INACTIVE_ACCOUNT_TIME profile parameter locks a user account that has not
logged in to the database instance in a specified number of days.

e Automatically Locking User Accounts After Failed Logins
Oracle Database can lock a user's account after a specified number of
consecutive failed log-in attempts.

e Example: Locking an Account with the CREATE PROFILE Statement
The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in
violates the CREATE PROFILE settings.

e Explicitly Locking a User Account
When you explicitly lock a user account, the account cannot be unlocked
automatically. Only a security administrator can unlock the account.

e Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time
or for a number of password changes.

e About Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires.

e Using the CREATE PROFILE or ALTER PROFILE Statement to Set a Password
Lifetime
When you set a lifetime for a password, the user must create a new password
when this lifetime ends.

e Checking the Status of a User Account
You can check the status of any account, whether it is open, in grace, or expired.

3-5

Chapter 3
Configuring Password Protection

» Password Change Life Cycle
After a password is created, it follows a lifecycle and grace period in four phases.

* PASSWORD_LIFE_TIME Profile Parameter Low Value
Be careful if you set the PASSWORD_LIFE_TIME parameter of CREATE PROFILE or
ALTER PROFILE to a low value (for example, 1 day).

About Managing Passwords

Database security systems that depend on passwords require that passwords be kept
secret at all times.

Because passwords are vulnerable to theft and misuse, Oracle Database uses a
password management policy. Database administrators and security officers control
this policy through user profiles, enabling greater control of database security.

You can use the CREATE PROFILE statement to create a user profile. The profile is
assigned to a user with the CREATE USER or ALTER USER statement.

Finding User Accounts That Have Default Passwords

ORACLE

The DBA_USERS_WITH_DEFPWD data dictionary view can find user accounts that use
default passwords.

When you create a database, most of the default accounts are locked with the
passwords expired. If you have upgraded from an earlier release of Oracle Database,
then you may have user accounts that have default passwords. These are default
accounts that are created when you create a database, such as the HR, OE, and SCOTT
accounts.

For greater security, you should change the passwords for these accounts. Using a
default password that is commonly known can make your database vulnerable to
attacks by intruders.

1. Log in to the database instance using SQL*Plus with the SYSDBA administrative
privilege.

For example:

sglplus sys as sysdba
Enter password: password

2. Query the DBA_USERS_WITH_DEFPWD data dictionary view.

For example, to find both the names of accounts that have default passwords and
the status of the account:

SELECT d.username, u.account_status

FROM DBA_USERS_WITH_DEFPWD d, DBA_USERS u
WHERE d.username = u.username

ORDER BY 2,1;

USERNAME ~ ACCOUNT_STATUS

SCOTT EXPIRED & LOCKED

3. Change the passwords for any accounts that the DBA_USERS_WITH_DEFPWD view
lists.

Oracle recommends that you do not assign these accounts passwords that they
may have had in previous releases of Oracle Database.

3-6

Password Settings in the Default Profile

ORACLE

For example:

Chapter 3
Configuring Password Protection

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace

passwor d with a password that is secure.

A profile is a collection of parameters that sets limits on database resources.

If you assign the profile to a user, then that user cannot exceed these limits. You can
use profiles to configure database settings such as sessions per user, logging and
tracing features, and so on. Profiles can also control user passwords. To find
information about the current password settings in the profile, you can query the

DBA_PROFILES data dictionary view.

Table 3-1 lists the password-specific parameter settings in the default profile.

Table 3-1 Password-Specific Settings in the Default Profile

]
Default Setting Description

Parameter

INACTIVE_ACCOUNT_TIME

FAILED_LOGIN_ATTEMPTS

PASSWORD_GRACE_TIME

PASSWORD_LIFE_TIME

UNLIMITED

10

180

Locks the account of a database user who
has not logged in to the database instance in
a specified number of days.

See Automatically Locking Inactive Database
User Accounts for more information.

Sets the maximum times a user try to log in
and to fail before locking the account.

Notes:

* When you set this parameter, take into
consideration users who may log in
using the CONNECT THROUGH privilege.

* You can set limits on the number of
times an unauthorized user (possibly an
intruder) attempts to log in to Oracle Call
Interface (OCI) applications by using the
SEC_MAX_FAILED_LOGIN_ATTEMPTS
initialization parameter. See
Configuration of the Maximum Number
of Authentication Attempts for more
information about this parameter.

See also Automatically Locking User
Accounts After Failed Logins for more
information.
Sets the number of days that a user has to
change his or her password before it expires.

See About Controlling Password Aging and
Expiration for more information.

Sets the number of days the user can use his
or her current password.

See About Controlling Password Aging and
Expiration for more information.

3-7

Chapter 3
Configuring Password Protection

Table 3-1 (Cont.) Password-Specific Settings in the Default Profile

__|
Parameter Default Setting Description

PASSWORD_LOCK_TIME 1 Sets the number of days an account will be
locked after the specified number of
consecutive failed login attempts. After the
time passes, then the account becomes
unlocked. This user's profile parameter is
useful to help prevent brute force attacks on
user passwords but not to increase the
maintenance burden on administrators.

See Automatically Locking User Accounts
After Failed Logins for more information.

PASSWORD_REUSE_MAX UNLIMITED Sets the number of password changes
required before the current password can be
reused.

See Controlling the User Ability to Reuse
Previous Passwords for more information.

PASSWORD_REUSE_TIME UNLIMITED Sets the number of days before which a
password cannot be reused.

See Controlling the User Ability to Reuse
Previous Passwords for more information.

Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Using the ALTER PROFILE Statement to Set Profile Limits

You can modify profile limits such as failed login attempts, password lock times,
password reuse, and several other settings.

These settings are described in Table 3-1. For greater security, use the default
settings that are described in this table, based on your needs.

* Use the ALTER PROFILE statement to modify a user's profile limits.
For example:

ALTER PROFILE prof LIMIT
FAILED_LOGIN_ATTEMPTS 9
PASSWORD_LOCK_TIME 10
INACTIVE_ACCOUNT TIME 21;

Disabling and Enabling the Default Password Security Settings

Oracle provides scripts that you can use to disable and enable the default password
security settings.

If your applications use the default password security settings from Oracle Database
10g release 2 (10.2), then you can revert to these settings until you modify the
applications to use the default password security settings from Oracle Database 11g
or later.

ORACLE 3-8

Chapter 3
Configuring Password Protection

1. Modify your applications to conform to the password security settings from Oracle
Database 11g or later.

2. Update your database to use the security configuration that suits your business
needs, using one of the following methods:

* Manually update the database security configuration.

* Run the secconf.sql script to apply the default password settings from Oracle
Database 11g or later. You can customize this script to have different security
settings if you like, but remember that the settings listed in the original script
are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sgl script to
apply the Oracle default password settings to the database. Databases that have been
created with Database Configuration Assistant (DBCA) will have these settings, but
manually created databases do not.

The secconf.sqgl script is in the $ORACLE_HOME/rdbms/admin directory. The
secconf.sql script affects both password and audit settings. It has no effect on other
security settings.

Automatically Locking Inactive Database User Accounts

ORACLE

The INACTIVE_ACCOUNT_TIME profile parameter locks a user account that has not
logged in to the database instance in a specified number of days.

Users are considered active users if they log in periodically. The
INACTIVE_ACCOUNT_TIME timing is based on the number of days after the last time a
user successfully logs in.

* To lock user accounts automatically after a specified number of days, set the
INACTIVE_ACCOUNT_TIME profile parameter in the CREATE PROFILE or ALTER
PROFILE statement.

Note the following:
— The default value for INACTIVE_ACCOUNT_TIME is UNLIMITED.

— You must specify a whole number for the number of days. The minimum
setting is 15 and the maximum is 24855.

— To set the user’s account to have an unlimited inactivity time, set the
INACTIVE_ACCOUNT_TIME to UNLIMITED.

— To set the user’s account to use the time specified by the default profile, set
INACTIVE_ACCOUNT_TIME to DEFAULT.

— You can set this parameter for all database authenticated users, including
administrative users, but not for external or global authenticated users.

— Inaread-only database, the last successful login is not considered in the
INACTIVE_ACCOUNT_TIME timing. It is not possible to lock a user account in a
read-only database (except by performing consecutive failed logins equal in
number to the account’s FAILED_LOGIN_ATTEMPTS password profile setting).

— For a newly created user account, the timing begins at account creation time.
When this user logs out and then logs again, the timing starts when the user
successfully logs in.

3-9

Chapter 3
Configuring Password Protection

— In a multitenant environment, the INACTIVE_ACCOUNT_TIME setting applies to
the last time a common user logs in to the root. A common user is considered
active if this user logs in to any of the PDBs or the root.

— For a proxy user account login, the INACTIVE_ACCOUNT_TIME begins the timing
when the proxy user logs in successfully.

For example, to create a profile that locks an account after 60 days of being inactive:

CREATE PROFILE time_limit LIMIT

INACTIVE_ACCOUNT_TIME 60;

Automatically Locking User Accounts After Failed Logins

Oracle Database can lock a user's account after a specified number of consecutive
failed log-in attempts.

To lock user accounts automatically after a specified time interval or to require
database administrator intervention to be unlocked, set the PASSWORD LOCK_TIME
profile parameter in the CREATE PROFILE or ALTER PROFILE statement.

For example, to set the time interval to 10 days:

PASSWORD_LOCK_TIME = 10

Note the following:

You can lock accounts manually, so that they must be unlocked explicitly by a
database administrator.

You can specify the permissible number of failed login attempts by using the
CREATE PROFILE statement. You can also specify the amount of time an account
remains locked.

Each time the user unsuccessfully logs in, Oracle Database increases the delay
exponentially with each login failure.

If you do not specify a time interval for unlocking the account, then
PASSWORD_LOCK_TIME assumes the value specified in a default profile. (The
recommended value is 1 day.) If you specify PASSWORD LOCK_TIME as UNLIMITED,
then you must explicitly unlock the account by using an ALTER USER statement. For
example, assuming that PASSWORD_LOCK_TIME UNLIMITED is specified for johndoe,
then you use the following statement to unlock the johndoe account:

ALTER USER johndoe ACCOUNT UNLOCK;

After a user successfully logs into an account, Oracle Database resets the
unsuccessful login attempt count for the user. If it is non-zero, then the count is set
to zero.

In a multitenant environment, a locked CDB common user account will be locked
across all PDBs in the CDB. A locked application common user account will be
locked across all PDBs that are associated with the application root.

Example: Locking an Account with the CREATE PROFILE Statement

The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in
violates the CREATE PROFILE settings.

ORACLE

3-10

Chapter 3
Configuring Password Protection

Example 3-1 sets the maximum number of failed login attempts for the user johndoe to
10 (the default), and the amount of time the account locked to 30 days. The account
will unlock automatically after 30 days.

Example 3-1 Locking an Account with the CREATE PROFILE Statement

CREATE PROFILE prof LIMIT
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_GRACE_TIME 3

ALTER USER johndoe PROFILE prof;

Explicitly Locking a User Account

When you explicitly lock a user account, the account cannot be unlocked
automatically. Only a security administrator can unlock the account.

In a multitenant environment, after you have locked a CDB common user account in
the CDB root, this user cannot log in to any PDB that is associated with this root, nor
can this account be unlocked in a PDB. In addition, you can lock a CDB common
account locally in a PDB, which will prevent the CDB common user from logging in to
that PDB. Similarly, an application common user account that is locked in the
application root cannot log in to any PDB associated with the application root, nor can
the application common user be unlocked in an application PDB. You can explicitly
lock an application common user locally in an application PDB.

e To explicitly lock a user account, use the CREATE USER or ALTER USER statement.
For example, the following statement locks the user account, susan:

ALTER USER susan ACCOUNT LOCK;

Controlling the User Ability to Reuse Previous Passwords

You can ensure that users do not reuse previous passwords for an amount of time or
for a number of password changes.

* To ensure that users cannot reuse their passwords for a specified period of time,
configure the rules for password reuse with the CREATE PROFILE or ALTER PROFILE
statements.

Table 3-2 lists the CREATE PROFILE and ALTER PROFILE parameters that control ability
of a user to reuse a previous password.

Table 3-2 Parameters Controlling Reuse of a Previous Password

Parameter Name

Description and Use

PASSWORD_REUSE_TIME Requires either of the following:

* A number specifying how many days (or a fraction of a day)
between the earlier use of a password and its next use

* The word UNLIMITED

PASSWORD_REUSE_MAX Requires either of the following:

* Aninteger to specify the number of password changes required
before a password can be reused

* The word UNLIMITED

ORACLE

3-11

Chapter 3
Configuring Password Protection

If you do not specify a parameter, then the user can reuse passwords at any time,
which is not a good security practice.

If neither parameter is UNLIMITED, then password reuse is allowed, but only after
meeting both conditions. The user must have changed the password the specified
number of times, and the specified number of days must have passed since the
previous password was last used.

For example, suppose that the profile of user A had PASSWORD_REUSE_MAX set to 10 and
PASSWORD_REUSE_TIME set to 30. User A cannot reuse a password until he or she has
reset the password 10 times, and until 30 days had passed since the password was
last used.

If either parameter is specified as UNLIMITED, then the user can never reuse a
password.

If you set both parameters to UNLIMITED, then Oracle Database ignores both, and the
user can reuse any password at any time.

" Note:

If you specify DEFAULT for either parameter, then Oracle Database uses the
value defined in the DEFAULT profile, which sets all parameters to UNLIMITED.
Oracle Database thus uses UNLIMITED for any parameter specified as
DEFAULT, unless you change the setting for that parameter in the DEFAULT
profile.

¢ See Also:
e Oracle Database SQL Language Reference for more information about
the CREATE PROFILE statement

e Oracle Database SQL Language Reference for more information about
the ALTER PROFILE statement

About Controlling Password Aging and Expiration

ORACLE

You can specify a password lifetime, after which the password expires.

This means that the next time the user logs in with the current, correct password, he or
she is prompted to change the password. By default, there are no complexity or
password history checks, so users can still reuse any previous or weak passwords.
You can control these factors by setting the PASSWORD_REUSE_TIME,
PASSWORD_REUSE_MAX, and PASSWORD_VERIFY_FUNCTION parameters.

In addition, you can set a grace period, during which each attempt to log in to the
database account receives a warning message to change the password. If the user
does not change it by the end of that period, then Oracle Database expires the
account.

3-12

Chapter 3
Configuring Password Protection

As a database administrator, you can manually set the password state to be expired,
which sets the account status to EXPIRED. The user must then follow the prompts to
change the password before the logon can proceed.

For example, in SQL*Plus, suppose user SCOTT tries to log in with the correct
credentials, but his password has expired. User SCOTT will then see the ORA-28001:
The password has expired error and be prompted to change his password, as
follows:

Changing password for scott

New password: new_password
Retype new password: new_password
Password changed.

Related Topics

* Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time
or for a number of password changes.

* About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using the CREATE PROFILE or ALTER PROFILE Statement to Set a
Password Lifetime

When you set a lifetime for a password, the user must create a new password when
this lifetime ends.

* Use the CREATE PROFILE or ALTER PROFILE statement to specify a lifetime for
passwords.

The following example demonstrates how to create and assign a profile to user
johndoe, and the PASSWORD_LIFE_TIME clause specifies that johndoe can use the
same password for 180 days before it expires.

CREATE PROFILE prof LIMIT
FAILED_LOGIN_ATTEMPTS 4
PASSWORD_GRACE_TIME 3
PASSWORD_LIFE_TIME 180;

ALTER USER johndoe PROFILE prof;

Related Topics

* Password Change Life Cycle
After a password is created, it follows a lifecycle and grace period in four phases.

Checking the Status of a User Account

ORACLE

You can check the status of any account, whether it is open, in grace, or expired.

* To check the status of a user account, query the ACCOUNT_STATUS column of the
DBA_USERS data dictionary view.

For example:

SELECT ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = "usernane”;

3-13

Chapter 3
Configuring Password Protection

Password Change Life Cycle

After a password is created, it follows a lifecycle and grace period in four phases.

Figure 3-1 shows the life cycle of the password lifetime and grace period.

Figure 3-1 Password Change Life Cycle

Last Password Change First Login After Password Expires
Password Lifetime
Ends
A A\
PASSWORD_LIFE_TIME User makes no PASSWORD_GRACE_TIME | | User is prompted
Password Profile authentication Password Profile to change his
Setting (180 days attempts during Setting (7 days password during
by default) this time. by default) this time
Phase number: 1 2 3 4
DBA_USERS.
ACCOUNT STATUS : OPEN EXPIRED (GRACE) EXPIRED
Errors during ORA-28002: ORA-28001:
phase: None The password will The password
expire in n days has expired
Prompted for new
password? e Mo Ve
In this figure:

ORACLE

Phase 1: After the user account is created, or the password of an existing account
is changed, the password lifetime period begins.

Phase 2: This phase represents the period of time after the password lifetime
ends but before the user logs in again with the correct password. The correct
credentials are needed for Oracle Database to update the account status.
Otherwise, the account status will remain unchanged. Oracle Database does not
have any background process to update the account status. All changes to the
account status are driven by the Oracle Database server process on behalf of
authenticated users.

Phase 3: When the user finally does log in, the grace period begins. Oracle
Database then updates the DBA_USERS.EXPIRY_DATE column to a hew value using
the current time plus the value of the PASSWORD_GRACE_TIME setting from the
account's password profile. At this point, the user receives an ORA-28002 warning
message about the password expiring in the near future (for example, ORA-28002
The password will expire within 7 days if PASSWORD GRACE_TIME is setto 7
days), but the user can still log in without changing the password. The
DBA_USERS.EXPIRY_DATE column shows the time in the future when the user will be
prompted to change their password.

Phase 4: After the grace period (Phase 3) ends, the ORA-28001: The password
has expired error appears, and the user is prompted to change the password
after entering the current, correct password before the authentication can proceed.
If the user has an Oracle Active Data Guard configuration, where there is a
primary and a stand-by database, and the authentication attempt is made on the
standby database (which is a read-only database), then the ORA-28032: Your
password has expired and the database is set to read-only error appears.
The user should log into the primary database and change the password there.

3-14

Chapter 3
Configuring Password Protection

During any of these four phases, you can query the DBA_USERS data dictionary view to
find the user's account status in the DBA_USERS.ACCOUNT_STATUS column.

In the following example, the profile assigned to johndoe includes the specification of a
grace period: PASSWORD_GRACE_TIME = 3 (the recommended value). The first time
johndoe tries to log in to the database after 90 days (this can be any day after the 90th
day, that is, the 91st day, 100th day, or another day), he receives a warning message
that his password will expire in 3 days. If 3 days pass, and if he does not change his
password, then the password expires. After this, he receives a prompt to change his
password on any attempt to log in.

CREATE PROFILE prof LIMIT
FAILED_LOGIN_ATTEMPTS 4
PASSWORD_LIFE_TIME 90
PASSWORD_GRACE_TIME 3;

ALTER USER johndoe PROFILE prof;

A database administrator or a user who has the ALTER USER system privilege can
explicitly expire a password by using the CREATE USER and ALTER USER statements.
The following statement creates a user with an expired password. This setting forces
the user to change the password before the user can log in to the database.

CREATE USER jbrown
IDENTIFIED BY password

PASSWORD EXPIRE;

There is no "password unexpire" clause for the CREATE USER statement, but an
account can be "unexpired" by changing the password on the account.

PASSWORD _LIFE_TIME Profile Parameter Low Value

ORACLE

Be careful if you set the PASSWORD_LIFE_TIME parameter of CREATE PROFILE or ALTER
PROFILE to a low value (for example, 1 day).

The PASSWORD_LIFE_TIME limit of a profile is measured from the last time that an
account's password is changed, or the account creation time if the password has
never been changed. These dates are recorded in the PTIME (password change time)
and CTIME (account creation time) columns of the SYS.USER$ system table. The
PASSWORD_LIFE_TIME limit is not measured starting from the timestamp of the last
change to the PASSWORD_LIFE_TIME profile parameter, as may be initially thought.
Therefore, any accounts affected by the changed profile whose last password change
time was more than PASSWORD_LIFE_TIME days ago immediately expire and enter their
grace period on their next connection, issuing the ORA-28002: The password will
expire within n days warning.

As a database administrator, you can find an account's last password change time as
follows:

ALTER SESSION SET NLS_DATE_FORMAT="DD-MON-YYYY HH24:MI:SS*;
SELECT PTIME FROM SYS.USER$ WHERE NAME = “user _name"; -- Password change tine

To find when the account was created and the password expiration date, issue the
following query:

SELECT CREATED, EXPIRY_DATE FROM DBA_USERS WHERE USERNAME = “user_name";

3-15

Chapter 3
Configuring Password Protection

If the user who is assigned this profile is currently logged in when you set the
PASSWORD_LIFE_TIME parameter and remains logged in, then Oracle Database does
not change the user's account status from OPEN to EXPIRED(GRACE) when the currently
listed expiration date passes. The timing begins only when the user logs into the
database. You can check the user's last login time as follows:

SELECT LAST_LOGIN FROM DBA_USERS WHERE USERNAME = “user_name";

When making changes to a password profile, a database administrator must be aware
that if some of the users who are subject to this profile are currently logged in to the
Oracle database while their password profile is being updated by the administrator,
then those users could potentially remain logged in to the system even beyond the
expiration date of their password. You can find the currently logged in users by
guerying the USERNAME column of the V$SESSION view.

This is because the expiration date of a user's password is based on the timestamp of
the last password change on their account plus the value of the PASSWORD _LIFE_TIME
password profile parameter set by the administrator. It is not based on the timestamp
of the last change to the password profile itself.

Note the following:

e If the user is not logged in when you set PASSWORD_LIFE_TIME to a low value, then
the user's account status does not change until the user logs in.

* You can set the PASSWORD_LIFE_TIME parameter to UNLIMITED, but this only affects
accounts that have not entered their grace period. After the grace period expires,
the user must change the password.

Managing the Complexity of Passwords

ORACLE

Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

* About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

* How Oracle Database Checks the Complexity of Passwords
Oracle Database provides four password verification functions to check password
complexity.

* Who Can Use the Password Complexity Functions?
The password complexity functions enable you to customize how users access
your data.

* verify_function_11G Function Password Requirements
The verify_function_11G function originated in Oracle Database Release 11g.

e oral2c_verify_function Password Requirements
The oral2c_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

» oral2c_strong_verify_function Function Password Requirements
The oral2c_strong_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

e oral2c_stig verify_function Password Requirements
The oral2c_stig_verify_function function fulfills the Security Technical
Implementation Guides (STIG) requirements.

3-16

Chapter 3
Configuring Password Protection

* About Customizing Password Complexity Verification
Oracle Database enables you to customize password complexity for your site.

» Enabling Password Complexity Verification
The catpvf.sqgl script can be customized to enable password complexity
verification.

About Password Complexity Verification

Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using a complexity verification function forces users to create strong, secure
passwords for database user accounts. You must ensure that the passwords for your
users are complex enough to provide reasonable protection against intruders who try
to break into the system by guessing passwords.

How Oracle Database Checks the Complexity of Passwords

Oracle Database provides four password verification functions to check password
complexity.

These functions are in the catpvf.sql PL/SQL script (located in $ORACLE_HOME/
rdbms/admin). When these functions are enabled, they can check whether users are
correctly creating or modifying their passwords. When enabled, password complexity
checking is not enforced for user SYS; it only applies to non-SYS users. For better
security of passwords, Oracle recommends that you associate the password
verification function with the default profile. About Customizing Password Complexity
Verification provides an example of how to accomplish this.

Who Can Use the Password Complexity Functions?

The password complexity functions enable you to customize how users access your
data.

Before you can use the password complexity verification functions in the CREATE
PROFILE or ALTER PROFILE statement, you must be granted the EXECUTE privilege on
them.

The password verification functions are located in the SYS schema.

verify_function_11G Function Password Requirements

ORACLE

The verify_function_11G function originated in Oracle Database Release 11g.

" Note:

The verify_function_11G function has been deprecated because it
enforces the weaker password restrictions from earlier releases of Oracle
Database. Instead, you should use the ORA12C_VERIFY_FUNCTION,
ORA12C_STRONG_VERIFY_FUNCTION, ORA12C_STIG_VERIFY_FUNCTION functions,
which enforce stronger, more up-to-date password verification restrictions.

3-17

Chapter 3
Configuring Password Protection

This function checks for the following requirements when users create or modify
passwords:

* The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

* The password is not the same as the user name, nor is it the user name reversed
or with the numbers 1-100 appended.

e The password is not the same as the server name or the server name with the
numbers 1-100 appended.

* The password does not contain oracle (for example, oracle with the numbers 1—
100 appended).

* The password is not too simple (for example, welcomel, databasel, accountl,
userl234, passwordl, oraclel23, computerl, abcdefgl, or change _on_install).

* The password differs from the previous password by at least 3 characters.

The following internal check is also applied:

* The password does not contain the double-quotation character (**). However, it
can be surrounded by double-quotation marks.

oral2c_verify function Password Requirements

The oral2c_verify_function function fulfills the Department of Defense Database
Security Technical Implementation Guide requirements.

This function checks for the following requirements when users create or modify
passwords:

* The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

* The password is not the same as the user name or the user name reversed.
* The password is not the same as the database name.

* The password does not contain the word oracle (such as oraclel23).

* The password differs from the previous password by at least 8 characters.

* The password contains at least 1 special character.

The following internal check is also applied:

» The password does not contain the double-quotation character (**). However, it
can be surrounded by double-quotation marks.

oral2c_strong_verify_function Function Password Requirements

ORACLE

The oral2c_strong_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

This function checks for the following requirements when users create or modify
passwords:

* The password must contain at least 2 upper case characters, 2 lower case
characters, 2 numeric characters, and 2 special characters. These special
characters are as follows:

3-18

Chapter 3
Configuring Password Protection

-1 #ESYNE*() _-+={}YIL[1\N/<>,.;?"] (space)
* The password must differ from the previous password by at least 4 characters.

The following internal check is also applied:

» The password does not contain the double-quotation character (*'). It can be
surrounded by double-quotation marks, however.

oral2c_stig_verify function Password Requirements

The oral2c_stig_verify_function function fulfills the Security Technical
Implementation Guides (STIG) requirements.

This function checks for the following requirements when users create or modify
passwords:

* The password has at least 15 characters.

* The password has at least 1 lower case character and at least 1 upper case
character.

* The password has at least 1 digit.
* The password has at least 1 special character.
» The password differs from the previous password by at least 8 characters.

The following internal check is also applied:

* The password does not contain the double-quotation character (**). However, it
can be surrounded by double-quotation marks.

The oral2c_stig_verify_function function is the default handler for the
ORA_STIG_PROFILE profile, which is available in a newly-created or upgraded Oracle
database.

About Customizing Password Complexity Verification

ORACLE

Oracle Database enables you to customize password complexity for your site.

You can create your own password complexity verification function in the SYS schema,
similar to the functions that are defined in admin/catpvf._sql. In fact, Oracle
recommends that you do so to further secure your site’s passwords.

Note the following:

* Do not include Data Definition Language (DDL) statements in the custom
password complexity verification function. DDLs are not allowed during the
execution of password complexity verification functions.

Do not modify the admin/catpvf.sgl script or the Oracle-supplied password
complexity functions. You can create your own functions based on the contents of
these files.

* If you make no modifications to the utlpwdmg.sqgl script, then it uses the
oral2c verify_function function as the default function.

3-19

Chapter 3
Configuring Password Protection

¢ See Also:

Guideline 1 in Guidelines for Securing Passwords for general advice on
creating passwords

Enabling Password Complexity Verification

The catpvf.sqgl script can be customized to enable password complexity verification.

To enable password complexity verification, you must edit the catpvf.sql script to use
the password verification function that you want, and then run the script to enable it.

1. Log into SQL*Plus with administrative privileges.
For example:

CONNECT SYSTEM
Enter password: password

2. Run the catpvf.sgl script (or your modified version of this script) to create the
password complexity functions in the SYS schema.

@$ORACLE_HOME/rdbms/admin/catpvf.sql

3. Grant any users who must use this function the EXECUTE privilege on it.
For example:
GRANT pmsith EXECUTE ON oral2c_strong_verify_function;

4. In the default profile or the user profile, set the PASSWORD_VERIFY_FUNCTION setting
to either the sample password complexity function in the catpvf.sqgl script, or to
your customized function. Use one of the following methods:

* Log in to SQL*Plus with administrator privileges and use the CREATE PROFILE
or ALTER PROFILE statement to enable the function. Ensure that you have the
EXECUTE privilege on the function.

For example, to update the default profile to use the
oral2c_strong_verify_ function function:

ALTER PROFILE default LIMIT
PASSWORD_VERIFY_FUNCTION oral2c_strong_verify_function;

e In Oracle Enterprise Manager Cloud Control, from the Administration menu,
select Security, and then Profiles. Select the Password tab. Under
Complexity, from the Complexity function list, select the name of the
complexity function that you want. Click Apply.

After you have enabled password complexity verification, it takes effect immediately. If
you must disable it, then run the following statement:

ALTER PROFILE DEFAULT LIMIT PASSWORD_VERIFY_FUNCTION NULL;

ORACLE 3-20

Chapter 3
Configuring Password Protection

Note:

The ALTER USER statement has a REPLACE clause. With this clause, users can
change their own unexpired passwords by supplying the previous password
to authenticate themselves.

If the password has expired, then the user cannot log in to SQL to issue the
ALTER USER command. Instead, the OClPasswordChange() function must be
used, which also requires the previous password.

A database administrator with ALTER ANY USER privilege can change any
user password (force a new password) without supplying the old one.

Managing Password Case Sensitivity

You can manage the password case sensitivity for passwords from user accounts from
previous releases.

e SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity
The SEC_CASE_SENSITIVE_LOGON initialization parameter controls the use of case
sensitivity in passwords.

* Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
If password case sensitivity has been disabled, then you can enable it by setting
the SEC_CASE_SENSITIVE_LOGON parameter to TRUE.

* Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are
case sensitive.

* Management of Password Versions of Users
By default, Oracle Database uses Exclusive Mode, which does not permit case-
insensitive passwords, to manage password versions.

* Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 106G
password version so that they use later, more secure password versions.

* How Case Sensitivity Affects Password Files
By default, password files are case sensitive. The IGNORECASE argument in the
ORAPWD command line utility controls the case sensitivity of password files.

e How Case Sensitivity Affects Passwords Used in Database Link Connections
When you create a database link connection, you must define a user name and
password for the connection.

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity

ORACLE

The SEC_CASE_SENSITIVE_LOGON initialization parameter controls the use of case
sensitivity in passwords.

Only users who have the ALTER SYSTEM privilege can set the
SEC_CASE_SENSITIVE_LOGON parameter. You should ensure that this parameter is set
to TRUE so that case sensitivity is enforced when a user enters a password. However,
you should be aware that the SEC_CASE_SENSITIVE_LOGON parameter is deprecated,
but is currently retained for backward compatibility.

3-21

Chapter 3
Configuring Password Protection

When you create or modify user accounts, by default, passwords are case sensitive.
Case sensitivity affects not only passwords that users enter manually, but it affects
password files as well.

For greater security, Oracle recommends that you use case sensitivity in passwords.
However, if you have compatibility issues with your applications, then you can use the
SEC_CASE_SENSITIVE_LOGON parameter to disable password case sensitivity. Examples
of application compatibility issues are applications that force passwords to uppercase
before using them to authenticate to the Oracle Database server, or different
application modules being inconsistent about case sensitivity when sending
credentials to start a database session.

Ensure that the SEC_CASE_SENSITIVE_LOGON parameter is not set to FALSE if the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is set to 12 or 12a. This is
because the more secure password versions used for this mode only support case-
sensitive password checking. For compatibility reasons, Oracle Database does not
prevent the use of FALSE for SEC_CASE_SENSITIVE_LOGON when

SQLNET .ALLOWED_LOGON_VERSION_SERVER is set to 12 or 12a. Setting
SEC_CASE_SENSITIVE_LOGON to FALSE when SQLNET .ALLOWED_LOGON_VERSION_SERVER is
set to 12 or 12a causes all accounts to become inaccessible. If

SQLNET.ALLOWED LOGON_VERSION_SERVER is set to 11 or a lower value, then Oracle
recommends that you set SEC_CASE_SENSITIVE_LOGON to TRUE, because the more
secure password versions used in Exclusive Mode (when

SQLNET.ALLOWED LOGON_VERSION_SERVER is 12 or 12a) in Oracle Database 12c do not
support case insensitive password matching.

In addition to the server-side settings, you should ensure that the client software with
which the users are connecting has the O5L_NP capability flag. All Oracle Database
release 11.2.0.3 and later clients have the O5L_NP capability. If you have an earlier
client, then you must install the CPUOct2012 patch.

Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity

ORACLE

If password case sensitivity has been disabled, then you can enable it by setting the
SEC_CASE_SENSITIVE_LOGON parameter to TRUE.

1. If you are using a password file, then ensure that it was created with the ORAPWD
utility IGNORECASE parameter set to N and the FORMAT parameter set to 12.

The IGNORECASE parameter overrides the SEC_CASE_SENSITIVE_LOGON parameter.
By default, IGNORECASE is set to N, which means that passwords are treated as
case sensitive.

Note that the IGNORECASE parameter and the SEC_CASE_SENSITIVE_LOGON system
parameter are deprecated. Oracle strongly recommends that you set IGNORECASE
to N or omit the IGNORECASE setting entirely.

2. Enter the following ALTER SYSTEM statement:
ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE;

¢ See Also:

Oracle Database Administrator’'s Guide for more information about password
files

3-22

Chapter 3
Configuring Password Protection

Management of Case Sensitivity for Secure Role Passwords

For better security, you should ensure that the passwords for secure roles are case
sensitive.

If before upgrading to Oracle Database 12c release 2 (12.2), you created secure roles
by using the IDENTIFIED BY clause of the CREATE ROLE statement, and if upon
upgrading to Oracle Database 12c release 12.2, you set the

SQLNET.ALLOWED LOGON_VERSION_SERVER parameter to one of the Exclusive Modes 12
or 12a, then you must change the password for these secure roles in order for them to
remain usable. Because Exclusive Mode is now the default, secure roles that were
created in earlier releases (such as Oracle Database 10g, in which the 10G password
version was the default) will need to have their passwords changed.

You can query the PASSWORD_REQUIRED and AUTHENTICATION_TYPE columns of the
DBA_ROLES data dictionary view to find any secure roles that must have their password
changed after upgrade to Oracle Database 12c, in order to become usable again.

Otherwise, the password version for these secure roles cannot be used, unless you
set the SQLNET.ALLOWED LOGON_VERSION_SERVER parameter to 8. If this parameter is
set to 12 or 12a, then you must run the following SQL statement to ensure that case
sensitivity is enabled. If not, then secure roles will remain unusable even after their
passwords have been changed.

ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = "TRUE";

Management of Password Versions of Users

ORACLE

By default, Oracle Database uses Exclusive Mode, which does not permit case-
insensitive passwords, to manage password versions.

In a default installation, the SQLNET.ALLOWED LOGON_VERSION_SERVER parameter is set
to 12 to enable Exclusive Mode. Exclusive Mode requires that the password-based
authentication protocol use one of the case-sensitive password versions (116G or 12C)
for the account that is being authenticated. Exclusive Mode excludes the use of the
10G password version that was used in earlier releases. After you upgrade to Oracle
Database 12c release 2 (12.2), accounts that use the 10G password version become
inaccessible. This occurs because the server runs in Exclusive Mode by default, and
Exclusive Mode cannot use the old 10G password version to authenticate the client.
The server is left with no password version with which to authenticate the client.

The user accounts from Release 10g use the 10G password version. Therefore, you
should find the user accounts that use the 10G password version, and then reset the
passwords for these accounts. This generates the appropriate password version
based on the setting of the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter, as
follows:

e SQLNET.ALLOWED LOGON_VERSION_SERVER=8 generates all three password versions
106G, 116G, and 12C.

° SQLNET.ALLOWED_LOGON_VERSION_SERVER=12 generates both 11G and 12C
password versions, and removes the 10G password version.

e SQLNET.ALLOWED LOGON_VERSION_SERVER=12a generates only the 12C password
version.

3-23

ORACLE

Chapter 3
Configuring Password Protection

If you first relax the SQLNET_ALLOWED LOGON_VERSION_SERVER setting to a more
permissive value (such as SQLNET.ALLOWED LOGON_VERSION_SERVER=8) and then
import the user accounts from an Oracle Database release 10g (or earlier) release into
the current database release, then because the 106 password version (used in the
older release) is not case sensitive, these users will still be able to log into the
database using any case for their password. But when such a user changes their
password, the new 11G and 12C password versions are generated automatically, and
their password will automatically become case sensitive, because the default value for
the instance initialization parameter SEC_CASE_SENSITIVE_LOGON is TRUE. (Be aware
that SEC_CASE_SENSITIVE_LOGON is deprecated, but is currently retained for backward
compatibility.)

The following example demonstrates the effect of setting the
SEC_CASE_SENSITIVE_LOGON parameter to TRUE. In this scenario, user rtaylor has
been imported from Oracle Database release 10g, and therefore this account only has
the 10G password version. On the server, the SQLNET.ALLOWED_LOGON_VERSION_SERVER
is set to 8 because otherwise rtaylor would not be able to log in. In addition, the
SEC_CASE_SENSITIVE_LOGON parameter is set to TRUE to enable case sensitivity for the
11G and 12C password versions.

1. Check the password versions for user rtaylor:

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME="RTAYLOR";

PASSWORD VERSIONS

2. Connect as user rtaylor.

CONNECT rtaylor
Enter password: “MaresEatOats"

Connected.

User rtaylor can connect to the database because his password still uses the
10G password version, which is case insensitive. Here, he enters his password in
mixed case, though his actual password is all lower case: mareseatoats.

3. Check the password versions for one of the default users, SCOTT.

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME="SCOTT";

PASSWORD VERSIONS

11G 12C

4. Try connecting as user SCOTT using a mixed case for the password, even though
his actual password is all lowercase: luv2walkmyk9.

CONNECT SCOTT
Enter password: "LuvToWalkMyK9"

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

Because user SCOTT’s password versions are 11G and 12G, the password is case
sensitive. The password entered in this example is correct, but the case is
incorrect.

5. Alter rtaylor’s password to grumble_mumble2work.

3-24

Chapter 3
Configuring Password Protection

ALTER USER rtaylor IDENTIFIED BY grumble_mumble2work;

User altered.

6. Connect with the SYSDBA administrative privilege.
CONNECT / AS SYSDBA

7. Find the password versions for user rtaylor.

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME="RTAYLOR";

PASSWORD VERSIONS

10G 116G 12C

The authentication protocol that was configured with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER and SEC_CASE_SENSITIVE_LOGON settings
will enforce the case sensitivity of rtaylor’s password, now that he has changed
this password.

8. Try connecting as rtaylor using a mixed case for the password.

CONNECT rtaylor
Enter password: "Grumble_Mumble2Work"

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

The password entered fails because it was not entered using the case in which the
password was created.

9. Try connecting as rtaylor again but with the password using the correct case

CONNECT rtaylor
Enter password: "grumble_mumble2work™

Connected.

User rtaylor can connect.

The case sensitivity of the rtaylor account is a result of the server's default setting for
SEC_CASE_SENSITIVE_LOGON, which is TRUE. If this setting is FALSE, then case-
insensitive matching can be restored because the rtaylor account still has the 106
password version. However, Oracle does not recommend this setting. The
SEC_CASE_SENSITIVE_LOGON parameter is deprecated for this reason. For greater
security, Oracle strongly recommends that you keep case-sensitive password
authentication enabled.

Finding and Resetting User Passwords That Use the 10G Password Version

ORACLE

For better security, find and reset passwords for user accounts that use the 106G
password version so that they use later, more secure password versions.

Finding All Password Versions of Current Users

You can query the DBA_USERS data dictionary view to find a list of all the password
versions that user accounts have.

3-25

ORACLE

Chapter 3
Configuring Password Protection

For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
JONES 10G 116G 12C
ADAMS 10G 116G

CLARK 10G 116G

PRESTON 116

BLAKE 10G

The PASSWORD_VERSIONS column shows the list of password versions that exist for the
account. 106G refers to the earlier case-insensitive Oracle password version, 116 refers
to the SHA-1-based password version, and 12C refers to the SHA-2-based SHA-512
password version.

e User jones: The password for this user was reset in Oracle Database 12c release
12.1 when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter setting was 8.
This enabled all three password versions to be created.

e Users adams and clark: The passwords for these accounts were originally created
in Oracle Database 10g and then reset in Oracle Database 11g. The Oracle
Database 11g software was using the default SQLNET . ALLOWED LOGON_VERSION
setting of 8 at that time. Because case insensitivity is enabled by default, their
passwords are now case sensitive, as is the password for preston.

* User preston: This account was imported from an Oracle Database 11g database
that was running in Exclusive Mode (SQLNET.ALLOWED LOGON_VERSION = 12).

* User blake: This account still uses the Oracle Database 10g password version. At
this stage, user blake will be prevented from logging in.

Resetting User Passwords That Use the 10G Password Version

For better security, you should remove the 10G password version from the accounts of
all users. In the following procedure, to reset the passwords of users who have the 106G
password version, you must temporarily relax the

SQLNET.ALLOWED LOGON_VERSION_SERVER setting, which controls the ability level
required of clients before login can be allowed. This will enable these users to log in
and change their passwords, and hence generate the newer password versions in
addition to the 10G password version. Afterward, you will set the database to use
Exclusive Mode and ensure that the clients have the 05L_NP capability. Then the users
can reset their passwords again, so that their password versions no longer include 106G
but only have the more secure 11G and 12C password versions.

1. Query the DBA USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE (' PASSWORD_VERSIONS = "10G *
OR PASSWORD_VERSIONS = "10G HTTP)
AND USERNAME <> "ANONYMOUS";

2. Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting in the sqlnet.ora file
so that it is more permissive than the default. For example:

SQLNET . ALLOWED_LOGON_VERSION_SERVER=11

3-26

ORACLE

10.

Chapter 3
Configuring Password Protection

b. Restart the database.

Expire the users that you found when you queried the DBA_USERS view to find
users who only use the 10G password version.

You must expire the users who have only the 10G password version, and do not
have one or both of the 11G or 12C password versions.

For example:
ALTER USER username PASSWORD EXPIRE;

Ask the users whose passwords you expired to log in.

When the users log in, they will be prompted to change their passwords. The
database generates the missing 11G and 12C password versions for their account,
in addition to the 10G password version. The 10G password version continues to be
present, because the database is running in the permissive mode.

Ensure that the client software with which the users are connecting has the 05L_NP
ability.

All Oracle Database release 11.2.0.3 and later clients have the 05L_NP ability. If
you have an earlier Oracle Database client, then you must install the CPUOct2012
patch.

After all clients have the O5L_NP capability, set the security for the server back to
Exclusive Mode, as follows:

a. Remove the SEC_CASE_SENSITIVE_LOGON parameter setting from the instance
initialization file, or set SEC_CASE_SENSITIVE_LOGON to TRUE.

SEC_CASE_SENSITIVE_LOGON = TRUE

b. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the
server sglnet.ora file, or set the value of
SQLNET.ALLOWED LOGON_VERSION_SERVER in the server sqlnet.ora file back to
12, to set it to an Exclusive Mode.

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12
c. Restart the database.
Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE *%10G%"
AND USERNAME <> "ANONYMOUS®;

Expire the accounts that still have the 10G password version.
ALTER USER username PASSWORD EXPIRE;
Ask these users to log in to their accounts.

When the users log in, they are prompted to reset their passwords. The database
then generates only the 11G and 12C password versions for their accounts.
Because the database is running in Exclusive Mode, the 10G password version is
no longer generated.

Rerun the following query:

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE "%10G%"
AND USERNAME <> "ANONYMOUS®;

3-27

Chapter 3
Configuring Password Protection

If this query does not return any results, then it means that no user accounts have
the 10G password version. Hence, the database is running in a more secure mode
than in previous releases.

How Case Sensitivity Affects Password Files

By default, password files are case sensitive. The IGNORECASE argument in the ORAPWD
command line utility controls the case sensitivity of password files.

The default value for IGNORECASE is N (no), which enforces case sensitivity. For better
security, set IGNORECASE to N or omit the ignorecase argument entirely. Note that
IGNORECASE is deprecated.

The following example shows how to enable case sensitivity in password files.

orapwd file=orapw entries=100
Enter password for SYS: password

This command creates a case sensitive password file called orapw. By default,
passwords are case sensitive. Afterwards, if you connect using this password, it
succeeds—as long as you enter it using the exact case in which it was created. If you
enter the same password but with a different case sensitivity, it will fail.

If you imported user accounts from a previous release and these accounts were
created with SYSDBA or SYSOPER administrative privilege, then they will be included in
the password file. The passwords for these accounts are case insensitive. The next
time these users change their passwords, and assuming case sensitivity is enabled,
the passwords become case sensitive. For greater security, have these users change
their passwords.

See Also:

Oracle Database Administrator’'s Guide for more information about password
files

How Case Sensitivity Affects Passwords Used in Database Link Connections

ORACLE

When you create a database link connection, you must define a user name and
password for the connection.

When you create the database link connection, the password is case sensitive. How a
user enters his or her password for connections depends on the release in which the
database link was created:

e Users can connect from a pre-Oracle Database 12c database to a Oracle
Database 12c database. Because case sensitivity is enabled, then the user must
enter the password using the case that was used when the account was created.

» If the user connects from a Oracle Database 12c database to a pre-Oracle
Database 12c database, and if the SEC_CASE_SENSITIVE_LOGON parameter in the
pre-Release 12c¢ database had been set to FALSE, then the password for this
database link can be specified using any case.

You can find the user accounts for existing database links by querying the V$DBLINK
view. For example:

3-28

Chapter 3
Configuring Password Protection

SELECT DB_LINK, OWNER_ID FROM V$DBLINK;

See Oracle Database Reference for more information about the V$SDBLINK view.

Ensuring Against Password Security Threats by Using the 12C
Password Version

The 12C password version enables users to create complex passwords that meet
compliance standards.

e About the 12C Version of the Password Hash
The 12C password hash protects against password-based security threats by
including support for mixed case passwords.

* Oracle Database 12C Password Version Configuration Guidelines
By default, Oracle Database generates two versions of the password hash: 116
and 12C.

e Configuring Oracle Database to Use the 12C Password Version Exclusively
You should set the SQLNET.ALLOWED LOGON_VERSION_SERVER parameter to 12a so
that only the 12C password hash version is used.

e How Server and Client Logon Versions Affect Database Links
The SQLNET .ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED LOGON_VERSION_CLIENT parameters can accommodate
connections between databases and clients of different releases.

* Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively
An intruder may try to provision a fake server to downgrade authentication and
trick the client into using a weaker password hash version.

About the 12C Version of the Password Hash

ORACLE

The 12C password hash protects against password-based security threats by including
support for mixed case passwords.

The cryptographic hash function used for generating the 12C version of the password
hash is based on a de-optimized algorithm involving Password-Based Key Derivation
Function 2 (PBKDF2) and the SHA-512 cryptographic hash functions. The PBKDF2
algorithm introduces computational asymmetry in the challenge that faces an intruder
who is trying to recover the original password when in possession of the 12C version of
the password hash. The 12C password generation performs a SHA-512 hash of the
PBKDF2 output as its last step. This two-step approach used in the 12C password
version generation allows server CPU resources to be conserved when the client has
the O7L_MR capability. This is because during the password verification phase of the
O5LOGON authentication, the server only needs to perform a single SHA-512 hash of
a value transmitted by the O7L_MR capable client, rather than having to repeat the
entire PBKDF2 calculation on the password itself.

In addition, the 12C password version adds a salt to the password when it is hashed,
which provides additional protection. The 12C password version enables your users to
create far more complex passwords. The 12C password version's use of salt, its use of
PBKDF2 de-optimization, and its support for mixed-case passwords makes it more
expensive for an intruder to perform dictionary or brute force attacks on the 12C

3-29

Chapter 3
Configuring Password Protection

password version in an attempt to recover the user's password. Oracle recommends
that you use the 12C version of the password hash.

The password hash values are considered to be extremely sensitive, because they are
used as a "shared secret" between the server and person who is logging in. If an
intruder learns this secret, then the protection of the authentication is immediately and
severely compromised. Remember that administrative users who have account
management privileges, administrative users who have the SYSDBA administrative
privilege, or even users who have the EXP_FULL_DATABASE role can immediately
access the password hash values. Therefore, this type of administrative user must be
trustworthy if the integrity of the database password-based authentication is to be
preserved. If you cannot trust these administrators, then it is better to deploy a
directory server (such as Oracle Database Enterprise User Security) so that the
password hash values remain within the Enterprise User Security directory and are
never accessible to anyone except the Enterprise User Security administrator.

¢ See Also:

Oracle Database Net Services Reference for more information about
O7L_MR

Oracle Database 12C Password Version Configuration Guidelines

ORACLE

By default, Oracle Database generates two versions of the password hash: 11G and
12C.

The version of the password hash that Oracle Database uses to authenticate a given
client depends on the client’s ability, and the settings for the

SQLNET .ALLOWED_LOGON_VERSION_CLIENT and SQLNET.ALLOWED LOGON_VERSION_SERVER
parameters. See the column “Ability Required of the Client” in the
“SQLNET.ALLOWED_LOGON_VERSION_SERVER Settings” table in the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter description in Oracle Database
Net Services Reference for detailed information about how the client authentication
works with password versions.

The 10G password version, which was generated in Oracle Database 10g, is not case
sensitive. Both the 11G and 12C password versions are case sensitive.

In Oracle Database 12g release 2 (12.2), the sqlnet.ora parameter

SQLNET .ALLOWED_LOGON_VERSION_SERVER defaults to 12, which is Exclusive Mode and
prevents the use of the 10G password version, and the

SQLNET.ALLOWED LOGON_VERSION_CLIENT parameter defaults to 11. For new accounts,
when the client is Oracle Database 12c, then Oracle Database uses the 12C password
version exclusively with clients that are running the Oracle Database 12c release
software. For accounts that were created before Oracle Database release 12c, logins
will succeed as long as the client has the O5L_NP ability, because an 116 password
version normally exists for accounts created in earlier releases such as Oracle
Database release 11g. For a very old account (for example, from Oracle Database
release 10q), the user’s password may need to be reset, in order to create a SHA-1
password version for the account. To configure this server to generate only the 12C
password version whenever a new account is created or an existing account password
is changed, then set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a.

3-30

ORACLE

Chapter 3
Configuring Password Protection

However, if you want your applications to be compatible with older clients, then ensure
that SQLNET .ALLOWED_LOGON_VERSION_SERVER is set to 12, which is the default.

How you set the SQLNET . ALLOWED LOGON_VERSION_SERVER parameter depends on the
balance of security and interoperability with older clients that your system requires.
You can control the levels of security as follows:

Greatest level of compatibility: To configure the server to generate all three
versions of the password hash (the 12C password version, the 11G password
version, and the DES-based 10G password version), whenever a new account is
created or an existing account password is changed, set the

SQLNET .ALLOWED_LOGON_VERSION_SERVER parameter to the value 11 or lower. (Be
aware that earlier releases used the value 8 as the default.)

Recommended level of security: To configure the server to generate both the
12C password version and the 116 password version (but not the 106G password
version), whenever a new account is created or an existing account password is
changed, set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to the value
12.

Highest level of security: To configure the server to generate only the 12C
password version whenever a hew account is created or an existing account
password is changed, set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter
to the value 12a.

During authentication, the following scenarios are possible, based on the kinds of
password versions that exist for the account, and on the version of the client software
being used:

Accounts with only the 10G version of the password hash: If you want to force
the server to generate the newer versions of the password hash for older
accounts, an administrator must expire the password for any account that has only
the 10G password version (and none of the more secure password versions, 11G or
12C). You must generate these password versions because the database depends
on using these password versions to provide stronger security. You can find these
users as follows.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE *%10G%
AND USERNAME <> "ANONYMOUS®;

And then expire each account as follows:

ALTER USER username PASSWORD EXPIRE;

After you have expired each account, notify these users to log in, in which case
they will be prompted to change their password. The version of the client
determines the password version that is used. The setting of the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter determines the password
versions that are generated. If the client has the O7L_MR ability (Oracle Database
release 12c), then the 12C password version is used to authenticate. If the client
has the O5L_NP ability but not the O7L_MR ability (such as Oracle Database
release 119 clients), then the 11G password version is used to authenticate. You
should upgrade all clients to Oracle Database release 12c¢ so that the 12C
password version can be used exclusively to authenticate. (By default, Oracle
Database release 11.2.0.3 and later clients have the 05L_NP ability, which enables
the 11G password version to be used exclusively. If you have an earlier Oracle
Database client, then you must install the CPUOCct2012 patch.)

3-31

Chapter 3
Configuring Password Protection

When an account password is expired and the ALLOWED_LOGON_VERSION_SERVER
parameter is set to 12 or 12a, then the 10G password version is removed and only
one or both of the new password versions are created, depending on how the
parameter is set, as follows:

— If ALLOWED LOGON_VERSION_SERVER is set to 12 (the default), then both the 116
and 12C versions of the password hash are generated.

— If ALLOWED_LOGON_VERSION_SERVER is set to 12a, then only the 12C version of
the password hash is generated.

For more details, see the "Generated Password Version" column in the table in the
"Usage Notes" section for the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter
in Oracle Database Net Services Reference.

e Accounts with both 10G and 11G versions of the password hash: For users
who are using a Release 10g or later client, the user logins will succeed because
the 116G version of the password hash is used. However, to use the latest version,
expire these passwords, as described in the previous bulleted item for accounts.

* Accounts with only the 11G version of the password hash: The authentication
uses the 116 version of the password hash. To use the latest version, expire the
passwords, as described in the first bulleted item.

The Oracle Database 12c¢ default configuration for

SQLNET.ALLOWED LOGON_VERSION_SERVER is 12, which means that it is compatible with
Oracle Database 12c release 2 (12.2) authentication protocols and later products that
use OCl-based drivers, including SQL*Plus, ODBC, Oracle .NET, Oracle Forms, and
various third-party Oracle Database adapters. It is also compatible with JDBC type-4
(thin) versions that have had the CPUOCct2012 bundle patch applied or starting with
Oracle Database 11g, and Oracle Database Client interface (OCI)-based drivers
starting in Oracle Database 10g release 10.2. Be aware that earlier releases of the
OCI client drivers cannot authenticate to an Oracle database using password-based
authentication.

Configuring Oracle Database to Use the 12C Password Version Exclusively

ORACLE

You should set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a so that
only the 12C password hash version is used.

The 12C password version is the most restrictive and secure of the password hash
versions, and for this reason, Oracle recommends that you use only this password
version. By default, SQLNET .ALLOWED_LOGON_VERSION_SERVER is set to 12, which
enables both the 11G and 12C password versions to be used. (Both the
SQLNET.ALLOWED LOGON_VERSION_SERVER values 12 and 12a are considered Exclusive
Mode, which prevents the use of the earlier 106G password version.) If you have
upgraded from a previous release, or if SQLNET.ALLOWED LOGON_VERSION_SERVER is set
to 12 or another setting that was used in previous releases, then you should
reconfigure this parameter, because intruders will attempt to downgrade the
authentication to use weaker password versions. Table 3-3 shows the effect of the
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting on password version generation.

Be aware that you can use the 12C password version exclusively only if you use Oracle
Database 12c release 12.1.0.2 or later clients. Before you change the
SQLNET.ALLOWED LOGON_VERSION_SERVER parameter to 12a, check the versions of the
database clients that are connected to the server.

1. Log into SQL*Plus as an administrative user who has the ALTER USER system
privilege.

3-32

Chapter 3
Configuring Password Protection

2. Perform the following SQL query to find the password versions of your users.
SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

3. Expire the account of each user who does not have the 12C password version.
For example, assuming user blake is still using a 10G password version:

ALTER USER blake PASSWORD EXPIRE;

The next time that these users log in, they will be forced to change their
passwords, which enables the server to generate the password versions required
for Exclusive Mode.

4. Remind users to log in within a reasonable period of time (such as 30 days).

When they log in, they will be prompted to change their password, ensuring that
the password versions required for authentication in Exclusive Mode are
generated by the server. (For more information about how Exclusive Mode works,
see the usage notes for the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter in
Oracle Database Net Services Reference.)

5. Manually change the passwords for accounts that are used in test scripts or batch
jobs so that they exactly match the passwords used by these test scripts or batch
jobs, including the password's case.

6. Enable the Exclusive Mode configuration as follows:
a. Create a back up copy of the sqlnet.ora parameter file.

By default, this file is located in the $ORACLE_HOME/network/admin directory on
UNIX operating systems and the %0RACLE_HOME%\network\admin directory on
Microsoft Windows operating systems.

Be aware that in a Multitenant environment, the settings in the sqlnet.ora file
apply to all PDBs.

b. Setthe SQLNET.ALLOWED LOGON_VERSION_SERVER parameter, using Table 3-3
for guidance.

c. Save the sgqlnet.ora file.

Table 3-3 shows the effect of the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting on
password version generation.

Table 3-3 Effect of SQLNET.ALLOWED_LOGON_VERSION_SERVER on
Password Version Generation

SQLNET.ALLOWED_LOGON_VERSION 8 11 12 12a
_SERVER Setting

Server runs in Exclusive Mode? No No Yes Yes
Generate the 106G password version? Yes Yes No No
Generate the 116G password version? Yes Yes Yes No
Generate the 12C password version? Yes Yes Yes Yes

If you only use Oracle Database 12c release 12.1.0.2 or later clients, then set
SQLNET.ALLOWED_LOGON_VERSION_SERVER to 12a.

The higher the setting, the more restrictive the use of password versions, as follows:

ORACLE 3-33

Chapter 3
Configuring Password Protection

* A setting of 12a, the most restrictive and secure setting, only permits the 12C
password version.

e A setting of 12 permits both the 11G and 12C password versions to be used for
authentication.

* A setting of 8 permits the most password versions: 106G, 11G, and 12C.

For detailed information about the SQLNET.ALLOWED LOGON_VERSION_SERVER
parameter, see Oracle Database Net Services Reference.

Note:

If your system hosts a fixed database link to a target database that runs an
earlier release, then you can set the

SQLNET.ALLOWED LOGON_VERSION_CLIENT parameter, as described in How
Server and Client Logon Versions Affect Database Links.

How Server and Client Logon Versions Affect Database Links

ORACLE

The SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED LOGON_VERSION_CLIENT parameters can accommodate connections
between databases and clients of different releases.

The following diagram illustrates how connections between databases and clients of
different releases work. The SQLNET.ALLOWED LOGON_VERSION_CLIENT parameter
affects the "client allowed logon version" aspect of a server that hosts the database
link H. This setting enables H to connect through database links to older servers, such
as those running Oracle 9i (T), yet still refuse connections from older unpatched clients
(U). When this happens, the Oracle Net Services protocol negotiation fails, which
raises an ORA-28040: No matching authentication protocol error message in this
client, which is attempting to authenticate using the Oracle 9/ software. The Oracle Net
Services protocol negotiation for Oracle Database 10g release 10.2 client E succeeds
because this release incorporates the critical patch update CPUOct2012. The Oracle
Net Services protocol negotiation for Release 11.2.0.3 client C succeeds because it
uses a secure password version.

Oracle Net Services
protocol negotiation

9i Client fails
(Unpatched)
C
< Fixed Database Database Link
Link (Host) (Target)
Oracle Net Services

protocol negotiation
10g Client succeeds

E

Oracle Net Services
protocol negotiation

11.2.0.3 Client _Succeeds

(¥ H acts as client to T by using
e SQLNET.ALLOWED_LOGON_VERSION_CLIENT =8

T uses
SQLNET.ALLOWED_LOGON_VERSION=8

H also acts as server for C, E, and U by using
SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

3-34

Chapter 3
Configuring Password Protection

This scenario uses the following settings for the system that hosts the database link H:

SQLNET.ALLOWED_LOGON_VERSION_CLIENT=8
SQLNET.ALLOWED_LOGON_VERSION_SERVER=12

Note that the remote Oracle Database T has the following setting:

SQLNET .ALLOWED_LOGON_VERSION=8

If the release of the remote Oracle Database T does not meet or exceed the value
defined by the SQLNET.ALLOWED LOGON_VERSION_CLIENT parameter set for the host H,
then queries over the fixed database link would fail during authentication of the
database link user, resulting in an ORA-28040: No matching authentication
protocol error when an end-user attempts to access a table over the database link.

Note:

If you are using an older Oracle Database client (such as Oracle Database
11g release 11.1.0.7), then Oracle strongly recommends that you upgrade to
use the critical patch update CPUOCct2012.

" See Also:
e Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter

e http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html for more information about CPUOCct2012

Configuring Oracle Database Clients to Use the 12C Password Version

Exclusively

ORACLE

An intruder may try to provision a fake server to downgrade authentication and trick
the client into using a weaker password hash version.

* To prevent the use of the 10G password version, or both the 106 and 116 password
versions, after you configure the server, configure the clients to run in Exclusive
Mode, as follows:

— To use the client Exclusive Mode setting to permit both the 11G and 12C
password versions:

SQLNET .ALLOWED_LOGON_VERSION_CLIENT = 12

— To use the more restrictive client Exclusive Mode setting to permit only the 12C
password version (this setting permits the client to connect only to Oracle
Database 12c release 1 (12.1.0.2) and later servers):

SQLNET.ALLOWED_LOGON_VERSION_CLIENT = 12a

3-35

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

Chapter 3
Configuring Password Protection

If the server and the client are both installed on the same computer, then ensure that
the TNS_ADMIN environment variable for each points to the correct directory for its
respective Oracle Net Services configuration files. If the variable is the same for both,
then the server could use the client's SQLNET.ALLOWED LOGON_VERSION_CLIENT setting
instead.

If you are using older Oracle Database clients (such as Oracle Database 11g release
11.1.0.7), then you should apply CPU Oct2012 or later to these clients. This patch
provides the O5L_NP ability. Unless you apply this patch, users will be unable to log in.

¢ See Also:

e Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED LOGON_VERSION_CLIENT parameter

e The following Oracle Technology Network site for more information
about CPUOCt2012:

http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html

Managing the Secure External Password Store for Password

Credentials

ORACLE

The secure external password store is a client-side wallet that is used to store
password credentials.

* About the Secure External Password Store
You can store password credentials database connections by using a client-side
Oracle wallet.

* How Does the External Password Store Work?
Users (and applications, batch jobs, and scripts) connect to databases by using a
standard CONNECT statement that specifies a database connection string.

* About Configuring Clients to Use the External Password Store
If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

e Configuring a Client to Use the External Password Store
You can configure a client to use the secure external password store feature by
using the mkstore command-line utility.

e Example: Sample SQLNET.ORA File with Wallet Parameters Set
You can set special parameters in the sglnet.ora file to control how wallets are
managed.

* Managing External Password Store Credentials
The mkstore command-line utility manages credentials from an external password
store.

3-36

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

Chapter 3
Configuring Password Protection

About the Secure External Password Store

You can store password credentials database connections by using a client-side
Oracle wallet.

An Oracle wallet is a secure software container that stores authentication and signing
credentials. This wallet usage can simplify large-scale deployments that rely on
password credentials for connecting to databases. When this feature is configured,
application code, scripts no longer need embedded user names and passwords. This
reduces risk because the passwords are no longer exposed, and password
management policies are more easily enforced without changing application code
whenever user names or passwords change.

Note:

The external password store of the wallet is separate from the area where
public key infrastructure (PKI) credentials are stored. Consequently, you
cannot use Oracle Wallet Manager to manage credentials in the external
password store of the wallet. Instead, use the command-line utility mkstore
to manage these credentials.

¢ See Also:

e Using Proxy Authentication with the Secure External Password Store

e Oracle Database Enterprise User Security Administrator's Guide for
general information about Oracle wallets

How Does the External Password Store Work?

ORACLE

Users (and applications, batch jobs, and scripts) connect to databases by using a
standard CONNECT statement that specifies a database connection string.

This string can include a user name and password, and an Oracle Net service name
identifying the database on an Oracle Database network. If the password is omitted,
the connection prompts the user for the password.

For example, the service name could be the URL that identifies that database, or a
TNS alias you entered in the tnsnames.ora file in the database. Another possibility is a
host : port: si d string.

The following examples are standard CONNECT statements that could be used for a
client that is not configured to use the external password store:

CONNECT salesapp@sales_db.us.example.com
Enter password: password

CONNECT salesapp@orasales
Enter password: password

3-37

Chapter 3
Configuring Password Protection

CONNECT salesapp@ourhost37:1527:DB17
Enter password: password

In these examples, salesapp is the user name, with the unique connection string for
the database shown as specified in three different ways. You could use its URL
sales_db.us.example.com, or its TNS alias orasales from the tnsnames.ora file, or its
host: port: sid string.

However, when clients are configured to use the secure external password store,
applications can connect to a database with the following CONNECT statement syntax,
without specifying database login credentials:

CONNECT /@db_connect _string
CONNECT /@ib_connect _string AS SYSDBA
CONNECT /@b_connect _string AS SYSOPER

In this specification, db_connect _stri ng is a valid connection string to access the
intended database, such as the service name, URL, or alias as shown in the earlier
examples. Each user account must have its own unique connection string; you cannot
create one connection string for multiple users.

In this case, the database credentials, user name and password, are securely stored
in an Oracle wallet created for this purpose. The autologin feature of this wallet is
turned on, so the system does not need a password to open the wallet. From the
wallet, it gets the credentials to access the database for the user they represent.

¢ See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about autologin wallets

About Configuring Clients to Use the External Password Store

If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

The same credentials used for this type of authentication are typically also used to log
in to the database. For clients not using such authentication methods or wanting to
override them for database authentication, you can set the SQLNET.WALLET OVERRIDE
parameter in sqlnet.ora to TRUE. The default value for SQLNET.WALLET OVERRIDE is
FALSE, allowing standard use of authentication credentials as before.

Configuring a Client to Use the External Password Store

You can configure a client to use the secure external password store feature by using
the mkstore command-line utility.

1. Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wal | et | ocation -create

ORACLE 3-38

ORACLE

Chapter 3
Configuring Password Protection

For example:

mkstore -wrl c:\oracle\product\12.2.0\db_1\wallets -create
Enter password: password

wal | et _| ocati on is the path to the directory where you want to create and store
the wallet. This command creates an Oracle wallet with the autologin feature
enabled at the location you specify. The autologin feature enables the client to
access the wallet contents without supplying a password. See Oracle Database
Enterprise User Security Administrator's Guide for information about autologin
wallets.

The mkstore utility -create option uses password complexity verification. See
About Password Complexity Verification for more information.

Create database connection credentials in the wallet by using the following syntax
at the command line:

mkstore -wrl wall et | ocation -createCredential db_connect_string usernane
Enter password: password

For example:

mkstore -wrl c:\oracle\product\12.2.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

 wallet_l|ocationisthe path to the directory where you created the wallet in
Step 1.

e db_connect _stringis the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an
Oracle network. By default, tnsnames.ora is located in the $ORACLE_HOME/
network/admin directory on UNIX systems and in ORACLE_HOVE\network
\admin on Windows.

e usernane is the database login credential. When prompted, enter the
password for this user.

Repeat this step for each database you want accessible using the CONNECT /
@db_connect _string syntax. The db_connect _string used in the CONNECT /
@db_connect _stri ng statement must be identical to the db_connect _string
specified in the -createCredential command.

In the client sglnet.ora file, enter the WALLET _LOCATION parameter and set it to the
directory location of the wallet you created in Step 1.

For example, if you created the wallet in $0RACLE_HOME/network/admin and your
Oracle home is set to /private/orall, then you need to enter the following into
your client sqlnet.ora file:

WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /private/oralll network/adnin)
)
)

In the client sglnet.ora file, enter the SQLNET_WALLET_OVERRIDE parameter and
set it to TRUE as follows:

3-39

Chapter 3
Configuring Password Protection

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect _stri ng statements to use the
information in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet
can use the CONNECT /@db_connect _stri ng syntax to access the previously
specified databases without providing a user name and password. However, if a
user fails that external authentication, then these connect statements also fail.

" Note:

If an application uses SSL for encryption, then the sqlnet.ora
parameter, SQLNET.AUTHENT ICATION_SERVICES, specifies SSL and an
SSL wallet is created. If this application wants to use secret store
credentials to authenticate to databases (instead of the SSL certificate),
then those credentials must be stored in the SSL wallet. After SSL
authentication, if SQLNET.WALLET_OVERRIDE = TRUE, then the user names
and passwords from the wallet are used to authenticate to databases. If
SQLNET.WALLET_OVERRIDE = FALSE, then the SSL certificate is used.

Example: Sample SQLNET.ORA File with Wallet Parameters Set

You can set special parameters in the sglnet.ora file to control how wallets are
managed.

Example 3-2 shows a sample sqlnet.ora file with the WALLET_LOCATION and the
SQLNET.WALLET OVERRIDE parameters set as described in Steps 3 and 4 of Configuring
a Client to Use the External Password Store.

Example 3-2 Sample SQLNET.ORA File with Wallet Parameters Set

WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /privat e/ orall/ network/adnin)
)
)

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Managing External Password Store Credentials

ORACLE

The mkstore command-line utility manages credentials from an external password
store.

e Listing External Password Store Contents
You can view the contents, including specific credentials, of a client wallet external
password store.

e Adding Credentials to an External Password Store
You can store multiple credentials in one client wallet.

3-40

Chapter 3
Configuring Password Protection

* Modifying Credentials in an External Password Store
You can modify the database login credentials that are stored in the wallet if the
database connection strings change.

* Deleting Credentials from an External Password Store
You can delete login credentials for a database from a wallet if the database no
longer exists or to disable connections to a specific database.

Listing External Password Store Contents

You can view the contents, including specific credentials, of a client wallet external
password store.

Listing the external password store contents provides information you can use to
decide whether to add or delete credentials from the store.

e To list the contents of the external password store, enter the following command at
the command line:

mkstore -wrl wallet | ocation -listCredential
For example:
mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -listCredential
wal | et _I ocati on specifies the path to the directory where the wallet, whose external
password store contents you want to view, is located. This command lists all of the

credential database service hames (aliases) and the corresponding user name
(schema) for that database. Passwords are not listed.

Adding Credentials to an External Password Store

ORACLE

You can store multiple credentials in one client wallet.

For example, if a client batch job connects to hr_database and a script connects to
sales_database, then you can store the login credentials in the same client wallet.
You cannot, however, store multiple credentials (for logging in to multiple schemas) for
the same database in the same wallet. If you have multiple login credentials for the
same database, then they must be stored in separate wallets.

* To add database login credentials to an existing client wallet, enter the following
command at the command line:

mkstore -wrl wall et |ocation -createCredential db_alias usernane
For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

 wallet_locationis the path to the directory where the client wallet to which you
want to add credentials is stored.

- db_alias can be the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an
Oracle network.

e usernane is the database login credential for the schema to which your application
connects. When prompted, enter the password for this user.

3-41

Chapter 3
Configuring Password Protection

Modifying Credentials in an External Password Store

You can modify the database login credentials that are stored in the wallet if the
database connection strings change.

* To modify database login credentials in a wallet, enter the following command at
the command line:

mkstore -wrl wallet_|ocation -modifyCredential db_alias usernanme
For example:

mkstore -wrl c:\oracle\product\12.2_0\db_1\wallets -modifyCredential sales_db
Enter password: password

In this specification:

 wallet_locationis the path to the directory where the wallet is located.

- db_alias is a new or different alias you want to use to identify the database. It can
be a TNS alias you use to specify the database in the tnsnames.ora file or any
service name you use to identify the database on an Oracle network.

e usernane is the new or different database login credential. When prompted, enter
the password for this user.

Deleting Credentials from an External Password Store

You can delete login credentials for a database from a wallet if the database no longer
exists or to disable connections to a specific database.

e To delete database login credentials from a wallet, enter the following command at
the command line:

mkstore -wrl wallet | ocation -deleteCredential db_alias
For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -deleteCredential orcl

In this specification:

* wallet_location is the path to the directory where the wallet is located.

« db_alias isthe TNS alias you use to specify the database in the tnsnames.ora
file, or any service name you use to identify the database on an Oracle Database
network.

Managing Passwords for Administrative Users

ORACLE

The passwords of administrative users have special protections, such as password
files and password complexity functions.

* About Managing Passwords for Administrative Users
The passwords of administrative users are stored outside of the database so that
the users can be authenticated even when the database is not open.

* Setting the LOCK and EXPIRED Status of Administrative Users
Administrative users whose accounts have been locked cannot connect to the
database.

3-42

Chapter 3
Configuring Password Protection

» Password Profile Settings for Administrative Users
There are several user profile password settings that are enforced for
administrative users.

e Last Successful Login Time for Administrative Users
The last successful login time of administrative user connections that use
password file-based authentication is captured.

* Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

e Migration of the Password File of Administrative Users
The ORAPWD utility input_file parameter or DBUA can be used to migrate from
earlier password file formats to the 12.2 format.

* How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

» Password Complexity Verification Functions for Administrative Users
For better security, use password complexity verification functions for the
passwords of administrative users.

About Managing Passwords for Administrative Users

The passwords of administrative users are stored outside of the database so that the
users can be authenticated even when the database is not open.

There is no special protection with the password file. The password verifiers must be
stored outside of the database so that authentication can be performed even when the
database is not open. In previous releases, password complexity functions were
available for non-administrative users only. Starting with Oracle Database release 12c
(12.2), password complexity functions can be used for both non-administrative users
and administrative users.

Setting the LOCK and EXPIRED Status of Administrative Users

Administrative users whose accounts have been locked cannot connect to the
database.

* To unlock locked or expired administrative accounts, use the ALTER USER
statement.

For example:

ALTER USER hr_admin ACCOUNT UNLOCK;

If the administrative user’s password has expired, then the next time the user attempts
to log in, the user will be prompted to create a new password.

Password Profile Settings for Administrative Users

There are several user profile password settings that are enforced for administrative
users.

These password profile parameters are as follows:

ORACLE 3-43

Chapter 3
Configuring Password Protection

e FAILED_LOGIN_ATTEMPT
e INACTIVE_ACCOUNT_TIME
e PASSWORD_LOCK_TIME

e PASSWORD_LIFE_TIME

« PASSWORD_GRACE_TIME
Related Topics

* Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Last Successful Login Time for Administrative Users

The last successful login time of administrative user connections that use password
file-based authentication is captured.

To find this login time, query the LAST_LOGIN column of the VSPWFILE_USERS dynamic
performance view.

Management of the Password File of Administrative Users

ORACLE

Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

The password file is particularly important for administrative users because it stores
the administrative user’s credentials in an external file, not in the database itself. This
enables the administrative user to log in to a database that is not open and perform
tasks such as querying the data dictionary views. To create the password file, you
must use the ORAPWD utility.

The FORMAT parameter setting of 12.2, which is the default setting, enables the
password file to accommodate the password profile information for the administrative
user.

For example:

orapwd file=orapworcl input_file=orapwold format=12.2

Setting FORMAT to 12.2 enforces the following rules:

* The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

e The password is not the same as the user name or the user name reversed.
* The password is not the same as the database name.

* The password does not contain the word oracle (such as oraclel23).

e The password differs from the previous password by at least 8 characters.

e The password contains at least 1 special character.

FORMAT=12.2 also applies the following internal checks:

e The password does not exceed 30 characters.

3-44

Chapter 3
Configuring Password Protection

* The password does not contain the double-quotation character (**). However, it
can be surrounded by double-quotation marks.

The following user profile password settings are enforced for administrative users:
e FAILED_LOGIN_ATTEMPT

e INACTIVE_ACCOUNT_TIME

e PASSWORD_GRACE_TIME

e PASSWORD_LIFE_TIME

« PASSWORD_LOCK_TIME

You can find the administrative users who have been included in the password file and
their administrative privileges by querying the VSPWFILE_USERS dynamic view.

Migration of the Password File of Administrative Users

The ORAPWD utility input_file parameter or DBUA can be used to migrate from earlier
password file formats to the 12.2 format.

You can migrate from earlier password file formats to the 12.2 format by using either
the ORAPWD utility file and input_file parameters, or by using Oracle Database
Upgrade Assistant (DBUA).

* The ORAPWD FILE and INPUT_FILE parameters: To migrate using the ORAPWD
utility, set the FILE parameter to a name for the new password file and the
INPUT_FILE parameter to the name of the earlier password file.

For example:
orapwd file=orapworcl input_file=orapwold format=12.2

» DBUA: To migrate from the earlier formats of password files (FORMAT = LEGACY
and FORMAT = 12), you can use the DBUA when you upgrade an earlier database
to the current release. However, ensure that the database is open in read-only
mode. You can check the database read-only status by querying the OPEN_MODE
column of the VSDATABASE dynamic view.

See also:

¢ See Also:

Oracle Database Administrator’s Guide for more information about the
ORAPWD parameters

How the Multitenant Option Affects Password Files for Administrative Users

ORACLE

In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

* For CDB administrative users: The password information (hashes of the
password) for the CDB common administrative users to whom administrative
privileges were granted in the CDB root is stored in the password file.

3-45

Chapter 3
Authentication of Database Administrators

For all users in a CDB to whom administrative privileges were granted
outside the CDB root: To view information about the password hash information
of these users, query the $PWFILE_USERS dynamic view.

Password Complexity Verification Functions for Administrative Users

For better security, use password complexity verification functions for the passwords
of administrative users.

Note the following:

Profiles: You can specify a password complexity verification function for the SYS
user by using the PASSWORD_VERIFY_FUNCTION clause of the CREATE PROFILE or
ALTER PROFILE statement. Oracle recommends that you use password verification
functions to better protect the passwords of administrative users.

ORAPWD password files: If you created a password file using the ORAPWD utility,
then Oracle Database enforces password complexity checking for the SYS user
and for administrative users who have logged in using the SYSDBA, SYSBACKUP,
SYSDG, and SYSKM administrative privileges.

The password checks for the following requirements:

— The password contains no fewer than 8 characters and includes at least one
numeric character, one alphabetic character, and one special character.

— The password is not the same as the user name or the user name reversed.
— The password does not contain the word oracle (such as oraclel23).

— The password differs from the previous password by at least three characters.
The following internal checks are also applied:

— The password does not exceed 30 characters.

— The password does not contain the double-quotation character (**). However, it
can be surrounded by double-quotation marks.

Related Topics

Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

Authentication of Database Administrators

You can authenticate database administrators by using strong authentication, from the
operating system, or from the database using passwords.

ORACLE

About Authentication of Database Administrators
Database administrators perform special administrative operations, such as
shutting down or starting databases.

Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

Authentication of Database Administrators by Using the Operating System
For both Windows and UNIX systems, you use DBA-privileged groups to
authenticate for the operating system.

3-46

Chapter 3
Authentication of Database Administrators

* Authentication of Database Administrators by Using Their Passwords
Password files are used to authenticate database administrators.

* Risks of Using Password Files for Database Administrator Authentication
Be aware that using password files may pose security risks.

About Authentication of Database Administrators

Database administrators perform special administrative operations, such as shutting
down or starting databases.

Oracle Database provides methods to secure the authentication of database
administrators who have the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM
administrative privilege.

Strong Authentication, Centralized Management for Administrators

Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

e About Strong Authentication for Database Administrators
Strong authentication lets you centrally control SYSDBA and SYSOPER access to
multiple databases.

» Configuring Directory Authentication for Administrative Users
Oracle Internet Directory configures directory authentication for administrative
users.

* Configuring Kerberos Authentication for Administrative Users
Oracle Internet Directory can be used to configure Kerberos authentication for
administrative users.

» Configuring Secure Sockets Layer Authentication for Administrative Users
Both the client and server side can authenticate administrative users with Secure
Sockets Layer (SSL).

About Strong Authentication for Database Administrators

ORACLE

Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple
databases.

Consider using this type of authentication for database administration for the following
situations:

* You have concerns about password file vulnerability.
* Your site has very strict security requirements.

* You want to separate the identity management from your database. By using a
directory server such as Oracle Internet Directory (OID), for example, you can
maintain, secure, and administer that server separately.

To enable the Oracle Internet Directory server to authorize SYSDBA and SYSOPER
connections, use one of the following methods described in this section, depending on
your environment.

3-47

Chapter 3
Authentication of Database Administrators

Configuring Directory Authentication for Administrative Users

Oracle Internet Directory configures directory authentication for administrative users.

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

2. In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to
the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users.
3. Setthe LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:
ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using a strong authentication
method.

4. Setthe LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = PASSWORD;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE.
Setting this parameter to PASSWORD or SSL ensures that users can be authenticated
using the SYSDBA or SYSOPER administrative privileges through Oracle Internet
Directory.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT SOMEUSER@ORCL AS SYSDBA
Enter password: password

If the database is configured to use a password file for remote authentication, Oracle
Database checks the password file first.

" See Also:

e Guidelines for Securing User Accounts and Privileges for advice on
granting privileges to trusted users

e Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH

e Oracle Database Reference for more information about
LDAP_DIRECTORY_ACCESS

Configuring Kerberos Authentication for Administrative Users

Oracle Internet Directory can be used to configure Kerberos authentication for
administrative users.

ORACLE 3-48

Chapter 3
Authentication of Database Administrators

Configure the administrative user by using the same procedures you would use to
configure a typical user.

See Configuring Kerberos Authentication , for more information.
Configure Oracle Internet Directory for Kerberos authentication.

See Oracle Database Enterprise User Security Administrator's Guide for more
information.

In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to
the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See Guidelines for Securing User
Accounts and Privileges for advice on this topic.

Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:
ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using strong authentication
methods. See Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH.

Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE.
Setting this parameter to PASSWORD or SSL ensures that users can be authenticated
using SYSDBA or SYSOPER through Oracle Internet Directory. See Oracle Database
Reference for more information about LDAP_DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT /@orcl AS SYSDBA

Configuring Secure Sockets Layer Authentication for Administrative Users

ORACLE

Both the client and server side can authenticate administrative users with Secure
Sockets Layer (SSL).

1.

Configure the client to use SSL:

a. Configure the client wallet and user certificate. Update the wallet location in
the sqlnet.ora configuration file.

You can use Wallet Manager to configure the client wallet and user certificate.
See Oracle Database Enterprise User Security Administrator's Guide for more
information.

b. Configure the Oracle net service name to include server DNs and use TCP/IP
with SSL in tnsnames.ora.

c. Configure TCP/IP with SSL in listener.ora.

d. Set the client SSL cipher suites and the required SSL version, and then set
SSL as an authentication service in sqlnet.ora.

3-49

Chapter 3
Authentication of Database Administrators

2. Configure the server to use SSL:

a. Enable SSL for your database listener on TCPS and provide a corresponding
TNS name. You can use Net Configuration Assistant to configure the TNS
name.

b. Store the database PKI credentials in the database wallet. You can use Wallet
Manager do this.

c. Setthe LDAP_DIRECTORY_ACCESS initialization parameter to SSL:
ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;
See Oracle Database Reference for more information about
LDAP_DIRECTORY_ACCESS.
3. Configure Oracle Internet Directory for SSL user authentications.

See Oracle Database Enterprise User Security Administrator's Guide for
information about configuring enterprise user security SSL authentication.

4. In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user for
the database that the user will administer.

5. On the server computer, set the LDAP_DIRECTORY_SYSAUTH initialization parameter
to YES.

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using a strong authentication

method. See Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT /@orcl AS SYSDBA

Authentication of Database Administrators by Using the Operating

System

ORACLE

For both Windows and UNIX systems, you use DBA-privileged groups to authenticate
for the operating system.

Operating system authentication for a database administrator typically involves
establishing a group on the operating system, granting DBA privileges to that group,
and then adding the names of persons who should have those privileges to that group.
(On UNIX systems, the group is the dba group.)

" Note:

In a multitenant environment, you can use operating system authentication
for a database administrator only for the CDB root. You cannot use it for for
PDBs, the application root, or application PDBs.

3-50

Chapter 3
Authentication of Database Administrators

On Microsoft Windows systems:

Users who connect with the SYSDBA administrative privilege can take advantage of
the Windows native authentication. If these users work with Oracle Database
using their domain accounts, then you must explicitly grant them local
administrative privileges and ORA_DBA membership.

Oracle recommends that you run Oracle Database services using a low privileged
Microsoft Windows user account rather than a Microsoft Windows built-in account.

¢ See Also:

Your Oracle Database operating system-specific documentation for
information about configuring operating system authentication of database
administrators

Authentication of Database Administrators by Using Their Passwords

Password files are used to authenticate database administrators.

That is, Oracle Database users who have been granted the SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges are first authenticated using
database-specific password files.

These privileges enable the following activities:

ORACLE

The SYSOPER system privilege lets database administrators perform STARTUP,
SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and
RECOVER operations. SYSOPER also includes the RESTRICTED SESSION privilege.

The SYSDBA administrative privilege has all system privileges with ADMIN OPTION,
including the SYSOPER administrative privilege, and permits CREATE DATABASE and
time-based recovery.

A password file containing users who have the SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges can be shared between
different databases. In addition, this type of password file authentication can be
used in a Secure Sockets Layer (SSL) or Kerberos configuration, and for common
administrative users in a multitenant environment. You can have a shared
password file that contains users in addition to the SYS user. To share a password
file among different databases, set the REMOTE_LOGIN_PASSWORDFILE parameter in
the init.ora file to SHARED.

If you set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE or
SHARED from NONE, then ensure that the password file is synchronized with the
dictionary passwords. See Oracle Database Administrator’s Guide for more
information.

For Automatic Storage Management (ASM) environments, you can create shared
ASM password files. Remember that you must have the SYSASM system privilege
to create an ASM password file. See Oracle Automatic Storage Management
Administrator's Guide for more information.

3-51

Chapter 3
Authentication of Database Administrators

The SYSDG administrative privilege must be included in a password file for sharding
administrators to perform tasks that involve file transfer and Oracle Recovery
Manager (RMAN) activities.

Password file-based authentication is enabled by default. This means that the
database is ready to use a password file for authenticating users that have SYSDBA,
SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges. Password
file-based authentication is activated as soon as you create a password file by
using the ORAPWD utility.

Anyone who has EXECUTE privileges and write privileges to the $ORACLE_HOME/dbs
directory can run the ORAPWD utility.

Password limits such as FAILED_LOGIN_ATTEMPTS and PASSWORD_LIFE_TIME are
enforced for administrative logins, if the password file is created in the Oracle
Database 12c release 2 (12.2) format.

" Note:

e Tofind a list of users who are included in the password file, you can
guery the V$PWFILE_USERS data dictionary view.

e Connections requested AS SYSDBA or AS SYSOPER must use these
phrases. Without them, the connection fails. The Oracle Database
parameter 07_DICTIONARY_ACCESSIBILITY can be set to FALSE to limit
sensitive data dictionary access only to authorized users. The parameter
also enforces the required AS SYSDBA or AS SYSOPER syntax.

Risks of Using Password Files for Database Administrator
Authentication

Be aware that using password files may pose security risks.

ORACLE

For this reason, consider using the authentication methods described in Strong
Authentication, Centralized Management for Administrators.

Examples of password security risks are as follows:

An intruder could steal or attack the password file.

Many users do not change the default password.

The password could be easily guessed.

The password is vulnerable if it can be found in a dictionary.

Passwords that are too short, chosen perhaps for ease of typing, are vulnerable if
an intruder obtains the cryptographic hash of the password.

Note:

Oracle Database Administrator’s Guide for information about creating and
maintaining password files

3-52

Chapter 3
Database Authentication of Users

Database Authentication of Users

Database authentication of users entails using information within the database itself to
perform the authentication.

e About Database Authentication
Oracle Database can authenticate users attempting to connect to a database by
using information stored in that database itself.

» Advantages of Database Authentication
There are three advantages of using the database to authenticate users.

* Creating Users Who Are Authenticated by the Database
When you create a user who is authenticated by the database, you assign this
user a password.

About Database Authentication

ORACLE

Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database itself.

To configure Oracle Database to use database authentication, you must create each
user with an associated password. User names can use the National Language
Support (NLS) character format, but you cannot include double quotation mark
characters in the password. The user must provide this user name and password
when attempting to establish a connection.

Oracle Database generates a one-way hash of the user's password and stores it for
use when verifying the provided login password. In order to support older clients,
Oracle Database can be configured to generate the one-way hash of the user's
password using a variety of different hashing algorithms. The resulting password
hashes are known as password versions, which have the short names 106G, 11G, and
12C. The short names 106G, 116G, and 12C serve as abbreviations for the details of the
one-way password hashing algorithms, which are described in more detail in the
documentation for the PASSWORD_VERSIONS column of the DBA_USERS view. To find the
list of password versions for any given user, query the PASSWORD_VERSIONS column of
the DBA_USERS view.

By default, there are currently two versions of the one-way hashing algorithm in use in
Oracle Database 12c release 2 (12.2): the salted SHA-1 hashing algorithm, and the
salted PKBDF2 SHA-2 SHA-512 hashing algorithm. The salted SHA-1 hashing
algorithm generates the hash that is used for the 11G password version. The salted
PKBDF2 SHA-2 SHA-512 hashing algorithm generates the hash that is used for the
12C password version. This hash generation takes place for the same password; that
is, both algorithms run for the same password. Oracle Database records these
password versions in the DBA_USERS data dictionary view. When you query this view,
you will see two password versions. For example:

SELECT USERNAME, PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME ~ PASSWORD_VERSIONS

ADAMS 11G, 12C
SYS 11G, 12C

3-53

Chapter 3
Database Authentication of Users

To specify which authentication protocol to allow during authentication of a client or of
a database server acting as a client, you can explicitly set the

SQLNET.ALLOWED LOGON_VERSION_SERVER parameter in the server sqlnet.ora file. (The
client version of this parameter is SQLNET.ALLOWED_LOGON_VERSION_CLIENT.) Each
connection attempt is tested, and if the client or server does not meet the client ability
requirements specified by its partner, authentication fails with an ORA-28040 No
matching authentication protocol error in the “Ability Required of the Client” in the
“SQLNET.ALLOWED_LOGON_VERSION_SERVER Settings” table under the
description of the SQLNET .ALLOWED_LOGON_VERSION_SERVER parameter in Oracle
Database Net Services Reference. The parameter can take the values 12a, 12, 11, 10,
9, or 8. The default value is 12, which is Exclusive Mode. These values represent the
version of the authentication protocol. Oracle recommends the value 12. However, be
aware that if you set SQLNET.ALLOWED_LOGON_VERSION_SERVER and

SQLNET .ALLOWED_LOGON_VERSION_CLIENT to 11, then pre-Oracle Database Release
11.1 client applications including JDBC thin clients cannot authenticate to the Oracle
database using password-based authentication.

To enhance security when using database authentication, Oracle recommends that
you use password management, including account locking, password aging and
expiration, password history, and password complexity verification.

¢ See Also:

¢ Oracle Database Net Services Reference for more information about the
SQLNET .ALLOWED_LOGON_VERSION_CLIENT parameter and the ORA-28040
No matching authentication protocol error

e Oracle Database Net Services Reference for more information about the
SQLNET .ALLOWED_LOGON_VERSION_SERVER parameter and Exclusive Mode

e About Password Complexity Verification for information about password
complexity verification functions

e Using a Password Management Policy for more information about
password management

e Management of Password Versions of Users for more information about
managing password versions

Advantages of Database Authentication

ORACLE

There are three advantages of using the database to authenticate users.
These advantages are as follows:

» User accounts and all authentication are controlled by the database. There is no
reliance on anything outside of the database.

» Oracle Database provides strong password management features to enhance
security when using database authentication.

e |tis easier to administer when there are small user communities.

3-54

Chapter 3
Schema Only Accounts

Creating Users Who Are Authenticated by the Database

When you create a user who is authenticated by the database, you assign this user a
password.

* To create a user who is authenticated by the database, include the IDENTIFIED BY
clause when you create the user.

For example, the following SQL statement creates a user who is identified and
authenticated by Oracle Database. User sebastian must specify the assigned
password whenever he connects to Oracle Database.

CREATE USER sebastian IDENTIFIED BY password;

Related Topics

* Creating User Accounts
A user account can have restrictions such as profiles, a default role, and
tablespace restrictions.

Schema Only Accounts

You can create schema only accounts, that is, the schema user has no password.

e About Schema Only Accounts
A schema only account cannot log in to the database but can proxy in a single
session proxy.

* Creating a Schema Only Account
The CREATE USER SQL statement creates schema only accounts.

» Altering a Schema Only Account
The ALTER USER SQL statement can be used to modify schema only accounts.

About Schema Only Accounts

ORACLE

A schema only account cannot log in to the database but can proxy in a single session
proxy.

This type of account, designed for some Oracle-provided schemas along with some
customer schemas, can be created without the specification of a password or an
authentication type. It cannot be authenticated unless an authentication method is
assigned by using the ALTER USER statement. A schema only account does not contain
an entry in the DBA_USERS _WITH_DEFPWD data dictionary view. Note the following:

* Schema only accounts can be used for both administrator and non-administrator
accounts.

* Schema only accounts can be created on the database instance only, not in
Oracle Automatic Storage Management (ASM) environments.

* You can grant system privileges (such as CREATE ANY TABLE) and administrator
roles (such as DBA) to schema only accounts. Schema only accounts can create
objects such as tables or procedures, assuming they have had to correct
privileges granted to them.

3-55

Chapter 3
Operating System Authentication of Users

You cannot grant the SYSDBA, SYSOPER, SYSBACKUP, SYSKM, SYSASM, SYSRAC, and
SYSDG administrative privileges to schema only accounts.

You can configure schema only accounts to be used as client users in a proxy
authentication in a single session proxy. This is because in a single session proxy,
only the credentials of the proxy user are verified, not the credentials of the client
user. Therefore, a schema only account can be a client user. However, you cannot
configure schema only accounts for a two-proxy scenario, because the client
credentials must be verified. Hence, the authentication for a schema only account
will fail.

Schema only accounts cannot connect through database links, either with
connected user links, fixed user links, or current user links.

Creating a Schema Only Account

The CREATE USER SQL statement creates schema only accounts.

You can run the CREATE USER statement with the NO AUTHENTICATION clause only on a
database instance. You cannot run it on an Oracle Automatic Storage Management
(ASM) instance.

Use the CREATE USER statement with the NO AUTHENTICATION clause.
For example:

CREATE USER psmith NO AUTHENTICATION;

Altering a Schema Only Account

The ALTER USER SQL statement can be used to modify schema only accounts.

1.

Check if the schema user has administrative privileges.

You can query the V$PWFILE_USERS to find if the schema user has administrative
privileges.

If the schema user has administrative privileges, then use the REVOKE statement to
revoke these privileges.

Use the ALTER USER SQL statement with the NO AUTHENTICATION clause to modify
the schema account to have no authentication.

For example:

ALTER USER psmith NO AUTHENTICATION;

You can use ALTER USER to enable authentication for a schema only account.

Operating System Authentication of Users

Oracle Database can authenticate by using information that is maintained by the
operating system.

ORACLE

Using the operating system to authenticate users has both advantages and
disadvantages.

This functionality has the following benefits:

3-56

Chapter 3
Operating System Authentication of Users

Once authenticated by the operating system, users can connect to Oracle
Database more conveniently, without specifying a user name or password. For
example, an operating system-authenticated user can invoke SQL*Plus and omit
the user name and password prompts by entering the following command at the
command line:

SQLPLUS 7/

Within SQL*Plus, you enter:
CONNECT /

With control over user authentication centralized in the operating system, Oracle
Database does not need to store or manage the cryptographic hashes (also called
verifiers) of the user passwords, although it still maintains user names in the
database.

The audit trail captures the operating system user name and the database user
name, where the database user name is the value of the 0S_AUTHENT PREFIX
instance initialization parameter prefixed to the operating system user name. For
example, if 0S_AUTHENT_PREFIX is set to OPS$ and the operating system user name
is psmith, then the database user name will be OPS$PSMITH.

You can authenticate both operating system and non-operating system users in
the same system. For example:

— Authenticate users by the operating system. You create the user account
using the IDENTIFIED EXTERNALLY clause of the CREATE USER statement, and
then you set the 0S_AUTHENT_PREFIX initialization parameter to specify a prefix
that Oracle Database uses to authenticate users attempting to connect to the
server.

— Authenticate non-operating system users. These are users who are
assigned passwords and authenticated by the database.

— Authenticate Oracle Database Enterprise User Security users. These user
accounts where created using the IDENTIFIED GLOBALLY clause of the CREATE
USER statement, and then authenticated by Oracle Internet Directory (OID)
currently in the same database.

However, you should be aware of the following drawbacks to using the operating
system to authenticate users:

ORACLE

A user must have an operating system account on the computer that must be
accessed. Not all users have operating system accounts, particularly non-
administrative users.

If a user has logged in using this method and steps away from the terminal,
another user could easily log in because this user does not need any passwords
or credentials. This could pose a serious security problem.

When an operating system is used to authenticate database users, managing
distributed database environments and database links requires special care.
Operating system-authenticated database links can pose a security weakness. For
this reason, Oracle recommends that you do not use them.

In a multitenant environment, you can use operating system authentication for a
database administrator only for the CDB root. You cannot use it for PDBs, the
application root, or application PDBs.

3-57

Chapter 3
Network Authentication of Users

" See Also:

e Oracle Database Administrator’s Guide for more information about
authentication, operating systems, distributed database concepts, and
distributed data management

e Operating system-specific documentation by Oracle Database for more
information about authenticating by using your operating system

Network Authentication of Users

You can authenticate users over a network by using Secure Sockets Layer with third-
party services.

Authentication with Secure Sockets Layer
The Secure Sockets Layer (SSL) protocol is an application layer protocol.

Authentication with Third-Party Services
The third-party services Kerberos, RADIUS, directory-based services, and public
key infrastructure can authenticate Oracle Database over a network.

Authentication with Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol is an application layer protocol.

You can use SSL for user authentication to a database, and it is independent of global
user management in Oracle Internet Directory. That is, users can use SSL to
authenticate to the database without a directory server in place.

Related Topics

Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

Authentication with Third-Party Services

The third-party services Kerberos, RADIUS, directory-based services, and public key
infrastructure can authenticate Oracle Database over a network.

ORACLE

About Authentication Using Third-Party Services
You must use third-party network authentication services if you want to
authenticate Oracle Database users over a network.

Authentication with Kerberos
Kerberos is a trusted third-party authentication system that relies on shared
secrets.

Authentication with RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight
protocol used for user authentication, authorization, and accounting.

Authentication with Directory-Based Services
Using a central directory can make authentication and its administration efficient.

3-58

Chapter 3
Network Authentication of Users

* Authentication with Public Key Infrastructure
Authentication systems based on public key infrastructure (PKI) issue digital
certificates to user clients.

About Authentication Using Third-Party Services

You must use third-party network authentication services if you want to authenticate
Oracle Database users over a network.

Prominent examples include Kerberos, PKI (public key infrastructure), the RADIUS
(Remote Authentication Dial-In User Service), and directory-based services.

If network authentication services are available to you, then Oracle Database can
accept authentication from the network service. If you use a network authentication
service, then some special considerations arise for network roles and database links.

Authentication with Kerberos

Kerberos is a trusted third-party authentication system that relies on shared secrets.

Kerberos presumes that the third party is secure, and provides single sign-on
capabilities, centralized password storage, database link authentication, and enhanced
PC security. It does this through a Kerberos authentication server, or through
Cybersafe Active Trust, a commercial Kerberos-based authentication server.

Related Topics

» Configuring Kerberos Authentication
Kerberos is a trusted third-party authentication system that relies on shared
secrets and presumes that the third party is secure.

Authentication with RADIUS

Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight
protocol used for user authentication, authorization, and accounting.

RADIUS also enables users to use the RSA One-Time Password Specifications
(OTPS) to authenticate to the Oracle database.

" See Also:

e Configuring RADIUS Authentication for information about configuring
RADIUS

¢ RSA documentation about OTPS

Authentication with Directory-Based Services
Using a central directory can make authentication and its administration efficient.
Directory-based services include the following:

e Oracle Internet Directory, which uses the Lightweight Directory Access Protocol
(LDAP), uses a central repository to store and manage information about users

ORACLE 3-59

Chapter 3
Configuring Operating System Users for a PDB

(called enterprise users) whose accounts were created in a distributed
environment. Although database users must be created (with passwords) in each
database that they need to access, enterprise user information is accessible
centrally in the Oracle Internet Directory. You can also integrate this directory with
Microsoft Active Directory and SunOne.

Oracle Enterprise Security Manager lets you store and retrieve roles from
Oracle Internet Directory, which provides centralized privilege management to
make administration easier and increase security levels.

Authentication with Public Key Infrastructure

Authentication systems based on public key infrastructure (PKI) issue digital
certificates to user clients.

These clients can use these certificates to authenticate directly to servers in the
enterprise without directly involving an authentication. Oracle Database provides a PKI
for using public keys and certificates, consisting of the following components:

Authentication and secure session key management using SSL. See
Authentication with Secure Sockets Layer for more information.

Trusted certificates. These are used to identify third-party entities that are trusted
as signers of user certificates when an identity is being validated. When the user
certificate is being validated, the signer is checked by using trust points or a
trusted certificate chain of certificate authorities stored in the validating system. If
there are several levels of trusted certificates in this chain, then a trusted
certificate at a lower level is simply trusted without needing to have all its higher-
level certificates reverified.

Oracle Wallet Manager. An Oracle wallet is a data structure that contains the
private key of a user, a user certificate, and the set of trust points of a user (trusted
certificate authorities). See Oracle Database Enterprise User Security
Administrator's Guide for information about managing Oracle wallets.

You can use Oracle Wallet Manager to manage Oracle wallets. This is a
standalone Java application used to manage and edit the security credentials in
Oracle wallets. It performs the following operations:

— Generates a public-private key pair and creates a certificate request for
submission to a certificate authority, and creates wallets

— Installs a certificate for the entity

— Manages X.509 version 3 certificates on Oracle Database clients and servers
— Configures trusted certificates for the entity

— Opens a wallet to enable access to PKl-based services

X.509 version 3 certificates obtained from (and signed by) a trusted entity, a
certificate authority. Because the certificate authority is trusted, these certificates
verify that the requesting entity's information is correct and that the public key on
the certificate belongs to the identified entity. The certificate is loaded into an
Oracle wallet to enable future authentication.

Configuring Operating System Users for a PDB

The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to be
operating system users for a PDB.

ORACLE

3-60

Chapter 3
Configuring Operating System Users for a PDB

About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to
be the operating system user for that PDB.

Configuring an Operating System User for a PDB
The DBMS_CREDENTIAL.CREATE _CREDENTIAL procedure can set an operating system
user for a PDB.

About Configuring Operating System Users for a PDB

Instead the oracle operating system user, you can set a specific user account to be
the operating system user for that PDB.

If you do not set a specific user to be the operating system user for the PDB, then by
default the PDB uses the oracle operating system user. For the root, you can use the
oracle operating system user when you must interact with the operating system.

For better security, Oracle recommends that you set a unique operating system user
for each PDB in a multitenant environment. Doing so helps to ensure that operating
system interactions are performed as a less powerful user than the oracle operating
system user, and helps to protect data that belongs to one PDB from being accessed
by users who are connected to other PDBs.

Configuring an Operating System User for a PDB

The DBMS_CREDENTIAL .CREATE_CREDENTIAL procedure can set an operating system
user for a PDB.

ORACLE

1.

Log in to the database instance root as a user who has the EXECUTE privilege for
the DBMS_CREDENTIAL PL/SQL package and the ALTER SYSTEM system privilege.

For example:

sqlplus c##sec_admin
Enter password: password

Run the DBMS_CREDENTIAL .CREATE_CREDENTIAL procedure to create an Oracle
credential for the operating system user.

For example, to set the credential for a user named os_admin:

BEGIN

DBMS_CREDENTIAL .CREATE_CREDENTIAL (
credential _name => "PDB1_0OS USER",
username => "0s_admin”®,
password => "password®);

END;

/

Follow the guidelines in Minimum Requirements for Passwords to replace
passwor d with a password that is secure.

Connect to the PDB for which the operating system user will be used.
For example:

CONNECT ccttttsec_admin@hrpdb
Enter password: password

3-61

Chapter 3
Global User Authentication and Authorization

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

4. Setthe PDB_OS_CREDENTIAL initialization parameter for the user whose credential
was set in Step 2.

For example:
ALTER SYSTEM SET PDB_OS_CREDENTIAL = PDB1_OS_USER SCOPE = SPFILE;
The PDB_0OS_CREDENTIAL parameter is a static parameter, so you must set it using
the SCOPE = SPFILE clause.
5. Restart the database instance.

SHUTDOWN IMMEDIATE
STARTUP

See also:

e Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure

* Oracle Database Reference for more information about the PDB_0S_CREDENTIAL
initialization parameter

Global User Authentication and Authorization

Global user authentication and authorization enables you to centralize the
management of user-related information.

* About Configuring Global User Authentication and Authorization
An LDAP-based directory service centralizes the management of user-related
information, including authorizations.

» Configuration of Users Who Are Authorized by a Directory Service
You can configure either a global user or multiple enterprise users to be
authorized by a directory service.

* Advantages of Global Authentication and Global Authorization
There are several advantages of global user authentication and authorization.

About Configuring Global User Authentication and Authorization

An LDAP-based directory service centralizes the management of user-related
information, including authorizations.

This enables users and administrators to be identified in the database as global users,
meaning that they are authenticated by SSL and that the management of these users
is handled outside of the database by the centralized directory service. Global roles
are defined in a database and are known only to that database, but the directory
service handles authorizations for global roles.

ORACLE 3-62

Chapter 3
Global User Authentication and Authorization

Note:

You can also have users authenticated by Secure Sockets Layer (SSL),
whose authorizations are not managed in a directory, that is, they have local
database roles only.

This centralized management enables the creation of enterprise users and
enterprise roles. Enterprise users are defined and managed in the directory. They
have unique identities across the enterprise and can be assigned enterprise roles that
determine their access privileges across multiple databases. An enterprise role
consists of one or more global roles, and might be thought of as a container for global
roles.

See Also:

e Configuring Secure Sockets Layer Authentication for details about
Secure Sockets Layer authentication.

e Strong Authentication, Centralized Management for Administrators if you
want to centralize the management of SYSDBA or SYSOPER access

Configuration of Users Who Are Authorized by a Directory Service

You can configure either a global user or multiple enterprise users to be authorized by
a directory service.

» Creating a Global User Who Has a Private Schema
You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

* Creating Multiple Enterprise Users Who Share Schemas
Multiple enterprise users can share a single schema in the database.

Creating a Global User Who Has a Private Schema

ORACLE

You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

However, be aware that you must create this user in every database that the user
must access, plus the directory.

* To create a global user who has a private schema, use the CREATE USER ...
IDENTIFIED GLOBALLY SQL statement.

You can include standard LDAP Data Interchange Format (LDIF) fields. For
example, to create a global user (psmith_gl with a private schema, authenticated
by SSL, and authorized by the enterprise directory service:

CREATE USER psmith_gl IDENTIFIED GLOBALLY AS
"CN=psmith,OU=divisionl,0=example,C=US";

3-63

Chapter 3
Global User Authentication and Authorization

In this specification:

— CN refers to the common name of this user, psmith_gl.
— QU refers to the user’s organizational unit, divisionl.
— O refers to the user’s organization, Example.

— Crefers to the country in which the organization Example is located, the US.

Creating Multiple Enterprise Users Who Share Schemas

Multiple enterprise users can share a single schema in the database.

These users are authorized by the enterprise directory service but do not own
individual private schemas in the database. These users are not individually created in
the database. They connect to a shared schema in the database.

1.

Create a shared schema in the database using the following example:
CREATE USER appschema IDENTIFIED GLOBALLY AS **;
In the directory, create multiple enterprise users and a mapping object.

The mapping object tells the database how you want to map the DNs for the users
to the shared schema. You can either create a full distinguished name (DN)
mapping (one directory entry for each unique DN), or you can map, for each user,
multiple DN components to one schema. For example:

OU=divisionl,0=Example,C=US

See Also:

Oracle Database Enterprise User Security Administrator's Guide for an
explanation of these mappings

Most users do not need their own schemas, and implementing schema-independent
users separates users from databases. You create multiple users who share the same
schema in a database, and as enterprise users, they can also access shared schemas
in other databases.

Advantages of Global Authentication and Global Authorization

There are several advantages of global user authentication and authorization.

ORACLE

Provides strong authentication using SSL, Kerberos, or Windows native
authentication.

Enables centralized management of users and privileges across the enterprise.

Is easy to administer: You do not have to create a schema for every user in every
database in the enterprise.

Facilitates single sign-on: Users need to sign on once to only access multiple
databases and services. Further, users using passwords can have a single
password to access multiple databases accepting password-authenticated
enterprise users.

3-64

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

Because global user authentication and authorization provide password-based
access, you can migrate previously defined password-authenticated database
users to the directory (using the User Migration Ultility) to be centrally
administered. This makes global authentication and authorization available for
earlier Oracle Database release clients that are still supported.

CURRENT_USER database links connect as a global user. A local user can connect
as a global user in the context of a stored procedure, that is, without storing the
global user password in a link definition.

¢ See Also:

Oracle Database Enterprise User Security Administrator's Guide for
additional information about global authentication and authorization and
enterprise users and roles

Configuring an External Service to Authenticate Users and

Passwords

An external service (the operating system or the network) can administer passwords
and authenticate users.

About External Authentication
With external authentication, Oracle Database maintains the user account, but an
external service performs the password administration and user authentication.

Advantages of External Authentication
External authentication provides several advantages.

Enabling External Authentication
To enable external authentication, you can set the initialization parameter
0S_AUTHENT_PREFIX, and use this prefix in Oracle Database user names.

Creating a User Who Is Authenticated Externally
Externally authenticated users are authenticated by the operating system or
network service.

Authentication of User Logins By Using the Operating System
Oracle Database allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.

Authentication of User Logins Using Network Authentication
Oracle strong authentication performs network authentication, which you can
configure to use a third-party service such as Kerberos.

About External Authentication

ORACLE

With external authentication, Oracle Database maintains the user account, but an

external service performs the password administration and user authentication.

This external service can be the operating system or a network service, such as
Oracle Net. If you are authenticating users through a password file, then you can
configure external authentication for users who have been granted the SYSDBA,
SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges.

3-65

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

With external authentication, your database relies on the underlying operating system
or network authentication service to restrict access to database accounts. A database
password is not used for this type of login. If your operating system or network service
permits, then it can authenticate users before they can log in to the database.

Related Topics

* Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

Advantages of External Authentication

External authentication provides several advantages.
These advantages are as follows:

* More choices of authentication mechanisms are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

e Many network authentication services, such as Kerberos support single sign-on,
enabling users to have fewer passwords to remember.

e If you are already using an external mechanism for authentication, such as one of
those listed earlier, then there may be less administrative overhead to use that
mechanism with the database.

Enabling External Authentication

ORACLE

To enable external authentication, you can set the initialization parameter
0S_AUTHENT_PREFIX, and use this prefix in Oracle Database user names.

The 0S_AUTHENT_PREFIX parameter defines a prefix that Oracle Database adds to the
beginning of the operating system account name of every user. Oracle Database
compares the prefixed user name with the Oracle Database user names in the
database when a user attempts to connect.

1. Set0S_AUTHENT PREFIX to a null string (an empty set of double quotation marks:
). Using a null string eliminates the addition of any prefix to operating system
account names, so that Oracle Database user names exactly match operating
system user names.

For example:
OS_AUTHENT PREFIX=" "

2. Ensure that the 0S_AUTHENT _PREFIXremains the same for the life of a database. If
you change the prefix, then any database user name that includes the old prefix
cannot be used to establish a connection, unless you alter the user name to have
it use password authentication.

The default value of the 0S_AUTHENT_PREFIX parameter is OPS$ for backward
compatibility with previous versions of Oracle Database. For example, assume that
you set 0S_AUTHENT_PREFIX as follows:

OS_AUTHENT_PREFIX=0PS$
If a user with an operating system account named tsmith is to connect to an Oracle

database installation and be authenticated by the operating system, then Oracle
Database checks that there is a corresponding database user OPS$tsmith and, if so,

3-66

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

lets the user connect. All references to a user authenticated by the operating system
must include the prefix, OPS$, as seen in OPS$tsmith.

Note:

The text of the 0S_AUTHENT_PREFIX initialization parameter is case-sensitive
on some operating systems. See your operating system-specific Oracle
Database documentation for more information about this initialization
parameter.

Creating a User Who Is Authenticated Externally

Externally authenticated users are authenticated by the operating system or network
service.

You can create users who are authenticated externally. Oracle Database then relies
on this external login authentication when it provides that specific operating system
user with access to the database resources of a specific user.

e Use the IDENTIFIED EXTERNALLY clause of the CREATE USER statement to create
users who are authenticated externally.

The following example creates a user who is identified by Oracle Database and
authenticated by the operating system or a network service. This example assumes
that the 0OS_AUTHENT_PREFIX parameter has been set to a blank space ("' ").

CREATE USER psmith IDENTIFIED EXTERNALLY;

Authentication of User Logins By Using the Operating System

ORACLE

Oracle Database allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.

This type of operating system authentication is the default. This restriction prevents a
remote user from impersonating another operating system user over a network
connection.

Setting the REMOTE_OS_AUTHENT parameter to TRUE in the database initialization
parameter file forces the database to accept the client operating system user name
received over an unsecure connection and use it for account access. Because clients,
in general, such as PCs, are not trusted to perform operating system authentication
properly, it is very poor security practice to turn on this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure configuration
that enforces proper, server-based authentication of clients connecting to an Oracle
database.

Be aware that the REMOTE_OS_AUTHENT parameter was deprecated in Oracle Database
11g Release 1 (11.1), and is retained only for backward compatibility.

Any change to this parameter takes effect the next time you start the instance and
mount the database. Generally, user authentication through the host operating system
offers faster and more convenient connection to Oracle Database without specifying a
separate database user name or password. Also, user entries correspond in the
database and operating system audit trails.

3-67

Chapter 3
Multitier Authentication and Authorization

Authentication of User Logins Using Network Authentication

Oracle strong authentication performs network authentication, which you can configure
to use a third-party service such as Kerberos.

If you are using Oracle strong authentication as your only external authentication
service, then the REMOTE_OS_AUTHENT parameter setting is irrelevant, because Oracle
strong authentication permits only secure connections.

Multitier Authentication and Authorization

Oracle Database secures middle-tier applications by limiting privileges, preserving
client identities through all tiers, and auditing actions by clients.

In applications that use a very busy middle tier, such as a transaction processing
monitor, the identity of the clients connecting to the middle tier must be preserved.
One advantage of using a middle tier is connection pooling, which allows multiple
users to access a data server without each of them needing a separate connection. In
such environments, you need to be able to set up and break down connections very
quickly.

For these environments, you can use the Oracle Call Interface to create lightweight
sessions, which enable database password authentication for each user. This method
preserves the identity of the real user through the middle tier without the overhead of a
separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle
tier is outside of or on a firewall, then security is better when each lightweight session
has its own password. For an internal application server, lightweight sessions without
passwords might be appropriate.

Administration and Security in Clients, Application Servers,
and Database Servers

ORACLE

In a multitier environment, an application server provides data for clients and serves as
an interface to one or more database servers.

The application server can validate the credentials of a client, such as a Web browser,
and the database server can audit operations performed by the application server.
These auditable operations include actions performed by the application server on
behalf of clients, such as requests that information be displayed on the client. A
request to connect to the database server is an example of an application server
operation not related to a specific client.

Authentication in a multitier environment is based on trust regions. Client
authentication is the domain of the application server. The application server itself is
authenticated by the database server. The following operations take place:

* The end user provides proof of authenticity to the application server, typically, by
using a password or an X.509 certificate.

* The application server authenticates the end user and then authenticates itself to
the database server.

3-68

ORACLE

Chapter 3
Administration and Security in Clients, Application Servers, and Database Servers

* The database server authenticates the application server, verifies that the end
user exists, and verifies that the application server has the privilege to connect for
the end user.

Application servers can also enable roles for an end user on whose behalf they
connect. The application server can obtain these roles from a directory, which serves
as an authorization repository. The application server can only request that these roles
be enabled. The database verifies the following requirements:

* That the client has these roles by checking its internal role repository

* That the application server has the privilege to connect on behalf of the user and
thus to use these roles as the user could

Figure 3-2 shows an example of multitier authentication.

Figure 3-2 Multitier Authentication

SSL to login Proxies user identity

Application
Server

Get roles
from LDAP
and log in
user

Oracle

Internet
Directory m

The following actions take place:

1. The user logs on using a password or Secure Sockets Layer. The authentication
information is passed through Oracle Application Server.

2. Oracle Internet Directory authenticates the user, gets the roles associated with
that user from the wallet, and then passes this information back to Oracle
Application Server.

3. Oracle Application Server checks the identity of the user in Oracle Database,
which contains a wallet that stores this information, and then sets the role for that
user.

Security for middle-tier applications must address the following key issues:

* Accountability. The database server must be able to distinguish between the
actions of the application and the actions an application takes on behalf of a client.
It must be possible to audit both kinds of actions.

3-69

Chapter 3
Preserving User Identity in Multitiered Environments

* Least privilege. Users and middle tiers should be given the fewest privileges
necessary to perform their actions, to reduce the danger of inadvertent or
malicious unauthorized activities.

Preserving User Identity in Multitiered Environments

You can use middle tier servers for proxy authentication and client identifiers to identify
application users who are not known to the database.

e Middle Tier Server Use for Proxy Authentication
Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle
tier for proxy authentication for database users or enterprise users.

» Using Client Identifiers to Identify Application Users Unknown to the Database
Client identifiers preserve user identity in middle tier systems; they also can be
used independently of the global application context.

Middle Tier Server Use for Proxy Authentication

ORACLE

Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle tier
for proxy authentication for database users or enterprise users.

e About Proxy Authentication
Oracle Database provides proxy authentication in Oracle Call Interface (OCI),
JDBC/OCI, or JDBC Thin Driver for database users or enterprise users.

» Advantages of Proxy Authentication
In multitier environments, proxy authentication preserves client identities and
privileges through all tiers in middle-tier applications and by auditing client actions.

* Who Can Create Proxy User Accounts?
To create proxy user accounts, users must have special privileges.

* Guidelines for Creating Proxy User Accounts
Oracle provides special guidelines for when you create proxy user accounts.

* Creating Proxy User Accounts and Authorizing Users to Connect Through Them
The CREATE USER and ALTER USER statements can be used to create a proxy user
and authorize users to connect through it.

* Proxy User Accounts and the Authorization of Users to Connect Through Them
The CREATE USER statement enables you to create the several types of user
accounts, all of which can be used as proxy accounts.

* Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password
used in proxy authentication being obtained by a malicious user.

* How the Identity of the Real User Is Passed with Proxy Authentication
You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users
or database users.

* Limits to the Privileges of the Middle Tier
Least privilege is the principle that users should have the fewest privileges
necessary to perform their duties and no more.

* Authorizing a Middle Tier to Proxy and Authenticate a User
You can authorize a middle-tier server to connect as a user.

3-70

Chapter 3
Preserving User Identity in Multitiered Environments

* Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
You can authorize a middle tier to proxy a user that has been authenticated by
other means.

* Reauthenticating a User Through the Middle Tier to the Database
You can specify that authentication is required by using the AUTHENT ICATION
REQUIRED proxy clause with the ALTER USER SQL statement.

» Using Password-Based Proxy Authentication
When you use password-based proxy authentication, Oracle Database passes the
password of the client to the middle-tier server.

* Using Proxy Authentication with Enterprise Users
How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

About Proxy Authentication

Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/
OCI, or JDBC Thin Driver for database users or enterprise users.

Enterprise users are those who are managed in Oracle Internet Directory and who
access a shared schema in the database.

You can design a middle-tier server to authenticate clients in a secure fashion by using
the following three forms of proxy authentication:

* The middle-tier server authenticates itself with the database server and a client, in
this case an application user or another application, authenticates itself with the
middle-tier server. Client identities can be maintained all the way through to the
database.

» The client, in this case a database user, is not authenticated by the middle-tier
server. The clients identity and database password are passed through the
middle-tier server to the database server for authentication.

e The client, in this case a global user, is authenticated by the middle-tier server,
and passes one of the following through the middle tier for retrieving the client's
user name.

— Distinguished name (DN)
— Certificate

In all cases, an administrator must authorize the middle-tier server to act on behalf of
the client.

¢ See Also:

e Auditing SQL Statements and Privileges in a Multitier Environment

e Oracle Database JDBC Developer’s Guide for more information about
proxy authentication

ORACLE 3-71

Chapter 3
Preserving User Identity in Multitiered Environments

Advantages of Proxy Authentication

In multitier environments, proxy authentication preserves client identities and privileges
through all tiers in middle-tier applications and by auditing client actions.

For example, this feature allows the identity of a user using a Web application (which
acts as a proxy) to be passed through the application to the database server.

Three-tier systems provide the following benefits to organizations:

» Organizations can separate application logic from data storage, partitioning the
former in application servers and the latter in databases.

* Application servers and Web servers enable users to access data stored in
databases.

* Users like using a familiar, easy-to-use browser interface.

» Organizations can also lower their cost of computing by replacing many thick
clients with numerous thin clients and an application server.

In addition, Oracle Database proxy authentication provides the following security
benefits:

* Alimited trust model, by controlling the users on whose behalf middle tiers can
connect and the roles that the middle tiers can assume for the user

e Scalability, by supporting user sessions through OCI, JDBC/OCI, or JDBC Thin
driver and eliminating the overhead of reauthenticating clients

* Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user

* Flexibility, by supporting environments in which users are known to the database,
and in which users are merely application users of which the database has no
awareness

" Note:

Oracle Database supports this proxy authentication functionality in three
tiers only. It does not support it across multiple middle tiers.

Who Can Create Proxy User Accounts?

ORACLE

To create proxy user accounts, users must have special privileges.
These privileges are as follows:

» The CREATE USER system privilege to create a database user account that will be
used as a proxy user account

e The DV_ACCTMGR role if Oracle Database Vault is enabled, to create the proxy user
account

e The ability to grant the CREATE SESSION system privilege to the proxy user account

e The ALTER USER system privilege to enable existing user accounts to connect to
the database through the proxy account

3-72

Chapter 3
Preserving User Identity in Multitiered Environments

Guidelines for Creating Proxy User Accounts

Oracle provides special guidelines for when you create proxy user accounts.

For better security and to adhere to the principle of least privilege, only grant the
proxy user account the CREATE SESSION privilege. Do not grant this user any other
privileges. The proxy user account is designed to only enable another user to
connect using the proxy account. Any privileges that must be exercised during the
connection should belong to the connecting user, not to the proxy account.

As with all passwords, ensure that the password you create for the proxy user is
strong and not easily guessed. Remember that multiple users will be connecting
as the proxy user, so it is especially important that this password be strong.

Consider using the Oracle strong authentication network connection features, to
prevent network eavesdropping.

For further fine-tuning of the amount of control that the connecting user has,
consider restricting the roles used by the connecting user when he or she is
connected through the proxy account. The ALTER USER statement WITH ROLE
clause enables you to configure the user to connect using specified roles, any role
except a specified role, or with no roles at all. Be aware that the proxy user can
only activate those roles that are included in the WITH ROLE clause. The proxy user
session will have all the privileges that were directly granted to the client (that is,
current) user.

Related Topics

Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Creating Proxy User Accounts and Authorizing Users to Connect Through

Them

ORACLE

The CREATE USER and ALTER USER statements can be used to create a proxy user and
authorize users to connect through it.

1.

Use the CREATE USER statement to create the proxy user account.
For example:
CREATE USER appuser IDENTIFIED BY password;

Use the GRANT CONNECT THROUGH clause of the ALTER USER statement to enable an
existing user to connect through the proxy user account.

For example:

ALTER USER preston GRANT CONNECT THROUGH appuser;

Be aware that the user name and proxy combination must not exceed 250
characters.

Suppose user preston has a large number of roles, but you only want her to use
one role (for example, the appuser_role) when she is connected to the database
through the appuser proxy account. You can use the following ALTER USER
statement:

ALTER USER preston GRANT CONNECT THROUGH appuser WITH ROLE appuser_role;

3-73

Chapter 3
Preserving User Identity in Multitiered Environments

Any other roles that user preston has will not be available to her as long as she is
connecting as the appuser proxy.

After you complete these steps, user preston can connect using the appuser proxy
user as follows:

CONNECT appuser[preston]
Enter password: appuser_password

¢ See Also:
e Oracle Database SQL Language Reference for detailed information
about the CREATE USER statement

e Oracle Database SQL Language Reference for detailed information
about the ALTER USER statement

Proxy User Accounts and the Authorization of Users to Connect Through Them

ORACLE

The CREATE USER statement enables you to create the several types of user accounts,
all of which can be used as proxy accounts.

These accounts are as follows:

Database user accounts, which are authenticated by passwords

External user accounts, which are authenticated by external sources, such as
Secure Socket Layer (SSL) or Kerberos

Global user accounts, which are authenticated by an enterprise directory service
(Oracle Internet Directory).

Note the following:

The proxy user can only perform activities that the user preston has
privileges to perform. Remember that the proxy user itself, appuser, only has the
minimum privileges (CREATE SESSION).

Using roles with middle-tier clients. You can also specify roles that the middle
tier is permitted to activate when connecting as the client. Operations performed
on behalf of a client by a middle-tier server can be audited.

Finding proxy users. To find the users who are currently authorized to connect
through a middle tier, query the PROXY_USERS data dictionary view, for example:

SELECT * FROM PROXY_USERS;

Removing proxy connections. Use the REVOKE CONNECT THROUGH clause of
ALTER USER to disallow a proxy connection. For example, to revoke user preston
from connecting through the proxy user appuser, enter the following statement:

ALTER USER preston REVOKE CONNECT THROUGH appuser;

Password expiration and proxy connections. Middle-tier use of password
expiration does not apply to accounts that are authenticated through a proxy.
Instead, lock the account rather than expire the password.

3-74

Chapter 3
Preserving User Identity in Multitiered Environments

¢ See Also:

e Oracle Database Enterprise User Security Administrator's Guide for
information about managing proxy users in an enterprise user
environment

e Auditing SQL Statements and Privileges in a Multitier Environment for
details about auditing operations done on behalf of a user by a middle
tier

Using Proxy Authentication with the Secure External Password Store

Use a secure external password store if you are concerned about the password used
in proxy authentication being obtained by a malicious user.

To accomplish this, you use the secure external password store with the proxy
authentication to store the password credentials in a wallet.

Connecting to Oracle Database using proxy authentication and the secure external
password store is ideal for situations such as running batch files. When a proxy user
connects to the database and authenticates using a secure external password, the
password is not exposed in the event that a malicious user tries to obtain the
password.

To use proxy authentication with the secure external password store:

1. Configure the proxy authentication account, as shown in the procedure in Proxy
User Accounts and the Authorization of Users to Connect Through Them.

2. Configure the secure external password store, as described in About Configuring
Clients to Use the External Password Store.

Afterward, the user can connect using the proxy but without having to specify a
password. For example:

sqlplus [preston]/@db_al i as

When you use the secure external password store, the user logging in does not need
to supply the user name and password. Only the SERVICE_NAME value (that is,
db_alias) from the tnsnames.ora file must be specified.

How the Identity of the Real User Is Passed with Proxy Authentication

ORACLE

You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users or
database users.

These tools enable a middle tier to set up several user sessions within a single
database connection, each of which uniquely identifies a connected user (connection

pooling)

These sessions reduce the network overhead of creating separate network
connections from the middle tier to the database.

If you want to authenticate from clients through a middle tier to the database, then the
full authentication sequence from the client to the middle tier to the database occurs as
follows:

3-75

Chapter 3
Preserving User Identity in Multitiered Environments

1. The client authenticates to the middle tier, using whatever form of authentication
the middle tier will accept. For example, the client could authenticate to the middle
tier by using a user name and password or an X.509 certificate by means of SSL.

2. The middle tier authenticates itself to the database by using whatever form of
authentication the database accepts. This could be a password or an
authentication mechanism supported by Oracle Database, such as a Kerberos
ticket or an X.509 certificate (SSL).

3. The middle tier then creates one or more sessions for users using OCI, JDBC/
OCI, or Thin driver.

* If the user is a database user, then the session must, as a minimum, include
the database user name. If the database requires it, then the session can
include a password (which the database verifies against the password store in
the database). The session can also include a list of database roles for the
user.

» If the user is an enterprise user, then the session may provide different
information depending on how the user is authenticated.

Example 1: If the user authenticates to the middle tier using SSL, then the
middle tier can provide the DN from the X.509 certificate of the user, or the
certificate itself in the session. The database uses the DN to look up the user
in Oracle Internet Directory.

Example 2: If the user is a password-authenticated enterprise user, then the
middle tier must provide, as a minimum, a globally uniqgue name for the user.
The database uses this name to look up the user in Oracle Internet Directory.
If the session also provides a password for the user, then the database will
verify the password against Oracle Internet Directory. User roles are
automatically retrieved from Oracle Internet Directory after the session is
established.

* The middle tier may optionally provide a list of database roles for the client.
These roles are enabled if the proxy is authorized to use the roles on behalf of
the client.

4. The database verifies that the middle tier has the privilege to create sessions on
behalf of the user.

The OCISessionBegin call fails if the application server cannot perform a proxy
authentication on behalf of the client by the administrator, or if the application
server is not allowed to activate the specified roles.

Limits to the Privileges of the Middle Tier

Least privilege is the principle that users should have the fewest privileges necessary
to perform their duties and no more.

As applied to middle tier applications, this means that the middle tier should not have
more privileges than it needs.

Oracle Database enables you to limit the middle tier such that it can connect only on
behalf of certain database users, using only specific database roles. You can limit the
privilege of the middle tier to connect on behalf of an enterprise user, stored in an
LDAP directory, by granting to the middle tier the privilege to connect as the mapped
database user. For instance, if the enterprise user is mapped to the APPUSER schema,
then you must at least grant to the middle tier the ability to connect on behalf of
APPUSER. Otherwise, attempts to create a session for the enterprise user will fail.

ORACLE 3-76

Chapter 3
Preserving User Identity in Multitiered Environments

However, you cannot limit the ability of the middle tier to connect on behalf of
enterprise users. For example, suppose that user Sarah wants to connect to the
database through a middle tier, appsrv (which is also a database user). Sarah has
multiple roles, but it is desirable to restrict the middle tier to use only the clerk role on
her behalf.

An administrator can grant permission for appsryv to initiate connections on behalf of
Sarah using her clerk role only by using the following SQL statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv WITH ROLE clerk;

By default, the middle tier cannot create connections for any client. The permission
must be granted for each user.

To enable appsrv to use all of the roles granted to the client Sarah, you can use the
following statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;

Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another
database user, the database verifies that the middle tier is authorized to connect for
that user by using the role specified.

Note:

Instead of using default roles, create your own roles and assign only
necessary privileges to them. Creating your own roles enables you to control
the privileges granted by them and protects you if Oracle Database changes
or removes default roles. For example, the CONNECT role now has only the
CREATE SESSION privilege, the one most directly needed when connecting to
a database.

However, CONNECT formerly provided several additional privileges, often not
needed or appropriate for most users. Extra privileges can endanger the
security of your database and applications. These have now been removed
from CONNECT.

Related Topics

* Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Authorizing a Middle Tier to Proxy and Authenticate a User

You can authorize a middle-tier server to connect as a user.

* To authorize a middle-tier server to connect as a user, use the ALTER USER
statement.

The following statement authorizes the middle-tier server appserve to connect as user
bill. It uses the WITH ROLE clause to specify that appserve activate all roles
associated with bill, except payroll.

ORACLE -

Chapter 3
Preserving User Identity in Multitiered Environments

ALTER USER bill
GRANT CONNECT THROUGH appserve
WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server (appserve) authorization to connect as user bill, you

can use the REVOKE CONNECT THROUGH clause. For example:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

You can authorize a middle tier to proxy a user that has been authenticated by other
means.

Currently, PASSWORD is the only means supported.

e Use the AUTHENTICATION REQURED clause of the ALTER USER ... GRANT CONNECT
THROUGH statement to authorize a user to be proxied, but not authenticated, by a
middle tier.

For example:

ALTER USER mary
GRANT CONNECT THROUGH midtier
AUTHENTICATION REQUIRED;

In the preceding statement, middle-tier server midtier is authorized to connect as
user mary, and midtier must also pass the user password to the database server for
authorization.

Reauthenticating a User Through the Middle Tier to the Database

You can specify that authentication is required by using the AUTHENTICATION REQUIRED
proxy clause with the ALTER USER SQL statement.

In this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a
middle tier, appsrv.

* To require that appsrv provides authentication credentials for the user Sarah, use
the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTICATION REQUIRED;

The AUTHENTICATION REQUIRED clause ensures that authentication credentials for the
user must be presented when the user is authenticated through the specified proxy.

" Note:

For backward compatibility, if you use the AUTHENTICATED USING PASSWORD
proxy clause, then Oracle Database transforms it to AUTHENT ICATION
REQUIRED.

ORACLE 3-78

Chapter 3
Preserving User Identity in Multitiered Environments

Using Password-Based Proxy Authentication

When you use password-based proxy authentication, Oracle Database passes the
password of the client to the middle-tier server.

The middle-tier server then passes the password as an attribute to the data server for
verification.

The main advantage to this type of authentication is that the client computer does not
have to have Oracle software installed on it to perform database operations.

* To pass the password of the client, configure the the middle-tier server to call the
OCIAttrSet() function as follows, passing OCI_ATTR_PASSWORD as the type of the
attribute being set.

OCIAttrSet(

session_handle, /* Pointer to a handle whose attribute gets modified. */

OCI_HTYPE_SESSION, /* Handle type: OCI user session handle. */

password_ptr, /* Pointer to the value of the password attribute. */

0, /* The size of the password attribute value is already
known by the OCI library. */

OCI_ATTR_PASSWORD, /* The attribute type. */

error_handle); /* An error handle used to retrieve diagnostic
information in the event of an error. */

Using Proxy Authentication with Enterprise Users

ORACLE

How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

If the middle tier connects to the database as a client who is an enterprise user, then
either the distinguished name, or the X.509 certificate containing the distinguished
name is passed over instead of the database user name. If the user is a password-
authenticated enterprise user, then the middle tier must provide, as a minimum, a
globally unique name for the user. The database uses this name to look up the user in
Oracle Internet Directory.

* To configure proxy authentication with enterprise users, configure the application
server and the middle tier to use the appropriate Oracle Call Interface settings:

— To pass over the distinguished name of the client, configure the application
server to call the Oracle Call Interface method OCIAttrSet() with
OCI_ATTR_DISTINGUISHED NAME as the attribute type, as follows:

OCIAttrSet(session_handle,
OCI_HTYPE_SESSION,
distinguished_name,

0,
OCI_ATTR_DISTINGUISHED_NAME,
error_handle);

— To pass over the entire certificate, configure the middle tier to call
OCIAttrSet() with OCI_ATTR_CERTIFICATE as the attribute type, as follows:

OCIAttrSet(session_handle,
OCI_HTYPE_SESSION,
certificate,
certificate_length,

3-79

Chapter 3
Preserving User Identity in Multitiered Environments

OCI_ATTR_CERTIFICATE,
error_handle);

If the type is not specified, then the database uses its default certificate type of X.509.

" Note:

e OCI_ATTR_CERTIFICATE is Distinguished Encoding Rules (DER) encoded.

e Certificate based proxy authentication using OCI_ATTR_CERTIFICATE will
not be supported in future Oracle Database releases. Use the
OCI_ATTR_DISTINGUISHED_ NAME or OCI_ATTR_USERNAME attribute instead

If you are using proxy authentication for password-authenticated enterprise users, then
use the same OCI attributes as for database users authenticated by password
(OC1_ATTR_USERNAME). Oracle Database first checks the user name against the
database. If it finds no user, then the database checks the user name in the directory.
This user name must be globally unique.

Using Client Identifiers to Identify Application Users Unknown to the

Database

ORACLE

Client identifiers preserve user identity in middle tier systems; they also can be used
independently of the global application context.

* About Client Identifiers
Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV
application context namespace for application users.

e How Client Identifiers Work in Middle Tier Systems
Many applications use session pooling to set up several sessions to be reused by
multiple application users.

e Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity
The CLIENT_IDENTIFIER predefined attribute of the built-in application context
namespace, USERENV, captures the application user name for use with a global
application context.

* Use of the CLIENT_IDENTIFIER Independent of Global Application Context
Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in
which the users are unknown to the database.

e Setting the CLIENT_IDENTIFIER Independent of Global Application Context
You can set the CLIENT_IDENTIFIER setting with Oracle Call Interface to be
independent of the global application context.

* Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier
The DBMS_SESSION PL/SQL package manages client identifiers on both the middle
tier and the database itself.

e Enabling the CLIENTID_OVERWRITE Event System-Wide
The ALTER SYSTEM statement can enable the CLIENTID OVERWRITE event system-
wide.

3-80

Chapter 3
Preserving User Identity in Multitiered Environments

* Enabling the CLIENTID_OVERWRITE Event for the Current Session
The ALTER SESSION statement can enable the CLIENTID_OVERWRITE event for the
current session only.

e Disabling the CLIENTID_OVERWRITE Event
The ALTER SYSTEM statement can disable the CLIENTID_OVERWRITE event.

About Client Identifiers

Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV
application context namespace for application users.

These application users are known to an application but unknown to the database.
The CLIENT_IDENTIFIER attribute can capture any value that the application uses for
identification or access control, and passes it to the database. The CLIENT _IDENTIFIER
attribute is supported in OCI, JDBC/OCI, or Thin driver.

How Client Identifiers Work in Middle Tier Systems

Many applications use session pooling to set up several sessions to be reused by
multiple application users.

Users authenticate themselves to a middle-tier application, which uses a single identity
to log in to the database and maintains all the user connections. In this model,
application users are users who are authenticated to the middle tier of an application,
but who are not known to the database. You can use a CLIENT _IDENTIFIER attribute,
which acts like an application user proxy for these types of applications.

In this model, the middle tier passes a client identifier to the database upon the
session establishment. The client identifier could actually be anything that represents a
client connecting to the middle tier, for example, a cookie or an IP address. The client
identifier, representing the application user, is available in user session information
and can also be accessed with an application context (by using the USERENV naming
context). In this way, applications can set up and reuse sessions, while still being able
to keep track of the application user in the session. Applications can reset the client
identifier and thus reuse the session for a different user, enabling high performance.

Use of the CLIENT IDENTIFIER Attribute to Preserve User Identity

ORACLE

The CLIENT_IDENTIFIER predefined attribute of the built-in application context
namespace, USERENV, captures the application user name for use with a global
application context.

You also can use the CLIENT_IDENTIFIER attribute independently.

When you use the CLIENT _IDENTIFIER attribute independently from a global
application context, you can set CLIENT _IDENTIFIER with the DBMS_SESSION interface.
The ability to pass a CLIENT _IDENTIFIER to the database is supported in Oracle Call
Interface (OCI), JDBC/OCI, or Thin driver.

When you use the CLIENT _IDENTIFIER attribute with global application context, it
provides flexibility and high performance for building applications. For example,
suppose a Web-based application that provides information to business partners has
three types of users: gold partner, silver partner, and bronze partner, representing
different levels of information available. Instead of each user having his or her own
session set up with individual application contexts, the application could set up global

3-81

Chapter 3
Preserving User Identity in Multitiered Environments

application contexts for gold partners, silver partners, and bronze partners. Then, use
the CLIENT_IDENTIFIER to point the session at the correct context to retrieve the
appropriate type of data. The application need only initialize the three global contexts
once and use the CLIENT_IDENTIFIER to access the correct application context to limit
data access. This provides performance benefits through session reuse and through
accessing global application contexts set up once, instead of having to initialize
application contexts for each session individually.

Related Topics

* Global Application Contexts
You can use a global application context to access application values across
database sessions, including an Oracle Real Application Clusters environment.

e Tutorial: Creating a Global Application Context That Uses a Client Session ID
This tutorial demonstrates how you can create a global application context that
uses a client session ID.

Use of the CLIENT IDENTIFIER Independent of Global Application Context

Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in
which the users are unknown to the database.

In these situations, the application typically connects as a single database user and all
actions are taken as that user.

Because all user sessions are created as the same user, this security model makes it
difficult to achieve data separation for each user. These applications can use the
CLIENT _IDENTIFIER attribute to preserve the real application user identity through to
the database.

With this approach, sessions can be reused by multiple users by changing the value of
the CLIENT _IDENTIFIER attribute, which captures the name of the real application user.
This avoids the overhead of setting up a separate session and separate attributes for
each user, and enables reuse of sessions by the application. When the
CLIENT_IDENTIFIER attribute value changes, the change is added to the next OCI,
JDBC/OCI, or Thin driver call for additional performance benefits.

For example, the user Daniel connects to a Web Expense application. Daniel is not a
database user; he is a typical Web Expense application user. The application
accesses the built-in application context namespace and sets DANIEL as the
CLIENT_IDENTIFIER attribute value. Daniel completes his Web Expense form and exits
the application. Then, Ajit connects to the Web Expense application. Instead of setting
up a new session for Ajit, the application reuses the session that currently exists for
Daniel, by changing the CLIENT_IDENTIFIER to AJIT. This avoids the overhead of
setting up a new connection to the database and the overhead of setting up a global
application context. The CLIENT _IDENTIFIER attribute can be set to any value on which
the application bases access control. It does not have to be the application user name.

Setting the CLIENT _IDENTIFIER Independent of Global Application Context

You can set the CLIENT _IDENTIFIER setting with Oracle Call Interface to be
independent of the global application context.

* To setthe CLIENT _IDENTIFIER attribute with OCI, use the
OCI_ATTR_CLIENT_IDENTIFIER attribute in the call to OCIAttrSet(). Then, on the

ORACLE 3-82

Chapter 3
Preserving User Identity in Multitiered Environments

next request to the server, the information is propagated and stored in the server
sessions.

For example:

OCIAttrSet (session,

0Cl_HTYPE_SESSION,
(dvoid *) "appuserl”,
(ub4)strlen("appuserl™),
OCI_ATTR_CLIENT_IDENTIFIER,
*error_handle);

For applications that use JDBC, be aware that JDBC does not set the client identifier.
To set the client identifier in a connection pooling environment, use Dynamic
Monitoring Service (DMS) metrics. If DMS is not available, then use the
connection.setClientInfo method. For example:

connection.setClientInfo(""E2E_CONTEXT.CLIENT IDENTIFIER", "appuser™);

¢ See Also:

e Oracle Call Interface Programmer's Guide about how the
OCI_ATTR_CLIENT_IDENTIFIER user session handle attribute is used in
middle-tier applications

e Oracle Database JDBC Developer’s Guide for more information about
configuring client connections using JDBC and DMS metrics

e Oracle Database JDBC Developer’s Guide for more information about
the setClientInfo method

Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client

|dentifier

ORACLE

The DBMS_SESSION PL/SQL package manages client identifiers on both the middle tier
and the database itself.

To use the DBMS_SESSION package to set and clear the CLIENT _IDENTIFIER value on
the middle tier, you must use the SET_IDENTIFIER and CLEAR_IDENTIFIER procedures.

The middle tier uses SET_IDENTIFIER to associate the database session with a
particular user or group. Then, the CLIENT_IDENTIFIER is an attribute of the session
and can be viewed in session information.

If you plan to use the DBMS_SESSION.SET_IDENTIFIER procedure, then be aware of the
following:

e The maximum number of bytes for the client_id parameter of
DBMS_SESSION.SET_IDENTIFIER is 64 bytes. If it exceeds 64, then the additional
bytes are truncated.

e The DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure can overwrite the value
of the client identifier. Typically, these values should be the same, so if
SET_CLIENT_INFO is set, then its value can be automatically propagated to the

3-83

Chapter 3
Preserving User Identity in Multitiered Environments

value set by SET_IDENTIFIER if the CLIENTID_OVERWRITE event is set to ON. You
can check the status of the CLIENTID_OVERWRITE event by running the SHOW
PARAMETER command for the EVENT parameter.

For example, assuming that CLIENTID_OVERWRITE is enabled:
SHOW PARAMETER EVENT

event string clientid_overwrite

Enabling the CLIENTID_OVERWRITE Event System-Wide

The ALTER SYSTEM statement can enable the CLIENTID OVERWRITE event system-wide.

1.

Enter the following ALTER SYSTEM statement:
ALTER SYSTEM SET EVENTS “CLIENTID_OVERWRITE";

Or, enter the following line in your init.ora file:
event="clientid_overwrite"

Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

¢ See Also:

e Global Application Contexts for information about using client identifiers
in a global application context

e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SESSION package

Enabling the CLIENTID_OVERWRITE Event for the Current Session

The ALTER SESSION statement can enable the CLIENTID_OVERWRITE event for the
current session only.

ORACLE

1.

Use the ALTER SESSION statement to set the CLIENTID_OVERWRITE value for the
session only.

For example:
ALTER SESSION SET EVENTS “CLIENTID_OVERWRITE OFF*;

If you set the client identifier by using the
DBMS_APPLICATION_INFO.SET CLIENT_INFO procedure, then run
DBMS_SESSION.SET_IDENTIFIER so that the client identifier settings are the same.

For example:

DBMS_SESSION.SET_IDENTIFIER(session_id_p);

3-84

Chapter 3
User Authentication Data Dictionary Views

Disabling the CLIENTID_OVERWRITE Event

The ALTER SYSTEM statement can disable the CLIENTID_OVERWRITE event.

1. Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS "CLIENTID_OVERWRITE OFF";

2. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

User Authentication Data Dictionary Views

Oracle Database provides data dictionary views that list information about user
authentication, such as roles that users have or profiles they use.

Table 3-4 lists the data dictionary views. For detailed information about these views,
see Oracle Database Reference.

Table 3-4 Data Dictionary Views That Describe User Authentication

View

Description

DBA_PROFILES

DBA_ROLES

DBA_USERS

DBA_USERS_WITH_DEFPWD
PROXY_USERS

V$DBLINK

V$PWFILE

V$SESSION

Displays information about profiles, including their settings and
limits

Displays the kind of authentication used for a database role to
log in to the database, such as NONE or GLOBAL (query the
AUTHENTICATION_TYPE column)

Among other user information, displays the following:

e The kind of authentication the user used to log in to the
database, such as PASSWORD or EXTERNAL
(AUTHENTICATION_TYPE column)

* The list of versions of password versions (also known as
hashes) that exist for the user account
(PASSWORD_VERSIONS column)

Displays whether the user account password is a default
password

Displays users who are currently authorized to connect through
a middle tier

Displays user accounts for existing database links (DB_LINK,
OWNER_ID columns); applies to the current pluggable database
(PDB)

Lists the names and granted administrative privileges of the
administrative users who are included in the password file

Querying the USERNAME column displays concurrently logged in
users to the current PDB

ORACLE

3-85

Configuring Privilege and Role
Authorization

ORACLE

Privilege and role authorization controls the permissions that users have to perform
day-to-day tasks.

About Privileges and Roles
Authorization permits only certain users to access, process, or alter data; it also
creates limitations on user access or actions.

Who Should Be Granted Privileges?
You grant privileges to users so they can accomplish tasks required for their jobs.

How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise
their privileges only within the current container.

Managing Administrative Privileges
Administrative privileges can be used for both general and specific database
operations.

Managing System Privileges
To perform actions on schema objects, you must be granted the appropriate
system privileges.

Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire
CDB or application container, or granted locally to a specific PDB.

Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

Managing User Roles
A user role is a named collection of privileges that you can create and assign to
other users.

Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

Managing Object Privileges
Object privileges enable you to perform actions on schema objects, such as tables
or indexes.

Table Privileges
Object privileges for tables enable table security at the DML or DDL level of
operation.

View Privileges
You can apply DML object privileges to views, similar to tables.

Procedure Privileges
The EXECUTE privilege enables users to run procedures and functions, either
standalone or in packages.

4-1

Chapter 4
About Privileges and Roles

e Type Privileges
You can control system and object privileges for types, methods, and objects.

* Grants of User Privileges and Roles
The GRANT statement provides privileges for a user to perform specific actions,
such as executing a procedure.

* Revokes of Privileges and Roles from a User
When you revoke system or object privileges, be aware of the cascading effects of
revoking a privilege.

e Grants and Revokes of Privileges to and from the PUBLIC Role
You can grant and revoke privileges and roles from the role PUBLIC.

e Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

* How Grants and Revokes Work with SET ROLE and Default Role Settings
Privilege grants and the SET ROLE statement affect when and how grants and
revokes take place.

* User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege
and role grants.

About Privileges and Roles

ORACLE

Authorization permits only certain users to access, process, or alter data; it also
creates limitations on user access or actions.

The limitations placed on (or removed from) users can apply to objects such as
schemas, entire tables, or table rows.

A user privilege is the right to run a particular type of SQL statement, or the right to
access an object that belongs to another user, run a PL/SQL package, and so on. The
types of privileges are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or
other roles. They are a way to facilitate the granting of multiple privileges or roles to
users.

Privileges can fall into the following general categories:

* System privileges. These privileges allow the grantee to perform standard
administrator tasks in the database. Restrict them only to trusted users. See the
following sections describe privileges:

— Managing Administrative Privileges
— Managing System Privileges
— Managing Commonly and Locally Granted Privileges

* Roles. A role groups several privileges and roles, so that they can be granted to
and revoked from users simultaneously. You must enable the role for a user
before the user can use it. See the following sections for more information:

— Managing Common Roles and Local Roles

— Managing User Roles

4-2

Chapter 4
Who Should Be Granted Privileges?

* Object privileges. Each type of object has privileges associated with it. Managing
Object Privileges describes how to manage privileges for different types of objects.

» Table privileges. These privileges enable security at the DML (data manipulation
language) or DDL (data definition language) level.Table Privileges describes how
to manage table privileges.

* View privileges. You can apply DML object privileges to views, similar to tables.
See View Privileges for more information.

* Procedure privileges. Procedures, including standalone procedures and
functions, can be granted the EXECUTE privilege. See Procedure Privileges for
more information.

e Type privileges. You can grant system privileges to named types (object types,
VARRAYs, and nested tables). See Type Privileges for more information.

¢ See Also:

Oracle Database Vault Administrator's Guide for information about how you
can create policies that analyze privilege use

Who Should Be Granted Privileges?

You grant privileges to users so they can accomplish tasks required for their jobs.

You should grant a privilege only to a user who requires that privilege to accomplish
the necessary work. Excessive granting of unnecessary privileges can compromise
security. For example, you never should grant SYSDBA or SYSOPER administrative
privilege to users who do not perform administrative tasks.

You can grant privileges to a user in two ways:

* You can grant privileges to users explicitly. For example, you can explicitly
grant to user psmith the privilege to insert records into the employees table.

* You can grant privileges to a role (a hamed group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges
to select, insert, update, and delete records from the employees table to the role
named clerk, which in turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should
usually grant privileges to roles and not to specific users.

ORACLE 4.3

Chapter 4
How the Oracle Multitenant Option Affects Privileges

" See Also:

e Guidelines for Securing User Accounts and Privileges for best practices
to follow when granting privileges

e Oracle Database Vault Administrator’s Guide if you are concerned about
excessive privilege grants

e Oracle Database SQL Language Reference for the complete list of
system privileges and their descriptions

How the Oracle Multitenant Option Affects Privileges

In a multitenant environment, all users, including common users, can exercise their
privileges only within the current container.

However, a user connected to the root can perform certain operations that affect other
pluggable databases (PDBs). These operations include ALTER PLUGGABLE DATABASE,
CREATE USER, CREATE ROLE, and ALTER USER. The common user must possess the
commonly granted privileges that enable these operations. A common user connected
to the root can see metadata pertaining to PDBs by way of the container data objects
(for example, multitenant container database (CDB) views and V$ views) in the root,
provided that the common user has been granted privileges required to access these
views and his CONTAINER_DATA attribute has been set to allow seeing data about
various PDBs. The common user cannot query tables or views in a PDB.

Common users cannot exercise their privileges across other PDBs. They must first
switch to the PDB that they want, and then exercise their privileges from there. To
switch to a different container, the common user must have the SET CONTAINER
privilege. The SET CONTAINER privilege must be granted either commonly or in the
container to which the user is attempting to switch. Alternatively, the common user can
start a new database session whose initial current container is the container this user
wants, relying on the CREATE SESSION privilege in that PDB.

Be aware that commonly granted privileges may interfere with the security configured
for individual PDBs. For example, suppose an application PDB database administrator
wants to prevent any user in the PDB from modifying a particular application common
object. A privilege (such as UPDATE) granted commonly to PUBLIC or to a common user
or common role on the object would circumvent the PDB database administrator’s
intent.

Related Topics

e Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER _DATA objects in the root or
for data in specific PDBs.

Managing Administrative Privileges

Administrative privileges can be used for both general and specific database
operations.

ORACLE 4-4

Chapter 4
Managing Administrative Privileges

e About Administrative Privileges
For better separation of duty, Oracle Database provides administrative privileges
that are tailored for commonly performed specific administrative tasks.

» Grants of Administrative Privileges to Users
As with all powerful privileges, only grant administrative privileges to trusted users.

* SYSDBA and SYSOPER Privileges for Standard Database Operations
The SYSDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

e SYSBACKUP Administrative Privilege for Backup and Recovery Operations
The SYSBACKUP administrative privilege is used to perform backup and recovery
operations from either Oracle Recovery Manager (RMAN) and or through
SQL*Plus.

* SYSDG Administrative Privilege for Oracle Data Guard Operations
You can log in as user SYSDG with the SYSDG administrative privilege to perform
Data Guard operations.

* SYSKM Administrative Privilege for Transparent Data Encryption
The SYSKM administrative privilege enables the SYSKM user to manage Transparent
Data Encryption (TDE) wallet operations.

* SYSRAC Administrative Privilege for Oracle Real Application Clusters
The SYSRAC administrative privilege is used by the Oracle Real Application
Clusters (Oracle RAC) Clusterware agent.

About Administrative Privileges

For better separation of duty, Oracle Database provides administrative privileges that
are tailored for commonly performed specific administrative tasks.

These tasks include operations for backup and recovery, Oracle Data Guard, and
encryption key management for Transparent Data Encryption (TDE).

You can find the administrative privileges that a user has by querying the
V$PWFILE_USERS dynamic view, which lists users in the password file.

In previous releases, you needed to have the SYSDBA administrative privilege to
perform these tasks. To support backward compatibility, you still can use the SYSDBA
privilege for these tasks, but Oracle recommends that you use the administrative
privileges described in this section.

The use of administrative privileges is mandatorily audited.

Related Topics

e Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user
accounts, such as SYS.

Grants of Administrative Privileges to Users

ORACLE

As with all powerful privileges, only grant administrative privileges to trusted users.

However, be aware that there is a restriction for users whose names have non-ASCI|
characters (for example, the umlaut in the name HUBER). You can grant administrative
privileges to these users, but if the Oracle database instance is down, the

4-5

Chapter 4
Managing Administrative Privileges

authentication using the granted privilege is not supported if the user name has non-
ASCII characters. If the database instance is up, then the authentication is supported.

SYSDBA and SYSOPER Privileges for Standard Database Operations

The SYSDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

These database operations can include tasks such as database startups and
shutdowns, creating the server parameter file (SPFILE), or altering the database
archive log. In a multitenant environment, you can grant the SYSDBA and SYSOPER
administrative privileges to application common users (but not to CDB common users).

You can find if a user has been granted an administrative privilege on a local (PDB)
level, for a CDB root, or for an application root by querying the SCOPE column of the
V$PWFILE_USERS dynamic view.

You cannot grant the SYSDBA or SYSOPER administrative privilege to users who have
been created with no authentication.

" See Also:

Oracle Database Administrator’s Guide for detailed information about the
SYSDBA and SYSOPER administrative privileges

SYSBACKUP Administrative Privilege for Backup and Recovery

Operations

ORACLE

The SYSBACKUP administrative privilege is used to perform backup and recovery
operations from either Oracle Recovery Manager (RMAN) and or through SQL*Plus.

To connect to the database as SYSBACKUP using a password, you must create a
password file for it. See Oracle Database Administrator's Guide for more information
about creating password files.

You cannot grant the SYSBACKUP administrative privilege to users who have been
created with no authentication.

This privilege enables you to perform the following operations:
e STARTUP

e SHUTDOWN

° ALTER DATABASE

e ALTER SYSTEM

e ALTER SESSION

* ALTER TABLESPACE

e CREATE CONTROLFILE

* CREATE ANY DIRECTORY

4-6

ORACLE

Chapter 4
Managing Administrative Privileges

CREATE ANY TABLE

CREATE ANY CLUSTER

CREATE PFILE

CREATE RESTORE POINT (including GUARANTEED restore points)
CREATE SESSION

CREATE SPFILE

DROP DATABASE

DROP TABLESPACE

DROP RESTORE POINT (including GUARANTEED restore points)
FLASHBACK DATABASE

RESUMABLE

UNLIMITED TABLESPACE

SELECT ANY DICTIONARY

SELECT ANY TRANSACTION

SELECT

— X$ tables (that is, the fixed tables)
— V$ and GV$ views (that is, the dynamic performance views)
— APPQOSSYS.WLM_CLASSIFIER_PLAN
— SYSTEM.LOGSTDBY$PARAMETERS
DELETE/INSERT

— SYS.APPLY$_SOURCE_SCHEMA

— SYSTEM.LOGSTDBY$PARAMETERS
EXECUTE

— SYS.DBMS_BACKUP_RESTORE

— SYS.DBMS_RCVMAN

— SYS.DBMS_DATAPUMP

— SYS.DBMS_IR

— SYS.DBMS_PIPE

— SYS.SYS_ERROR

— SYS.DBMS_TTS

— SYS_DBMS_TDB

— SYS.DBMS_PLUGTS

— SYS.DBMS_PLUGTSP
SELECT_CATALOG_ROLE

In addition, the SYSBACKUP privilege enables you to connect to the database even if the
database is not open.

4-7

Chapter 4
Managing Administrative Privileges

¢ See Also:

Oracle Database Backup and Recovery User’s Guide for more information
about backup and recovery operations

SYSDG Administrative Privilege for Oracle Data Guard Operations

ORACLE

You can log in as user SYSDG with the SYSDG administrative privilege to perform Data
Guard operations.

You can use this privilege with either Data Guard Broker or the DGMGRL command-line
interface. In order to connect to the database as SYSDG using a password, you must
create a password file for it.

You cannot grant the SYSYSDG administrative privilege to users who have been created
with no authentication.

The SYSDG privilege enables the following operations:

e STARTUP
e SHUTDOWN
e ALTER DATABASE
e ALTER SESSION
* ALTER SYSTEM
e CREATE RESTORE POINT (including GUARANTEED restore points)
e CREATE SESSION
e DROP RESTORE POINT (including GUARANTEED restore points)
° FLASHBACK DATABASE
e SELECT ANY DICTIONARY
e SELECT
— X$ tables (that is, the fixed tables)
— V$ and GV$ views (that is, the dynamic performance views)
— APPQOSSYS.WLM_CLASSIFIER_PLAN

* DELETE
— APPQOSSYS.WLM_CLASSIFIER_PLAN
* EXECUTE

— SYS.DBMS_DRS

In addition, the SYSDG privilege enables you to connect to the database even if it is not
open.

4-8

Chapter 4
Managing Administrative Privileges

" See Also:

Oracle Database Administrator’s Guide for more information about
creating password files

Oracle Data Guard Concepts and Administration for more information
about Oracle Data Guard

SYSKM Administrative Privilege for Transparent Data Encryption

The SYSKM administrative privilege enables the SYSKM user to manage Transparent
Data Encryption (TDE) wallet operations.

In order to connect to the database as SYSKM using a password, you must create a
password file for it.

You cannot grant the SYSKM administrative privilege to users who have been created
with no authentication.

The SYSKM administrative privilege enables the following operations:

* ADMINISTER KEY MANAGEMENT
* CREATE SESSION

e SELECT (only when database is open)

SYS_V$ENCRYPTED_TABLESPACES
SYS_V$ENCRYPTION_WALLET
SYS_VSWALLET
SYS_VSENCRYPTION_KEYS
SYS.VSCLIENT_SECRETS
SYS.DBA_ENCRYPTION_KEY_USAGE

In addition, the SYSKM privilege enables you to connect to the database even if it is not

open.

¢ See Also:

Oracle Database Administrator’s Guide for more information about
creating password files

Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

SYSRAC Administrative Privilege for Oracle Real Application Clusters

The SYSRAC administrative privilege is used by the Oracle Real Application Clusters
(Oracle RAC) Clusterware agent.

ORACLE

4-9

ORACLE

Chapter 4
Managing Administrative Privileges

The SYSRAC administrative privilege provides only the minimal privileges necessary for
performing day-to-day Oracle RAC operations. For example, this privilege is used for
Oracle RAC utilities such as SRVCTL.

You cannot grant the SYSRAC administrative privilege to users who have been created
with no authentication.

The SYSRAC administrative privilege enables the following operations:

STARTUP
SHUTDOWN

ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER

DATABASE MOUNT

DATABASE OPEN

DATABASE OPEN READ ONLY
DATABASE CLOSE NORMAL
DATABASE DISMOUNT
SESSION SET EVENTS
SESSION SET _NOTIFY_CRS
SESSION SET CONTAINER
SYSTEM REGISTER

SYSTEM SET | ocal _listener |remote_|istener|listener_networks

In addition to these privileges, the SYSRAC user will have access to the following views:

packages:

V$PARAMETER
V$DATABASE

V$PDBS

CDB_SERVICES$

DBA_SERVICES

V$ACTIVE_SERVICES

V$SERVICES

The SYSRAC user is also granted the EXECUTE privilege for the following PL/SQL

DBMS_DRS

DBMS_SERVICE

DBMS_SERVICE_PRVT

DBMS_SESSION

DBMS_HA_ALERTS_PRVT

Dequeue messaging SYS.SYS$SERVICE_METRICS

Related Topics

Oracle Real Application Clusters Administration and Deployment Guide

4-10

Chapter 4
Managing System Privileges

Managing System Privileges

To perform actions on schema objects, you must be granted the appropriate system
privileges.

e About System Privileges
A system privilege is the right to perform an action or to perform actions on
schema objects.

* Why Is It Important to Restrict System Privileges?
System privileges are very powerful, so only grant them to trusted users. You
should also secure the data dictionary and SYS schema objects.

* Grants and Revokes of System Privileges
You can grant or revoke system privileges to users and roles.

* Who Can Grant or Revoke System Privileges?
Only two types of users can grant system privileges to other users or revoke those
privileges from them.

e About ANY Privileges and the PUBLIC Role
System privileges that use the ANY keyword enable you to set privileges for an
entire category of objects in the database.

About System Privileges

A system privilege is the right to perform an action or to perform actions on schema
objects.

For example, the privileges to create tablespaces and to delete the rows of any table
in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to
perform a particular database operation or class of database operations. Remember
that system privileges are very powerful. Only grant them when necessary to roles and
trusted users of the database. To find the system privileges that have been granted to
a user, you can query the DBA_SYS_PRIVS data dictionary view.

¢ See Also:

e Oracle Database SQL Language Reference for a complete list of system
privileges and their descriptions

e« How Commonly Granted System Privileges Work

Why Is It Important to Restrict System Privileges?

System privileges are very powerful, so only grant them to trusted users. You should
also secure the data dictionary and SYS schema objects.

ORACLE 4-11

Chapter 4
Managing System Privileges

* About the Importance of Restricting System Privileges
System privileges are very powerful, so by default the database is configured to
prevent typical (non-administrative) users from exercising the ANY system
privileges.

e Restricting System Privileges by Securing the Data Dictionary
The 07_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on
system privileges when you upgrade from Oracle Database release 7 to Oracle8i
and later releases.

* User Access to Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative
privileges (SYSDBA) can access objects in the SYS schema.

About the Importance of Restricting System Privileges

System privileges are very powerful, so by default the database is configured to
prevent typical (non-administrative) users from exercising the ANY system privileges.

For example, users are prevented from exercising ANY system privileges such as
UPDATE ANY TABLE on the data dictionary.

Related Topics

e Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

Restricting System Privileges by Securing the Data Dictionary

ORACLE

The 07_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on
system privileges when you upgrade from Oracle Database release 7 to Oracle8i and
later releases.

If the parameter is set to TRUE, then access to objects in the SYS schema is allowed
(Oracle Database release 7 behavior). Because the ANY privilege applies to the data
dictionary, a malicious user with ANY privilege could access or alter data dictionary
tables.

* To secure the data dictionary, set the 07_DICTIONARY_ACCESSIBILITY initialization
parameter to FALSE, which is the default value. This feature is called the dictionary
protection mechanism.

To set the 07_DICTIONARY_ACCESSIBILTY initialization parameter, you can modify it
in the initSl D.ora file. Alternatively, you can log on to SQL*Plus as user SYS with
the SYSDBA administrative privilege and then enter an ALTER SYSTEM statement,
assuming you have started the database using a server parameter file (SPFILE).

Example 4-1 shows how to set the 07_DICTIONARY_ACCESSIBILTY initialization
parameter to FALSE by issuing an ALTER SYSTEM statement in SQL*Plus.

Example 4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE
ALTER SYSTEM SET O7_DICTIONARY_ACCESSIBILITY=FALSE SCOPE=SPFILE;

When you set 07_DICTIONARY_ACCESSIBILITY to FALSE, system privileges that enable
access to objects in any schema (for example, users who have ANY privileges, such as
CREATE ANY PROCEDURE) do not allow access to objects in the SYS schema. This means
that access to the objects in the SYS schema (data dictionary objects) is restricted to
users who connect using the SYSDBA administrative privilege. Remember that the SYS

4-12

Chapter 4
Managing System Privileges

user must log in with either the SYSDBA or SYSOPER privilege; otherwise, an ORA-28009:
connection as SYS should be as SYSDBA or SYSOPER error is raised. If you set
07_DICTIONARY_ACCESSIBILITY to TRUE, then you would be able to log in to the
database as user SYS without having to specify the SYSDBA or SYSOPER privilege.

System privileges that provide access to objects in other schemas do not give other
users access to objects in the SYS schema. For example, the SELECT ANY TABLE
privilege allows users to access views and tables in other schemas, but does not
enable them to select dictionary objects (base tables of dynamic performance views,
regular views, packages, and synonyms). You can, however, grant these users explicit
object privileges to access objects in the SYS schema.

¢ See Also:

Oracle Database Reference for more information about the
07_DICTIONARY_ACCESSIBILITY initialization parameter

User Access to Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative privileges
(SYSDBA) can access objects in the SYS schema.

Table 4-1 lists roles that you can grant to users who need access to objects in the SYS

schema.

Table 4-1 Roles to Allow Access to SYS Schema Objects
|

Role Description

SELECT_CATALOG_ROLE Grant this role to allow users SELECT privileges on data
dictionary views.

EXECUTE_CATALOG_ROLE Grant this role to allow users EXECUTE privileges for packages

and procedures in the data dictionary.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users who
require access to tables created in the SYS schema. This system privilege allows query
access to any object in the SYS schema, including tables created in that schema. It
must be granted individually to each user requiring the privilege. It is not included in
GRANT ALL PRIVILEGES, but it can be granted through a role.

Note:

You should grant these roles and the SELECT ANY DICTIONARY system
privilege with extreme care, because the integrity of your system can be
compromised by their misuse.

Grants and Revokes of System Privileges

You can grant or revoke system privileges to users and roles.

ORACLE 4-13

Chapter 4
Managing System Privileges

If you grant system privileges to roles, then you can use the roles to exercise system
privileges. For example, roles permit privileges to be made selectively available.
Ensure that you follow the separation of duty guidelines described in Guidelines for
Securing Roles.

Use either of the following methods to grant or revoke system privileges to or from
users and roles:

e GRANT and REVOKE SQL statements

e Oracle Enterprise Manager Cloud Control

Related Topics

* User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege
and role grants.

Who Can Grant or Revoke System Privileges?

Only two types of users can grant system privileges to other users or revoke those
privileges from them.

These users are as follows:
* Users who were granted a specific system privilege with the ADMIN OPTION
e Users with the system privilege GRANT ANY PRIVILEGE

For this reason, only grant these privileges to trusted users.

About ANY Privileges and the PUBLIC Role

ORACLE

System privileges that use the ANY keyword enable you to set privileges for an entire
category of objects in the database.

For example, the CREATE ANY PROCEDURE system privilege permits a user to create a
procedure anywhere in the database. The behavior of an object created by users with
the ANY privilege is not restricted to the schema in which it was created. For example, if
user JSMITH has the CREATE ANY PROCEDURE privilege and creates a procedure in the
schema JONES, then the procedure will run as JONES. However, JONES may not be
aware that the procedure JSMITH created is running as him (JONES). If JONES has DBA
privileges, letting JSMITH run a procedure as JONES could pose a security violation.

The PUBLIC role is a special role that every database user account automatically has
when the account is created. By default, it has no privileges granted to it, but it does
have numerous grants, mostly to Java objects. You cannot drop the PUBLIC role, and a
manual grant or revoke of this role has no meaning, because the user account will
always assume this role. Because all database user accounts assume the PUBLIC role,
it does not appear in the DBA_ROLES and SESSION_ROLES data dictionary views.

You can grant privileges to the PUBLIC role, but remember that this makes the
privileges available to every user in the Oracle database. For this reason, be careful
about granting privileges to the PUBLIC role, particularly powerful privileges such as the
ANY privileges and system privileges. For example, if JSMITH has the CREATE PUBLIC
SYNONYM system privilege, he could redefine an interface that he knows everyone else
uses, and then point to it with the PUBLIC SYNONYM that he created. Instead of

4-14

Chapter 4
Managing Commonly and Locally Granted Privileges

accessing the correct interface, users would access the interface of JSMITH, which
could possibly perform illegal activities such as stealing the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to
the wrong person. Be careful about granting privileges using ANY or PUBLIC. As with all
privileges, you should follow the principles of "least privilege" when granting these
privileges to users.

To protect the data dictionary (the contents of the SYS schema) against users who
have one or more of the powerful ANY system privileges, set the
07_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE. You can set this
parameter by using an ALTER SYSTEM statement or by modifying the initSl D.ora file.

Related Topics
Example 4-1

e Guidelines for Securing a Database Installation and Configuration
Oracle provides guidelines to secure the database installation and configuration.

Managing Commonly and Locally Granted Privileges

In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

e About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant
privileges to one another.

* How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were
granted.

* How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated
links on this common object.

* Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

» Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

e Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER_DATA objects in the root or
for data in specific PDBs.

About Commonly and Locally Granted Privileges

ORACLE

In a multitenant environment, both common users and local users can grant privileges
to one another.

Privileges by themselves are neither common nor local. How the privileges are applied
depends on whether the privilege is granted commonly or granted locally.
For commonly granted privileges:

* A privilege that is granted commonly can be used in every existing and future
container.

4-15

Chapter 4
Managing Commonly and Locally Granted Privileges

Only common users can grant privileges commonly, and only if the grantee is
common.

A common user can grant privileges to another common user or to a common role.

The grantor must be connected to the root and must specify CONTAINER=ALL in the
GRANT statement.

Both system and object privileges can be commonly granted. (Object privileges
become actual only with regard to the specified object.)

When a common user connects to or switches to a given container, this user's
ability to perform various activities (such as creating a table) is controlled by
privileges granted commonly as well as privileges granted locally in the given
container.

Do not grant privileges to PUBLIC commonly.

For locally granted privileges:

A privilege granted locally can be used only in the container in which it was
granted. When the privilege is granted in the root, it applies only to the root.

Both common users and local users can grant privileges locally.

A common user and a local user can grant privileges to other common or local
roles.

The grantor must be connected to the container and must specify
CONTAINER=CURRENT in the GRANT statement.

Any user can grant a privilege locally to any other user or role (both common and
local) or to the PUBLIC role.

Related Topics

Oracle Multitenant Administrator's Guide

How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

How Commonly Granted System Privileges Work

Users can exercise system privileges only within the PDB in which they were granted.

ORACLE

For example, if a system privilege is locally granted to a common user A in a PDB B,
user A can exercise that privilege only while connected to PDB B.

System privileges can apply in the root and in all existing and future PDBs if the
following requirements are met:

The system privilege grantor is a common user and the grantee is a common user,
a common role, or the PUBLIC role. Do not commonly grant system privileges to
the PUBLIC role, because this in effect makes the system privilege available to all
users.

The system privilege grantor possesses the ADMIN OPTION for the commonly
granted privilege

The GRANT statement must contain the CONTAINER=ALL clause.

4-16

Chapter 4
Managing Commonly and Locally Granted Privileges

The following example shows how to commonly grant a privilege to the common user
c#thr_admin.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE ANY TABLE TO c##hr_admin CONTAINER=ALL;

How Commonly Granted Object Privileges Work

Object privileges on common objects applies to the object as well as all associated
links on this common object.

These links include all metadata links, data links (previously called object links), or
extended data links that are associated with it in the root and in all PDBs belonging to
the container (including future PDBSs) if certain requirements are met.

These requirements are as follows:

* The object privilege grantor is a common user and the grantee is a common user,
a common role, or the PUBLIC role.

e The object privilege grantor possesses the commonly granted GRANT OPTION for
the privilege

» The GRANT statement contains the CONTAINER=ALL clause.

The following example shows how to grant an object privilege to the common user
c##hr_admin so that he can select from the DBA_PDBS view in the CDB root or in any of
the associated PDBs that he can access.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT SELECT ON DBA_OBJECTS TO c##hr_admin
CONTAINER=ALL;

Related Topics
e Oracle Multitenant Administrator's Guide

* How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

Granting or Revoking Privileges to Access a PDB

ORACLE

You can grant and revoke privileges for PDB access in a multitenant environment.

To grant a privilege in a multitenant environment:

e Include the CONTAINER clause in the GRANT or REVOKE statement.

Setting CONTAINER to ALL applies the privilege to all existing and future containers;
setting it to CURRENT applies the privilege to the local container only. Omitting the
CONTAINER clause applies the privilege to the local container. If you issue the GRANT

4-17

Chapter 4
Managing Commonly and Locally Granted Privileges

statement from the root and omit the CONTAINER clause, then the privilege is applied
locally.

Related Topics

* Oracle Database SQL Language Reference

Example: Granting a Privilege in a Multitenant Environment

You can use the GRANT statement to grant privileges in a multitenant environment.

Example 4-2 shows how to commonly grant the CREATE TABLE privilege to common
user c#hr_admin so that this user can use this privilege in all existing and future
containers.

Example 4-2 Granting a Privilege in a Multitenant Environment

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE TABLE TO c##thr_admin CONTAINER=ALL;

Enabling Common Users to View CONTAINER_DATA Object

Information

Common users can view information about CONTAINER_DATA objects in the root or for
data in specific PDBs.

* Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the X$ table and the V$, GV$ and CDB_* views
when common users perform queries.

e Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by
adjusting the users’ CONTAINER _DATA attribute.

Viewing Data About the Root, CDB, and PDBs While Connected to the Root

ORACLE

You can restrict view information for the X$ table and the V$, GV$ and CDB_* views
when common users perform queries.

The X$ table and these views contain information about the application root and its
associated application PDBs or, if you are connected to the CDB root, the entire CDB.

Restricting this information is useful when you do not want to expose sensitive
information about other PDBs. To enable this functionality, Oracle Database provides
these tables and views as container data objects. You can find if a specific table or
view is a container data object by querying the TABLE_NAME, VIEW_NAME, and
CONTAINER_DATA columns of the USER_|DBA_|ALL_VIEWS|TABLES dictionary views.

To find information about the default (user-level) and object-specific
CONTAINER_DATA attributes:

1. In SQL*Plus or SQL Developer, log in to the root.

4-18

Chapter 4
Managing Commonly and Locally Granted Privileges

2. Query the CDB_CONTAINER_DATA data dictionary view.

For example:

COLUMN USERNAME FORMAT A15
COLUMN DEFAULT_ATTR FORMAT A7
COLUMN OWNER FORMAT A15

COLUMN OBJECT_NAME FORMAT A15
COLUMN ALL_CONTAINERS FORMAT A3
COLUMN CONTAINER_NAME FORMAT A10
COLUMN CON_ID FORMAT A6

SELECT USERNAME, DEFAULT_ATTR, OWNER, OBJECT_NAME,
ALL_CONTAINERS, CONTAINER_NAME, CON_ID

FROM CDB_CONTAINER_DATA

ORDER BY OBJECT_NAME;

USERNAVME DEFAULT OWNER OBJECT_NAME ALL CONTAINERS
CON_ID

CH#HR_ADMIN
CDB$ROOT
C##HR_ADMIN
SALESPDB
C##HR_ADMIN
HRPDB
CH#HR_ADMIN
CDB$ROOT
DBSNMP

Y 1
SYSTEM
Y 1

SYS V$SESSION N

SYS V$SESSION N

<P <P <pPkPr=ZPRk=
=

=<

Related Topics

* QOracle Database Reference

Enabling Common Users to Query Data in Specific PDBs

ORACLE

You can enable common users to access data pertaining to specific PDBs by adjusting
the users’ CONTAINER_DATA attribute.

To enable common users to access data about specific PDBs:
* Issue the ALTER USER statement in the root.
Example 4-3 Setting the CONTAINER_DATA Attribute

This example shows how to issue the ALTER USER statement to enable the common
user c##thr_admin to view information pertaining to the COB$ROOT, SALES_PDB, and
HRPDB containers in the V$SESSION view (assuming this user can query that view).

CONNECT SYSTEM
Enter password: password
Connected.

4-19

Chapter 4
Managing Common Roles and Local Roles

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
FOR V$SESSION CONTAINER=CURRENT;

In this specification:

e SET CONTAINER_DATA lists containers, data pertaining to which can be accessed by
the user.

e FOR VS$SESSION specifies the CONTAINER_DATA dynamic view, which common user
ct#tthr_admin will query.

* CONTAINER = CURRENT must be specified because when you are connected to the
root, CONTAINER=ALL is the default for the ALTER USER statement, but modification
of the CONTAINER_DATA attribute must be restricted to the root.

If you want to enable user c##hr_admin to view information that pertains to the
CDB$ROOT, SALES_PDB, HRPDB containers in all CONTAINER_DATA objects that this user
can access, then omit FOR V$SESSION. For example:

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
CONTAINER=CURRENT;

Related Topics

* Oracle Database SQL Language Reference

Managing Common Roles and Local Roles

ORACLE

A common role is a role that is created in the root; a local role is created in a PDB.

* About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used
throughout the entire system container or application container.

How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which
they are defined in a multitenant environment.

How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

* Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE,
and DROP ROLE privileges can create, alter, or drop common roles.

* Rules for Creating Common Roles
When you create a common role, you must follow special rules.

* Creating a Common Role
You can use the CREATE USER statement to create a common role.

e Rules for Creating Local Roles
To create a local role, you must follow special rules.

e Creating a Local Role
You can use the CREATE ROLE statement to create a role.

4-20

Chapter 4
Managing Common Roles and Local Roles

* Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or
the local user.

About Common Roles and Local Roles

In a multitenant environment, database roles can be specific to a PDB or used
throughout the entire system container or application container.

A common role is a role whose identity and (optional) password are created in the root
of a container and will be known in the root and in all existing and future PDBs
belonging to that container.

A local role exists in only one PDB and can only be used within this PDB. It does not
have any commonly granted privileges.

Note the following:

« Common users can both create and grant common roles to other common and
local users.

* You can grant a role (local or common) to a local user or role only locally.

» If you grant a common role locally, then the privileges of that common role apply
only in the container where the role is granted.

* Local users cannot create common roles, but they can grant them to common and
other local users.

e The CONTAINER = ALL clause is the default when you create a common role in the
CDB root or an application root.

Related Topics

» Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database
administration.

How Common Roles Work

ORACLE

Common roles are visible in the root and in every PDB of a container within which they
are defined in a multitenant environment.

A privilege can be granted commonly to a common role if:

* The grantor is a common user.

* The grantor possesses the commonly granted ADMIN OPTION for the privilege that
is being granted.

* The GRANT statement contains the CONTAINER=ALL clause.

If the common role contains locally granted privileges, then these privileges apply only
within the PDB in which they were granted to the common role. A local role cannot be
granted commonly.

For example, suppose the CDB common user c#thr_mgr has been commonly granted
the DBA role. This means that user c##hr_mgr can use the privileges associated with
the DBA role in the root and in every PDB in the multitenant environment. However, if
the CDB common user c##hr_mgr has only been locally granted the DBA role for the
hr_pdb PDB, then this user can only use the DBA role's privileges in the hr_pdb PDB.

4-21

Chapter 4
Managing Common Roles and Local Roles

How the PUBLIC Role Works in a Multitenant Environment

All privileges that Oracle grants to the PUBLIC role are granted locally.

This feature enables you to revoke privileges or roles that have been granted to the
PUBLIC role individually in each PDB as needed. If you must grant any privileges to the
PUBLIC role, then grant them locally. Never grant privileges to PUBLIC commonly.

Related Topics

e About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant
privileges to one another.

Privileges Required to Create, Modify, or Drop a Common Role

Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and
DROP ROLE privileges can create, alter, or drop common roles.

Common users can also create local roles, but these roles are available only in the
PDB in which they were created.

Rules for Creating Common Roles

When you create a common role, you must follow special rules.
The rules are as follows:

- Ensure that you are in the correct root. For the creation of common roles, you
must be in the correct root, either the CDB root or the application root. You cannot
create common roles from a PDB. To check if you are in the correct root, run one
of the following:

— To confirm that you are in the CDB root, you can issue the show_con_name
command. The output should be CDB$ROOT.

— To confirm that you are in an application root, verify that the following query
returns YES:

SELECT APPLICATION_ROOT FROM V$PDBS WHERE
CON_ID=SYS_CONTEXT("USERENV", "CON_ID");

— Ensure that the name that you give the common role starts with the
value of the COMMON_USER_PREFIX parameter (which defaults to C##).
Note that this requirement does not apply to the names of existing Oracle-
supplied roles, such as DBA or RESOURCE.

* Optionally, set the CONTAINER clause to ALL. As long as you are in the root, if
you omit the CONTAINER = ALL clause, then by default the role is created as a
common role for the CDB root or the application root.

Creating a Common Role

You can use the CREATE USER statement to create a common role.

ORACLE 4-22

1

Chapter 4
Managing Common Roles and Local Roles

Connect to the root of the CDB or the application container in which you want to
create the common role.

For example:

CONNECT SYSTEM
Enter password: password
Connected.

Run the CREATE ROLE statement with the CONTAINER clause set to ALL.

For example:

CREATE ROLE c#t#tsec_admin IDENTIFIED BY password CONTAINER=ALL;

Related Topics

Creating a Role
You can create a role that is authenticated with or without a password. You also
can create external or global roles.

Creating a Common Role in Enterprise Manager
Common roles can be used to assign common privileges to common users.

Rules for Creating Local Roles

To create a local role, you must follow special rules.

These rules are as follows:

You must be connected to the PDB in which you want to create the role, and have
the CREATE ROLE privilege.

The name that you give the local role must not start with the value of the
COMMON_USER_PREFIX parameter (which defaults to C##).

You can include CONTAINER=CURRENT in the CREATE ROLE statement to specify the
role as a local role. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

You cannot have common roles and local roles with the same name. However,
you can use the same name for local roles in different PDBs. To find the names of
existing roles, query the CDB_ROLES and DBA ROLES data dictionary views.

Creating a Local Role

You can use the CREATE ROLE statement to create a role.

ORACLE

1.

2.

Connect to the PDB in which you want to create the local role.
For example:

CONNECT SYSTEM@hrpdb

Enter password: password

Connected.

Run the CREATE ROLE statement with the CONTAINER clause set to CURRENT.

4-23

Chapter 4
Managing User Roles

For example:

CREATE ROLE sec_admin CONTAINER=CURRENT;

Role Grants and Revokes for Common Users and Local Users

Role grants and revokes apply only to the scope of access of the common user or the
local user.

Common users can grant and revoke common roles to and from other common users.
A local user can grant a common role to any user in a PDB, including common users,
but this grant applies only within the PDB.

The following example shows how to grant the common user c##sec_admin the
AUDIT_ADMIN common role for use in all containers.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO ci#ttsec_admin CONTAINER=ALL;

Similarly, the next example shows how local user aud_admin can grant the common
user c##tsec_admin the AUDIT_ADMIN common role for use within the hrpdb PDB.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO c##sec_admin CONTAINER=CURRENT;

This example shows how a local user aud_admin can revoke a role from another user
in a PDB. If you omit the CONTAINER clause, then CURRENT is implied.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

REVOKE sec_admin FROM psmith CONTAINER=CURRENT;

Related Topics

» Revoking Common Privilege Grants in Enterprise Manager
You can revoke common privilege grants from the root.

Managing User Roles

A user role is a named collection of privileges that you can create and assign to other
users.

* About User Roles
User roles are useful in a variety of situations, such as restricting DDL usage.

ORACLE 4-24

Chapter 4
Managing User Roles

Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database
administration.

Creating a Role
You can create a role that is authenticated with or without a password. You also
can create external or global roles.

Specifying the Type of Role Authorization
You can configure a role to be authorized through different sources, such the
database or an external source.

Granting and Revoking Roles
You can grant or revoke privileges to and from roles, and then grant these roles to
users or to other roles.

Dropping Roles
Dropping a role affects the security domains of users or roles who had been
granted the role.

Restricting SQL*Plus Users from Using Database Roles
You should restrict SQL*Plus users from using database roles, which helps to
safeguard the database from intruder attacks.

Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

About User Roles

ORACLE

User roles are useful in a variety of situations, such as restricting DDL usage.

What Are User Roles?
A user role is a named group of related privileges that you can grant as a group to
users or other roles.

The Functionality of Roles
Roles are useful for quickly and easily granting permissions to users.

Properties of Roles and Why They Are Advantageous
Roles have special properties that make their management very easy, such
reduced privilege administration.

Typical Uses of Roles
In general, you create a role to manage privileges.

Common Uses of Application Roles
You can use application roles to control privileges to use applications.

Common Uses of User Roles
You can create a user role for a group of database users with common privilege
grant requirements.

How Roles Affect the Scope of a User's Privileges
Each role and user has its own unigue security domain.

How Roles Work in PL/SQL Blocks
Role behavior in a PL/SQL block is determined by the type of block and by
definer's rights or invoker's rights.

4-25

Chapter 4
Managing User Roles

* How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

* How Operating Systems Can Aid Roles
In some environments, you can administer database security using the operating
system.

* How Roles Work in a Distributed Environment
In a distributed database environment, all necessary roles must be set as the
default role for a distributed (remote) session.

What Are User Roles?

A user role is a named group of related privileges that you can grant as a group to
users or other roles.

Managing and controlling privileges is easier when you use roles.

Within a database, each role name must be unique, different from all user names and
all other role names. Unlike schema objects, roles are not contained in any schema.
Therefore, a user who creates a role can be dropped with no effect on the role.
Related Topics

* Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

¢ See Also:

Managing Common Roles and Local Roles

The Functionality of Roles

ORACLE

Roles are useful for quickly and easily granting permissions to users.

Although you can use Oracle Database-defined roles, you have more control and
continuity if you create your own roles that contain only the privileges pertaining to
your requirements. Oracle may change or remove the privileges in an Oracle
Database-defined role.

Roles have the following functionality:

e Arole can be granted system or object privileges.
e Any role can be granted to any database user.

e Each role granted to a user is, at a given time, either enabled or disabled. A user's
security domain includes the privileges of all roles currently enabled for the user
and excludes the privileges of any roles currently disabled for the user. Oracle
Database allows database applications and users to enable and disable roles to
provide selective availability of privileges.

e Arole can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role rolel cannot be granted to
role role2 if role role2 has previously been granted to role rolel.

4-26

Chapter 4
Managing User Roles

If a role is not password authenticated or a secure application role, then you can
grant the role indirectly to the user. An indirectly granted role is a role granted to
the user through another role that has already been granted to this user. For
example, suppose you grant user psmith the rolel role. Then you grant the role2
and role3 roles to the rolel role. Roles role2 and role3 are now under rolel.
This means psmith has been indirectly granted the roles role2 and role3, in
addition to the direct grant of rolel. Enabling the direct rolel for psmith enables
the indirect roles role2 and role3 for this user as well.

Optionally, you can make a directly granted role a default role. You enable or
disable the default role status of a directly granted role by using the DEFAULT ROLE
clause of the ALTER USER statement. Ensure that the DEFAULT ROLE clause refers
only to roles that have been directly granted to the user. To find the directly
granted roles for a user, query the DBA_ROLE_PRIVS data dictionary view. This view
does not include the user's indirectly granted roles. To find roles that are granted
to other roles, query the ROLE_ROLE_PRIVS view.

If the role is password authenticated or a secure application role, then you cannot
grant it indirectly to the user, nor can you make it a default role. You only can grant
this type of role directly to the user. Typically, you enable password authenticated
or secure application roles by using the SET ROLE statement.

Properties of Roles and Why They Are Advantageous

Roles have special properties that make their management very easy, such reduced

privilege administration.

Table 4-2 describes the properties of roles that enable easier privilege management

within a database.

Table 4-2 Properties of Roles and Their Description

Property

Description

Reduced privilege
administration

Dynamic privilege
management

Selective availability of
privileges

Application awareness

Application-specific security

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of related
users to a role, and then only the role must be granted to each
member of the group.

If the privileges of a group must change, then only the privileges
of the role need to be modified. The security domains of all users
granted the group's role automatically reflect the changes made
to the role.

You can selectively enable or disable the roles granted to a user.
This allows specific control of a user's privileges in any given
situation.

The data dictionary records which roles exist, so you can design
applications to query the dictionary and automatically enable (or
disable) selective roles when a user attempts to execute the
application by way of a given user name.

You can protect role use with a password. Applications can be
created specifically to enable a role when supplied the correct

password. Users cannot enable the role if they do not know the
password.

Database administrators often create roles for a database application. You should
grant a secure application role all privileges necessary to run the application. You then

ORACLE

4-27

Chapter 4
Managing User Roles

can grant the secure application role to other roles or users. An application can have
several different roles, each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application role.

Related Topics

* How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,

depending on the statement.

Typical Uses of Roles

ORACLE

In general, you create a role to manage privileges.
Reasons are as follows:

* To manage the privileges for a database application
* To manage the privileges for a user group

Figure 4-1 describes the two uses of roles.

Figure 4-1 Common Uses for Roles

\ﬁv &'ﬁT &'iTU &7 &'i q -

PAY_CLERK Role MANAGER Role REC_CLERK Role User Roles

NS N

ACCTS_PAY Role ACCTS_REC Role

! 1

Application Roles

Privileges to Privileges to L .
execute the execute the Application Privileges
ACCTS_PAY ACCTS_REC

application application

Related Topics

» Common Uses of Application Roles
You can use application roles to control privileges to use applications.

e Common Uses of User Roles
You can create a user role for a group of database users with common privilege

grant requirements.

4-28

Chapter 4
Managing User Roles

Common Uses of Application Roles

You can use application roles to control privileges to use applications.

You should grant an application role all privileges necessary to run a given database
application. Then, grant the secure application role to other roles or to specific users.

An application can have several different roles, with each role assigned a different set
of privileges that allow for more or less data access while using the application.

Common Uses of User Roles

You can create a user role for a group of database users with common privilege grant
requirements.

You can manage user privileges by granting secure application roles and privileges to
the user role and then granting the user role to appropriate users.

How Roles Affect the Scope of a User's Privileges

Each role and user has its own unique security domain.

The security domain of a role includes the privileges granted to the role plus those
privileges granted to any roles that are granted to the role.

The security domain of a user includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously enabled
for one user and disabled for another.) This domain also includes the privileges and
roles granted to the role PUBLIC. The PUBLIC role represents all users in the database.

How Roles Work in PL/SQL Blocks

Role behavior in a PL/SQL block is determined by the type of block and by definer's
rights or invoker's rights.

e Roles Used in Named Blocks with Definer's Rights
All roles are disabled in any named PL/SQL block that executes with definer's
rights.

* Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL
Blocks
Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles.

Roles Used in Named Blocks with Definer's Rights

ORACLE

All roles are disabled in any named PL/SQL block that executes with definer's rights.
Examples of named PL/SQL blocks are stored procedures, functions, and triggers.

Roles are not used for privilege checking and you cannot set roles within a definer's
rights procedure.

The SESSION_ROLES data dictionary view shows all roles that are currently enabled and
if a PL/SQL block executes with definer’s rights. If a named PL/SQL block that

4-29

Chapter 4
Managing User Roles

executes with definer's rights queries SESSION_ROLES, then the query does not return
any rows.

See Also:

Oracle Database Reference for more information about the SESSION_ROLES
data dictionary view

Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks

Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles.

Current roles are used for privilege checking within an invoker's rights PL/SQL block.
You can use dynamic SQL to set a role in the session.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for an
explanation of how invoker's and definer's rights can be used for name
resolution and privilege checking

e Oracle Database PL/SQL Packages and Types Reference for
information about dynamic SQL in PL/SQL

How Roles Aid or Restrict DDL Usage

ORACLE

A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

For example, to create a table, the user must have the CREATE TABLE or CREATE ANY
TABLE system privilege.

To create a view of a table that belongs to another user, the creator must have the
CREATE VIEW or CREATE ANY VIEW system privilege and either the SELECT obj ect
privilege for the table or the SELECT ANY TABLE system privilege.

Oracle Database avoids the dependencies on privileges received by way of roles by
restricting the use of specific privileges in certain DDL statements. The following rules
describe these privilege restrictions concerning DDL statements:

* All system privileges and object privileges that permit a user to perform a DDL
operation are usable when received through a role. For example:

— System privileges: CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE
privileges

— Object privileges: ALTER and INDEX privileges for a table

You cannot use the REFERENCES object privilege for a table to define the
foreign key of a table if the privilege is received through a role.

4-30

Chapter 4
Managing User Roles

» All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when received
through a role. The security domain does not contain roles when a CREATE VIEW
statement is used. For example, a user who is granted the SELECT ANY TABLE
system privilege or the SELECT obj ect privilege for a table through a role cannot
use either of these privileges to create a view on a table that belongs to another
user. This is because views are definer's rights objects, so when creating them
you cannot use any privileges (neither system privileges or object privileges)
granted to you through a role. If the privilege is granted directly to you, then you
can use the privilege. However, if the privilege is revoked at a later time, then the
view definition becomes invalid ("contains errors") and must recompiled before it
can be used again.

The following example further clarifies the permitted and restricted uses of privileges
received through roles.

Assume that a user is:

e Granted a role that has the CREATE VIEW system privilege

» Directly granted a role that has the SELECT obj ect privilege for the employees table
e Directly granted the SELECT obj ect privilege for the departments table

Given these directly and indirectly granted privileges:

e The user can issue SELECT statements on both the employees and departments
tables.

» Although the user has both the CREATE VIEW and SELECT privilege for the
employees table through a role, the user cannot create a view on the employees
table, because the SELECT obj ect privilege for the employees table was granted
through a role.

e The user can create a view on the departments table, because the user has the
CREATE VIEW privilege through a role and the SELECT privilege for the departments
table directly.

How Operating Systems Can Aid Roles

In some environments, you can administer database security using the operating
system.

The operating system can be used to grant and revoke database roles and to manage
their password authentication. This capability is not available on all operating systems.

¢ See Also:

Your operating system-specific Oracle Database documentation for details
about managing roles through the operating system

How Roles Work in a Distributed Environment

In a distributed database environment, all necessary roles must be set as the default
role for a distributed (remote) session.

ORACLE 4-31

Chapter 4
Managing User Roles

These roles cannot be enabled when the user connects to a remote database from
within a local database session. For example, the user cannot execute a remote
procedure that attempts to enable a role at the remote site.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide

Predefined Roles in an Oracle Database Installation

Oracle Database provides a set of predefined roles to help in database administration.

These predefined roles, listed in Table 4-3, are automatically defined for Oracle
databases when you run the standard scripts (such as catalog.sqgl and catproc.sql)
that are part of database creation, and they are considered common roles. If you
install other options or products, then other predefined roles may be created. You can
find roles that are created and maintained by Oracle by querying the ROLE and
ORACLE_MAINTAINED columns of the DBA_ROLES data dictionary view. If the output for
ORACLE_MAINTAINED is Y, then you must not modify the role except by running the
script that was used to create it.

Table 4-3 Oracle Database Predefined Roles

. ___|

Predefined Role Description

ADM_PARALLEL_EXECUTE_TASK Provides privileges to update table data in parallel by using the
DBMS_PARALLEL_EXECUTE PL/SQL package.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_PARALLEL_EXECUTE PL/SQL package.

AQ_ADMINISTRATOR_ROLE Provides privileges to administer Advanced Queuing. Includes ENQUEUE
ANY QUEUE, DEQUEUE ANY QUEUE, and MANAGE ANY QUEUE, SELECT
privileges on Advanced Queuing tables and EXECUTE privileges on
Advanced Queuing packages.

AQ_USER_ROLE De-supported, but kept mainly for release 8.0 compatibility. Provides
EXECUTE privileges on the DBMS_AQ and DBMS_AQIN packages.
AUDIT_ADMIN Provides privileges to create unified and fine-grained audit policies, use the

AUDIT and NOAUDIT SQL statements, view audit data, and manage the
audit trail administration

See Also: Who Can Perform Auditing?

AUDIT_VIEWER Provides privileges to view and analyze audit data
See Also: Who Can Perform Auditing?

AUTHENT ICATEDUSER Used by the XDB protocols to define any user who has logged in to the
system.

See Also: Oracle XML DB Developer's Guide for more information about
how this role is used for DBUriServlet security

CAPTURE_ADMIN Provides the privileges necessary to create and manage privilege analysis
policies.

See Also: Oracle Database Vault Administrator’'s Guide for more
information

ORACLE 4-32

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

CDB_DBA

CONNECT

CSW_USR_ROLE

CTXAPP

CWM_USER

DATAPUMP_EXP_FULL_DATABASE

DATAPUMP_IMP_FULL_DATABASE

ORACLE

Provides the privileges required for administering a CDB, such as SET
CONTAINER, SELECT ON PDB_PLUG_IN_VIOLATIONS, and SELECT ON
CDB_LOCAL_ADMIN_PRIVS. If your site requires additional privileges, then
you can create a role (either common or local) to cover these privileges, and
then grant this role to the CDB_DBA role.

See Also: Oracle Database Administrator’s Guide for information about
administrating CDBs

Provides the CREATE SESSION system privilege.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

Provides user privileges to manage the Catalog Services for the Web
(CSW) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

Provides privileges to create Oracle Text indexes and index preferences,
and to use PL/SQL packages. This role should be granted to Oracle Text
users.

See Also: Oracle Text Application Developer's Guide for more information
Provides privileges to manage Common Warehouse Metadata (CWM),

which is a repository standard used by Oracle data warehousing and
decision support.

See Also: Oracle Database Data Warehousing Guide for more information
Provides privileges to export data from an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Ultilities for more information
Provides privileges to import data into an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Ultilities for more information

4-33

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

DBA

DBFS_ROLE

EJBCLIENT
EM_EXPRESS_ALL

EM_EXRESS_BASIC

EXECUTE_CATALOG_ROLE
EXP_FULL_DATABASE

GATHER_SYSTEM_STATISTICS

GLOBAL_AQ_USER_ROLE

ORACLE

Provides a large number of system privileges, including the ANY privileges
(such as the DELETE ANY TABLE and GRANT ANY PRIVILEGE privileges).
This role is provided for compatibility with previous releases of Oracle
Database. You can find the privileges that are encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

Provides access to the DBFS (the Database Filesystem) packages and
objects.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide
Provides privileges to connect to EJBs from a Java stored procedure.

Enables users to connect to Oracle Enterprise Manager (EM) Express and
use all the functionality provided by EM Express (read and write access to
all EM Express features). The EM_EXPRESS_ALL role includes the
EM_EXPRESS_BASIC role.

See Also: Oracle Database 2 Day DBA for more information
Enables users to connect to EM Express and to view the pages in read-only

mode. The EM_EXPRESS_BASIC role includes the SELECT_CATALOG_ROLE
role.

See Also: Oracle Database 2 Day DBA for more information
Provides EXECUTE privileges on objects in the data dictionary.

Provides the privileges required to perform full and incremental database
exports using the Export utility (later replaced with Oracle Data Pump). It
includes these privileges: SELECT ANY TABLE, BACKUP ANY TABLE,
EXECUTE ANY PROCEDURE, EXECUTE ANY TYPE, ADMINISTER RESOURCE
MANAGER, and INSERT, DELETE, and UPDATE on the tables SYS. INCVID,
SYS._INCFIL, and SYS. INCEXP. Also includes the following roles:
EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Ultilities for more information

Provides privileges to update system statistics, which are collected using the
DBMS_STATS.GATHER_SYSTEM_STATISTICS procedure

See Also: Oracle Database SQL Tuning Guide for more information about
managing optimizer statistics

Provides privileges to establish a connection to an LDAP server, for use with
Oracle Streams AQ.

See Also: Oracle Database Advanced Queuing User's Guide for more
information

4-34

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

HS_ADMIN_EXECUTE_ROLE

HS_ADMIN_ROLE

HS_ADMIN_SELECT ROLE

IMP_FULL_DATABASE

JAVADEBUGPRIV

JAVAIDPRIV
JAVASYSPRIV

JAVAUSERPRIV

JAVA_ADMIN

JMXSERVER

LBAC_DBA

LOGSTDBY_ADMINISTRATOR

ORACLE

Provides the EXECUTE privilege for users who want to use the
Heterogeneous Services (HS) PL/SQL packages.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for
more information

Provides privileges to both use the Heterogeneous Services (HS) PL/SQL
packages and query the HS-related data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for
more information

Provides privileges to query the Heterogeneous Services data dictionary
views.

See Also: Oracle Database Heterogeneous Connectivity User's Guidefor
more information

Provides the privileges required to perform full database imports using the
Import utility (later replaced with Oracle Data Pump). Includes an extensive
list of system privileges (use view DBA_SYS_PRIVS to view privileges) and
the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Ultilitiesfor more information

Provides privileges to run the Oracle Database Java applications debugger.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

Deprecated for this release.

Provides major permissions to use Javaz, including updating Oracle JVM-
protected packages.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

Provides limited permissions to use Java2.

See Also: Oracle Database Java Developer's Guide for more information
about managing security for Oracle Java applications

Provides administrative permissions to update policy tables for Oracle
Database Java applications.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

Provides privileges to start and maintain a JMX agent in a database
session.

See Also: Oracle Database Java Developer’s Guide for more information
about managing Oracle Java applications

Provides permissions to use the SA_SYSDBA PL/SQL package.

See Also: Oracle Label Security Administrator's Guide for more information

Provides administrative privileges to manage the SQL Apply (logical standby
database) environment.

See Also: Oracle Data Guard Concepts and Administration for more
information

4-35

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

OEM_ADVISOR

OEM_MONITOR

OLAP_DBA

OLAP_USER

OLAP_XS_ADMIN

OPTIMIZER_PROCESSING_RATE

ORDADMIN

PDB_DBA

PROVISIONER

RECOVERY_CATALOG_OWNER

ORACLE

Provides privileges to create, drop, select (read), load (write), and delete a
SQL tuning set through the DBMS_SQLTUNE PL/SQL package, and to access
to the Advisor framework using the ADVISOR PL/SQL package.

See Also: Oracle Database SQL Tuning Guide for more information
Provides privileges needed by the Management Agent component of Oracle
Enterprise Manager to monitor and manage the database.

See Also: Oracle Database SQL Tuning Guide for more information
Provides administrative privileges to create dimensional objects in different
schemas for Oracle OLAP.

See Also: Oracle OLAP User’s Guide for more information

Provides application developers privileges to create dimensional objects in
their own schemas for Oracle OLAP.

See Also: Oracle OLAP User’s Guide for more information

Provides privileges to administer security for Oracle OLAP.
See Also: Oracle OLAP User’s Guide for more information

Provides privileges to execute the GATHER_PROCESSING_RATE,
SET_PROCESSING_RATE, and DELETE_PROCESSING_RATE procedures in
the DBMS_STATS package. These procedures manage the processing rate
of a system for automatic degree of parallelism (Auto DOP). Auto DOP uses
these processing rates to determine the optimal degree of parallelism for a
SQL statement.

See Also: Oracle Database SQL Tuning Guide for more information

Provides privileges to administer Oracle Multimedia DICOM.
See Also: Oracle Multimedia DICOM Developer's Guide

Granted automatically to the local user that is created when you create a
new PDB from the seed PDB. No privileges are provided with this role.

See Also: Oracle Database Administrator’s Guide for more information
about creating PDBs using the seed

Provides privileges to register and update global callbacks for Oracle
Database Real Application sessions and to provision principals.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information.

Provides privileges for owner of the recovery catalog. Includes: CREATE
SESSION, ALTER SESSION, CREATE SYNONYM, CREATE ANY SYNONYM,
DROP ANY SYNONYM, CREATE VIEW, CREATE DATABASE LINK, CREATE
TABLE, CREATE CLUSTER, CREATE SEQUENCE, CREATE TRIGGER, CREATE
ANY TRIGGER, QUERY REWRITE, CREATE ANY CONTEXT, EXECUTE ON
DBMS_RLS, ADMINISTER DATABASE, and CREATE PROCEDURE

See Also: Oracle Database Backup and Recovery User’s Guide for more
information.

4-36

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

RESOURCE

SCHEDULER_ADMIN

SELECT_CATALOG_ROLE
SODA_APP

SPATIAL_CSW_ADMIN

SPATIAL_WFS_ADMIN

WFS_USR_ROLE

WM_ADMIN_ROLE

XDBADMIN

ORACLE

Provides the following system privileges: CREATE CLUSTER, CREATE
INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE, CREATE SEQUENCE,
CREATE TABLE, CREATE TRIGGER, CREATE TYPE.

Be aware that RESOURCE no longer provides the UNLIMITED TABLESPACE
system privilege.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

Allows the grantee to execute the procedures of the DBMS_SCHEDULER
package. It includes all of the job scheduler system privileges and is
included in the DBA role.

See Also: Oracle Database Administrator’s Guide for more information
about the DBMS_SCHEDULER package

Provides SELECT privilege on objects in the data dictionary.

Provides privileges to use the SODA APIs, in particular, to create, drop, and
list document collections.

Provides administrative privileges to manage the Catalog Services for the
Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

Provides administrative privileges to manage the Web Feature Service
(WFS) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

Provides user privileges for the Web Feature Service (WFS) component of
Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

Provides administrative privileges for Oracle Workspace Manager. This
enables users to run any DBMS_WM procedures on all version enabled tables,
workspaces, and savepoints regardless of their owner. It also enables the
user to modify the system parameters specific to Workspace Manager.

See Also: Oracle Database Workspace Manager Developer's Guide for
more information

Allows the grantee to register an XML schema globally, as opposed to
registering it for use or access only by its owner. It also lets the grantee
bypass access control list (ACL) checks when accessing Oracle XML DB
Repository.

See Also: Oracle XML DB Developer’s Guide for information about XML
schemas and the XML DB Repository

4-37

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

XDB_SET_INVOKER

XDB_WEBSERVICES

XDB_WEBSERVICES_OVER_HTTP

XDB_WEBSERVICES_WITH_PUBLIC

XS_CACHE_ADMIN

XS_NSATTR_ADMIN

XS_RESOURCE

ORACLE

Allows the grantee to define invoker's rights handlers and to create or
update the resource configuration for XML repository triggers. By default,
Oracle Database grants this role to the DBA role but not to the XDBADMIN
role.

See Also: Oracle XML DB Developer’'s Guide for information about Oracle
Database XML repository triggers

Allows the grantee to access Oracle Database Web services over HTTPS.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the
XDB_WEBSERVICES_WITH_PUBLIC role. For a user to use these Web

services, SYS must enable the Web service servlets.

See Also: Oracle XML DB Developer’'s Guide for information about Oracle
Database Web services

Allows the grantee to access Oracle Database Web services over HTTP.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the
XDB_WEBSERVICES_WITH_PUBLIC role.

See Also: Oracle XML DB Developer’s Guide for information about Oracle
Database Web services

Allows the grantee access to public objects through Oracle Database Web
services.

See Also: Oracle XML DB Developer’'s Guide for information about Oracle
Database Web services

In Oracle Database Real Application Security, enables the grantee to
manage the mid-tier cache. It is required for caching the security policy at
the mid-tier level for the checkAcl (authorization) method of the
XSAccessController class. Grant this role to the application connection
user or the Real Application Security dispatcher.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information

In Oracle Database Real Application Security, enables the grantee to
manage and manipulate the namespace and attribute for a session. Grant
this role to the Real Application Security session user.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for information about managing Real Application Security
sessions

In Oracle Database Real Application Security, enables the grantee to
manage objects in the attached schema, through the XS_ACL PL/SQL
package. This package creates procedures to create and manage access
control lists (ACLS). It contains the ADMIN SEC POLICY privilege. It is
similar to the Oracle Database RESOURCE role.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information

4-38

Chapter 4
Managing User Roles

Table 4-3 (Cont.) Oracle Database Predefined Roles
]

Predefined Role

Description

XS_SESSION_ADMIN

In Oracle Database Real Application Security, enables the grantee to
manage the life cycle of a session, including the ability to create, attach,
detach, and destroy the session. Grant this role to the application
connection user or Real Application Security dispatcher.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for information about managing Real Application Security
sessions

Note:

Each installation should create its own roles and assign only those privileges
that are needed, thus retaining detailed control of the privileges in use. This
process also removes any need to adjust existing roles, privileges, or
procedures whenever Oracle Database changes or removes roles that
Oracle Database defines. For example, the CONNECT role now has only one
privilege: CREATE SESSION.

Creating a Role

You can create a role that is authenticated with or without a password. You also can
create external or global roles.

About the Creation of Roles
You can create a role by using the CREATE ROLE statement.

Creating a Role That Is Authenticated With a Password
You can create a password authenticated role by using the IDENTIFIED BY clause.

Creating a Role That Has No Password Authentication
You can create a role that does not require a password by omitting the IDENTIFIED
BY clause.

Creating a Role That Is External or Global
External or global roles allow services that are outside the database to associate
database roles to authenticated users.

Altering a Role
The ALTER ROLE statement can modify the authorization method for a role.

About the Creation of Roles

ORACLE

You can create a role by using the CREATE ROLE statement.

To create the role, you must have the CREATE ROLE system privilege. Typically, only
security administrators have this system privilege. After you create a role, the role has
no privileges associated with it. Your next step is to grant either privileges or other
roles to the new role.

You must give each role that you create a uniqgue name among existing user names
and role names of the database. Roles are not contained in the schema of any user. In

4-39

Chapter 4
Managing User Roles

a database that uses a multi-byte character set, Oracle recommends that each role
name contain at least one single-byte character. If a role name contains only multi-
byte characters, then the encrypted role name and password combination is
considerably less secure. See Guideline 1 in Guidelines for Securing Passwords for
password guidelines.

You can use the IDENTIFIED BY clause to authorize the role with a password. This
clause specifies how the user must be authorized before the role can be enabled for
use by a specific user to which it has been granted. If you do not specify this clause, or
if you specify NOT IDENTIFIED, then no authorization is required when the role is
enabled. Roles can be specified to be authorized by the following:

* The database using a password

* An application using a specified package

* Externally by the operating system, network, or other external source
* Globally by an enterprise directory service

As an alternative to creating password-protected roles, Oracle recommends that you
use secure application roles instead.

Note the following restrictions about the creation of roles:

 Arole and a user cannot have the same name.

e The role name cannot start with the value of the COMMON_USER_PREFIX parameter
(which defaults to C##) unless this role is a CDB common role.

Related Topics

* Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

» Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

* Rules for Creating Common Roles
When you create a common role, you must follow special rules.

Creating a Role That Is Authenticated With a Password

You can create a password authenticated role by using the IDENTIFIED BY clause.

However, instead of using password-protected roles, consider using secure application
roles instead.

* To create a password-authenticated role, use the CREATE ROLE statement with the
IDENTIFIED BY clause.

For example:

CREATE ROLE clerk IDENTIFIED BY password;

ORACLE 4-40

Chapter 4
Managing User Roles

Note:

If you set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is set to 11
or higher, then you must recreate roles that have been created with the
IDENTIFIED BY clause.

Related Topics

* Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

* Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are
case sensitive.

Creating a Role That Has No Password Authentication

You can create a role that does not require a password by omitting the IDENTIFIED BY
clause.

e Use the CREATE ROLE statement with no clauses to create a role that has no
password authentication.

For example:

CREATE ROLE salesclerk;

Creating a Role That Is External or Global

ORACLE

External or global roles allow services that are outside the database to associate
database roles to authenticated users.

Database external roles are associated with operating system and RADIUS groups.
This way, database user authorization can be managed externally from the database.

An external user must be authorized by an external service, such as an operating
system or a third-party service, before the external user can enable the role.

Global roles are used by globally authenticated users, using centrally managed users
or Oracle Enterprise User Security. A global user must be authorized to use the role by
the enterprise directory service before the role is enabled at login time.

* To create a role that is to be authorized externally, include the IDENTIFIED
EXTERNALLY clause in the CREATE ROLE statement.
For example:

CREATE ROLE clerk_external IDENTIFIED EXTERNALLY;

* To create a role to be authorized globally, use the CREATE ROLE statement.
For example:
CREATE ROLE clerk_global IDENTIFIED GLOBALLY;

You can authorize roles globally to a user through a directory service mapping such as
with centrally managed users.

4-41

Chapter 4
Managing User Roles

Related Topics

» Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

» Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

* Mapping a Directory Group to a Global Role
Database global roles mapped to directory groups give member users additional
privileges and roles above what they have been granted through their login
schemas.

* Oracle Database Enterprise User Security Administrator's Guide

Altering a Role

The ALTER ROLE statement can modify the authorization method for a role.

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with ADMIN option.

Remember that you can only directly grant secure application roles or password-
authenticated roles to a user. Be aware that if you create a common role in the root,
you cannot change it to a local role.

e To alter a role, use the ALTER ROLE statement.

For example, to alter the clerk role to specify that the user must be authorized by
an external source before enabling the role:

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

Specifying the Type of Role Authorization

ORACLE

You can configure a role to be authorized through different sources, such the database
or an external source.

e Authorizing a Role by Using the Database
You can protect a role authorized by the database by assigning the role a
password.

* Authorizing a Role by Using an Application
An application role can be enabled only by applications that use an authorized
PL/SQL package.

» Authorizing a Role by Using an External Source
Oracle Database supports the use of external roles but with certain limitations.

» Authorizing a Role by Using the Operating System
Oracle Database supports role authentication through the operating system but
with certain limitations.

* Authorizing a Role by Using a Network Client
Oracle Database supports role authentication by a network client but you must be
aware of security risks.

4-42

Chapter 4
Managing User Roles

* Authorizing a Global Role by an Enterprise Directory Service
A global role enables a global user to be authorized only by an enterprise directory
service.

Authorizing a Role by Using the Database

You can protect a role authorized by the database by assigning the role a password.

If a user is granted a role protected by a password, then you can enable or disable the
role by supplying the proper password for the role in the SET ROLE statement. You
cannot authenticate a password-authenticated role on logon, even if you add it to the
list of default roles. You must explicitly enable it with the SET ROLE statement using the
required password.

1. Use the CREATE ROLE statement with the IDENTIFIED BY clause to create the
password-authenticated role.

Creating a Role That Is Authenticated With a Password shows a CREATE ROLE
statement that creates a role called clerk. When the role is enabled, the password
must be supplied.

2. Use the SET ROLE statement to set the password-authenticated role.

The following example shows how to set a password-authenticated role by using
the SET ROLE statement.

SET ROLE clerk IDENTIFIED BY password;

In a database that uses a multibyte character set, passwords for roles must
include only single-byte characters. Multibyte characters are not accepted in
passwords. See Guideline 1 in Guidelines for Securing Passwords for password
guidelines.

Authorizing a Role by Using an Application

ORACLE

An application role can be enabled only by applications that use an authorized PL/SQL
package.

Application developers do not need to secure a role by embedding passwords inside
applications. Instead, they can create an application role (secure application role) and
specify which PL/SQL package is authorized to enable the role.

* To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED
USING package_nane clause in the CREATE ROLE SQL statement.

For example, to indicate that the role admin_role is an application role and the role
can only be enabled by any module defined inside the PL/SQL package hr_admin:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

Related Topics

* Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

» Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

4-43

Chapter 4
Managing User Roles

Authorizing a Role by Using an External Source

Oracle Database supports the use of external roles but with certain limitations.

You can define an external role locally in the database, but you cannot grant the
external role to global users, to global roles, or to any other roles in the database. You
can create roles that are authorized by the operating system or network clients.

e To authorize a role by using an external source, use the CREATE ROLE statement
with the IDENTIFIED EXTERNALLY clause.

For example:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Authorizing a Role by Using the Operating System

Oracle Database supports role authentication through the operating system but with
certain limitations.

Role authentication through the operating system is useful only when the operating
system is able to dynamically link operating system privileges with applications.

When a user starts an application, the operating system grants an operating system
privilege to the user. The granted operating system privilege corresponds to the role
associated with the application. At this point, the application can enable the application
role. When the application is terminated, the previously granted operating system
privilege is revoked from the operating system account of the user.

* If arole is authorized by the operating system, then configure information for each
user at the operating system level. This operation is operating system dependent.

If roles are granted by the operating system, then you do not need to have the
operating system authorize them also.

Related Topics

e Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

Authorizing a Role by Using a Network Client

ORACLE

Oracle Database supports role authentication by a network client but you must be
aware of security risks.

If users connect to the database over Oracle Net, then by default, the operating
system cannot authenticate their roles. This includes connections through a shared
server configuration, as this connection requires Oracle Net. This restriction is the
default because a remote user could impersonate another operating system user over
a network connection. Oracle recommends that you set REMOTE_OS_ROLES to FALSE,
which is the default.

e If you are not concerned with this security risk and want to use operating system
role authentication for network clients, then set the initialization parameter
REMOTE_OS_ROLES in the database initialization parameter file to TRUE.

The change takes effect the next time you start the instance and mount the database.

4-44

Chapter 4
Managing User Roles

Authorizing a Global Role by an Enterprise Directory Service

A global role enables a global user to be authorized only by an enterprise directory
service.

You define the global role locally in the database by granting privileges and roles to it,
but you cannot grant the global role itself to any user or other role in the database.
When a global user attempts to connect to the database, the enterprise directory is
queried to obtain any global roles associated with the user. Global roles are one
component of enterprise user security. A global role only applies to one database, but
you can grant it to an enterprise role defined in the enterprise directory. An enterprise
role is a directory structure that contains global roles on multiple databases and can be
granted to enterprise users.

e To create a global role to be authorized by an enterprise directory service, use the
CREATE ROLE statement with the IDENTIFIED GLOBALLY clause.

For example:

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

¢ See Also:

e Global User Authentication and Authorization for a general discussion of
global authentication and authorization of users, and its role in enterprise
user management

e Oracle Database Enterprise User Security Administrator's Guide for
information about implementing enterprise user management

Granting and Revoking Roles

You can grant or revoke privileges to and from roles, and then grant these roles to
users or to other roles.

* About Granting and Revoking Roles
You can grant system or object privileges to a role, and grant any role to any
database user or to another role.

* Who Can Grant or Revoke Roles?
The GRANT ANY ROLE system privilege enables users to grant or revoke any role
except global roles to or from other users or roles.

e Granting and Revoking Roles to and from Program Units
You can grant roles to function, procedure, and PL/SQL package program units.

About Granting and Revoking Roles

ORACLE

You can grant system or object privileges to a role, and grant any role to any database
user or to another role.

However, a role cannot be granted to itself, nor can the role be granted circularly, that
is, role X cannot be granted to role Y if role Y has previously been granted to role X.

4-45

Chapter 4
Managing User Roles

To provide selective availability of privileges, Oracle Database permits applications
and users to enable and disable roles. Each role granted to a user is, at any given
time, either enabled or disabled. The security domain of a user includes the privileges
of all roles currently enabled for the user and excludes the privileges of any roles
currently disabled for the user.

A role granted to a role is called an indirectly granted role. You can explicitly enable or
disable it for a user. However, whenever you enable a role that contains other roles,
you implicitly enable all indirectly granted roles of the directly granted role.

You grant roles by using the GRANT statement, and revoke them by using the REVOKE
statement. Privileges are granted to and revoked from roles using the same
statements.

You cannot grant a secure role (that is, an IDENTIFIED BY role, IDENTIFIED USING
role, or IDENTIFIED EXTERNALLY role) to either another secure role or to a non-secure
role. You can use the SET ROLE statement to enable the secure role for the session.

Who Can Grant or Revoke Roles?

The GRANT ANY ROLE system privilege enables users to grant or revoke any role except
global roles to or from other users or roles