Module prelude

Source

Modules§

_csv_read_internalpolars-io
_internalpolars-io
aggregations
arity
arraypolars-ops
binarylazy
bufferpolars-io
byte_sourcepolars-io
catlazy
chunkedarraytemporal
Traits and utilities for temporal data.
cloudpolars-io
Interface with cloud storage through the object_store crate.
compressionpolars-io
concat_arrpolars-ops
datatypes
Data types supported by Polars.
datetimepolars-ops
default_arrays
deletionlazy
dtlazy
expr
filepolars-io
fill_null
fixed_size_list
float_sorted_arg_max
full
function_exprlazy
gather
interpolatepolars-ops
interpolate_bypolars-ops
mkdirpolars-io
modepolars-ops
named_serdelazy
nan_propagating_aggregatepolars-ops
null
replacetemporal
roundpolars-ops
row_encode
schema_inferencepolars-io
search_sorted
seriestemporal
sort
stringspolars-ops
sync_on_closepolars-io
udflazy
utf8
zip

Macros§

df
polars_bail
polars_ensure
polars_err
polars_warn
with_match_categorical_physical_type

Structs§

AnonymousScanArgslazy
AnonymousScanOptionslazy
Arc
A thread-safe reference-counting pointer. ‘Arc’ stands for ‘Atomically Reference Counted’.
ArrayNameSpacelazy
Specialized expressions for Series of DataType::Array.
ArrowField
Represents Arrow’s metadata of a “column”.
AsOfOptionspolars-ops
BatchedCsvReaderpolars-io
BinaryOffsetType
BinaryType
BooleanChunkedBuilder
BooleanType
Boundstemporal
BoundsItertemporal
BrotliLevelpolars-io
A valid Brotli compression level.
CastColumnsPolicylazy
Used by scans.
Categorical8Type
Categorical16Type
Categorical32Type
CategoricalMapping
CategoricalNameSpacelazy
Specialized expressions for Categorical dtypes.
CategoricalType
Categories
A (named) object which is used to indicate which categorical data types have the same mapping.
ChainedThenlazy
Utility struct for the when-then-otherwise expression.
ChainedWhenlazy
Utility struct for the when-then-otherwise expression.
ChunkId
ChunkedArray
ChunkedArray
CompatLevel
CrossJoinOptionspolars-ops
CsvParseOptionspolars-io
CsvReadOptionspolars-io
CsvReaderpolars-io
Create a new DataFrame by reading a csv file.
CsvWriterpolars-io
Write a DataFrame to csv.
CsvWriterOptionspolars-io
Options for writing CSV files.
DataFrame
A contiguous growable collection of Series that have the same length.
DateType
DatetimeArgslazy
Arguments used by datetime in order to produce an Expr of Datetime
DatetimeType
DecimalType
Dimension
DistinctOptionsDSLlazy
DslBuilderlazy
Durationlazy
DurationArgslazy
Arguments used by duration in order to produce an Expr of Duration
DurationType
DynamicGroupOptionslazy
ExprNameNameSpacelazy
Specialized expressions for modifying the name of existing expressions.
FalseT
Field
Characterizes the name and the DataType of a column.
FileMetadatapolars-io
Metadata for a Parquet file.
FileSinkOptionslazy
FileSinkTypelazy
FixedSizeListType
Float32Type
Float64Type
FrozenCategories
An ordered collection of unique strings with an associated pre-computed mapping to go from string <-> index.
GroupBy
Returned by a group_by operation on a DataFrame. This struct supports several aggregations.
GroupPositions
GroupbyOptionslazy
GroupsIdx
Indexes of the groups, the first index is stored separately. this make sorting fast.
GroupsTypeIter
GroupsTypeParIter
GzipLevelpolars-io
A valid Gzip compression level.
HConcatOptionslazy
IEJoinOptionspolars-ops
InProcessQuerylazy
Int8Type
Int16Type
Int32Type
Int64Type
Int128Type
IpcReadOptionspolars-io
IpcReaderpolars-io
Read Arrows IPC format into a DataFrame
IpcReaderAsyncpolars-io
An Arrow IPC reader implemented on top of PolarsObjectStore.
IpcScanOptionspolars-io
IpcStreamReaderpolars-io
Read Arrows Stream IPC format into a DataFrame
IpcStreamWriterpolars-io
Write a DataFrame to Arrow’s Streaming IPC format
IpcStreamWriterOptionpolars-io
IpcWriterpolars-io
Write a DataFrame to Arrow’s IPC format
IpcWriterOptionspolars-io
JoinArgslazy
JoinBuilderlazy
JoinOptionslazy
JoinOptionsIRlazy
JsonLineReaderpolars-io
JsonReaderpolars-io
Reads JSON in one of the formats in JsonFormat into a DataFrame.
JsonWriterpolars-io
Writes a DataFrame to JSON.
JsonWriterOptionspolars-io
LazyCsvReaderlazy
LazyFramelazy
Lazy abstraction over an eager DataFrame.
LazyGroupBylazy
Utility struct for lazy group_by operation.
LazyJsonLineReaderlazy
ListBinaryChunkedBuilder
ListBooleanChunkedBuilder
ListNameSpacelazy
Specialized expressions for Series of DataType::List.
ListPrimitiveChunkedBuilder
ListStringChunkedBuilder
ListType
Logical
Maps a logical type to a chunked array implementation of the physical type. This saves a lot of compiler bloat and allows us to reuse functionality.
LogicalPlanUdfOptionslazy
MatchToSchemaPerColumnlazy
MetadataKeyValuepolars-io
NDJsonReadOptionslazy
NoNull
Just a wrapper structure which is useful for certain impl specializations.
Nulllazy
The literal Null
NullableIdxSize
ObjectType
OptFlagslazy
Allowed optimizations.
OwnedBatchedCsvReaderpolars-io
OwnedObject
ParquetFieldOverwritespolars-io
ParquetMetadataContextpolars-io
Context that can be used to construct custom file-level key value metadata for a Parquet file.
ParquetObjectStorepolars-io
ParquetOptionspolars-io
ParquetReaderpolars-io
Read Apache parquet format into a DataFrame.
ParquetWriteOptionspolars-io
ParquetWriterpolars-io
Write a DataFrame to Parquet format.
PartitionSinkTypelazy
PartitionSinkTypeIRlazy
PartitionTargetContextlazy
PartitionTargetContextKeylazy
PlSmallStr
String type that inlines small strings.
PlanSerializationContextlazy
PrimitiveChunkedBuilder
RankOptionslazy
RollingCovOptionslazy
RollingGroupOptionslazy
RollingOptionsDynamicWindowtemporal
RollingOptionsFixedWindow
RollingVarParams
Scalar
ScanArgsAnonymouslazy
ScanArgsIpclazy
ScanArgsParquetlazy
ScanFlagslazy
ScanSourceIterlazy
An iterator for ScanSources
SerializeOptionspolars-io
Options to serialize logical types to CSV.
Series
Series
SinkFinishContextlazy
SinkOptionslazy
Options that apply to all sinks.
SinkWrittenlazy
SortColumnlazy
SortColumnIRlazy
SortMultipleOptions
Sort options for multi-series sorting.
SortOptions
Options for single series sorting.
SpecialEqlazy
Wrapper type that has special equality properties depending on the inner type specialization
SplitNCharspolars-ops
StatisticsOptionspolars-io
The statistics to write
StringType
StrptimeOptionslazy
StructArraypolars-io
A StructArray is a nested [Array] with an optional validity representing multiple [Array] with the same number of rows.
StructNameSpacelazy
Specialized expressions for Struct dtypes.
StructType
Thenlazy
Utility struct for the when-then-otherwise expression.
TimeType
TimeUnitSetlazy
TimeZone
TrueT
UInt8Type
UInt16Type
UInt32Type
UInt64Type
UnifiedScanArgslazy
Scan arguments shared across different scan types.
UnionArgslazy
UnionOptionslazy
UnpivotArgsDSLlazy
UnpivotArgsIR
Arguments for LazyFrame::unpivot function
UserDefinedFunctionlazy
Represents a user-defined function
Whenlazy
Utility struct for the when-then-otherwise expression.
Windowtemporal
Represents a window in time
ZstdLevelpolars-io
A valid Zstandard compression level.

Enums§

AggExprlazy
Ambiguous
AnyValue
ArrayFunctionlazy
ArrowDataType
The set of supported logical types in this crate.
ArrowTimeUnit
The time units defined in Arrow.
AsofStrategypolars-ops
BinaryFunctionlazy
BitwiseFunctionlazy
BooleanFunctionlazy
CategoricalFunctionlazy
CategoricalPhysical
The physical datatype backing a categorical / enum.
ChildFieldOverwritespolars-io
ClosedIntervalpolars-ops
ClosedWindowtemporal
Column
A column within a DataFrame.
CommentPrefixpolars-io
CsvEncodingpolars-io
DataType
DataTypeExprlazy
DataTypeSelectorlazy
DslPlanlazy
Enginelazy
EvalVariantlazy
Excludedlazy
Exprlazy
Expressions that can be used in various contexts.
ExtraColumnsPolicylazy
FileScanDsllazy
FileScanIRlazy
FileTypelazy
FillNullStrategy
FunctionExprlazy
GroupByMethod
GroupsIndicator
GroupsType
IndexOrder
InequalityOperatorpolars-ops
InterpolationMethodpolars-ops
IpcCompressionpolars-io
Compression codec
JoinCoalescepolars-ops
JoinTypelazy
JoinTypeOptionspolars-ops
JoinTypeOptionsIRlazy
JoinValidationlazy
JsonFormatpolars-io
The format to use to write the DataFrame to JSON: Json (a JSON array) or JsonLines (each row output on a separate line).
KeyValueMetadatapolars-io
Key/value pairs that can be attached to a Parquet file as file-level metadtaa.
Labeltemporal
LazySerdelazy
ListFunctionlazy
LiteralValuelazy
MaintainOrderJoinpolars-ops
MissingColumnsPolicylazy
MissingColumnsPolicyOrExprlazy
NestedTypelazy
NonExistent
NullStrategypolars-ops
NullValuespolars-io
Operatorlazy
ParallelStrategypolars-io
ParquetCompressionpolars-io
The compression strategy to use for writing Parquet files.
ParquetStatisticspolars-io
Parquet statistics for a nesting level
PartitionTargetCallbacklazy
PartitionTargetCallbackResultlazy
PartitionVariantlazy
PartitionVariantIRlazy
PlPath
A Path or URI
PlanCallbacklazy
PolarsError
PowFunctionlazy
QuantileMethod
QuoteStylepolars-io
Quote style indicating when to insert quotes around a field.
RandomMethodlazy
RangeFunctionlazy
RankMethodlazy
RenameAliasFnlazy
ReshapeDimension
A dimension in a reshape.
RollingFnParams
RollingFunctionlazy
RollingFunctionBylazy
RoundModepolars-ops
ScanSourcelazy
A single source to scan from
ScanSourceReflazy
A reference to a single item in ScanSources
ScanSourceslazy
Set of sources to scan from
SearchSortedSidepolars-ops
Selectorlazy
SinkFinishCallbacklazy
SinkTargetlazy
SinkTypelazy
SinkTypeIRlazy
StartBytemporal
StringFunctionlazy
StructFunctionlazy
TemporalFunctionlazy
TimeUnit
TimeZoneSetlazy
UniqueKeepStrategy
UnknownKind
UpcastOrForbidlazy
WindowMappinglazy
WindowTypelazy

Constants§

BUILD_STREAMING_EXECUTORlazy
IDX_DTYPE
NULLlazy
URL_ENCODE_CHAR_SETpolars-io

Statics§

BOOLEAN_REpolars-io
DSL_VERSIONlazy
EXTENSION_NAME
FLOAT_REpolars-io
FLOAT_RE_DECIMALpolars-io
INTEGER_REpolars-io
POLARS_TEMP_DIR_BASE_PATHpolars-io

Traits§

AnonymousScanlazy
ArgAggpolars-ops
Argmin/ Argmax
ArithmeticChunked
ArrayCollectIterExt
ArrayFromIter
ArrayFromIterDtype
AsBinarypolars-ops
AsListpolars-ops
AsRefDataType
AsStringpolars-ops
AsofJoinpolars-ops
AsofJoinBypolars-ops
BinaryNameSpaceImplpolars-ops
BinaryUdfOutputFieldlazy
CatNative
CategoricalPhysicalDtypeExt
ChunkAgg
Aggregation operations.
ChunkAggSeries
Aggregations that return Series of unit length. Those can be used in broadcasting operations.
ChunkAnyValue
ChunkApply
Fastest way to do elementwise operations on a ChunkedArray<T> when the operation is cheaper than branching due to null checking.
ChunkApplyKernel
Apply kernels on the arrow array chunks in a ChunkedArray.
ChunkApproxNUnique
ChunkBitwiseReduce
Bitwise Reduction Operations.
ChunkBytes
ChunkCast
Cast ChunkedArray<T> to ChunkedArray<N>
ChunkCompareEq
Compare Series and ChunkedArray’s and get a boolean mask that can be used to filter rows.
ChunkCompareIneq
Compare Series and ChunkedArray’s using inequality operators (<, >=, etc.) and get a boolean mask that can be used to filter rows.
ChunkExpandAtIndex
Create a new ChunkedArray filled with values at that index.
ChunkExplode
Explode/flatten a List or String Series
ChunkFillNullValue
Replace None values with a value
ChunkFilter
Filter values by a boolean mask.
ChunkFull
Fill a ChunkedArray with one value.
ChunkFullNull
ChunkNestingUtils
Utility methods for dealing with nested chunked arrays.
ChunkQuantile
Quantile and median aggregation.
ChunkReverse
Reverse a ChunkedArray<T>
ChunkRollApply
This differs from ChunkWindowCustom and ChunkWindow by not using a fold aggregator, but reusing a Series wrapper and calling Series aggregators. This likely is a bit slower than ChunkWindow
ChunkSet
Create a ChunkedArray with new values by index or by boolean mask.
ChunkShift
ChunkShiftFill
Shift the values of a ChunkedArray by a number of periods.
ChunkSort
Sort operations on ChunkedArray.
ChunkTake
ChunkTakeUnchecked
ChunkUnique
Get unique values in a ChunkedArray
ChunkVar
Variance and standard deviation aggregation.
ChunkZip
Combine two ChunkedArray based on some predicate.
ChunkedBuilder
ChunkedCollectInferIterExt
ChunkedCollectIterExt
ChunkedSetpolars-ops
ColumnBinaryUdflazy
A wrapper trait for any binary closure Fn(Column, Column) -> PolarsResult<Column>
ColumnsUdflazy
A wrapper trait for any closure Fn(Vec<Series>) -> PolarsResult<Series>
CrossJoinpolars-ops
CrossJoinFilterpolars-ops
DataFrameJoinOpspolars-ops
DataFrameOpspolars-ops
DateMethodstemporal
DatetimeMethodstemporal
DurationMethodstemporal
FromData
FromDataBinary
FromDataUtf8
FunctionOutputFieldlazy
GetAnyValue
IndexToUsize
InitHashMaps
InitHashMaps2
IntoColumn
Convert Self into a Column
IntoGroupsType
Used to create the tuples for a group_by operation.
IntoLazylazy
IntoMetadata
IntoScalar
IntoSeries
Used to convert a ChunkedArray, &dyn SeriesTrait and Series into a Series.
IntoVec
Convenience for x.into_iter().map(Into::into).collect() using an into_vec() function.
IsFirstDistinct
Mask the first unique values as true
IsLastDistinct
Mask the last unique values as true
JoinDispatchpolars-ops
LazyFileListReaderlazy
Reads LazyFrame from a filesystem or a cloud storage. Supports glob patterns.
LhsNumOps
ListBuilderTrait
ListFromIter
ListNameSpaceImplpolars-ops
Literallazy
LogicalType
MetaDataExt
MinMaxHorizontalpolars-ops
MomentSeriespolars-ops
NamedFrom
NamedFromOwned
NewChunkedArray
NumOpsDispatch
NumOpsDispatchChecked
NumericNative
PolarsCategoricalType
Safety
PolarsDataType
Safety
PolarsFloatType
PolarsIntegerType
PolarsIterator
A PolarsIterator is an iterator over a ChunkedArray which contains polars types. A PolarsIterator must implement ExactSizeIterator and DoubleEndedIterator.
PolarsNumericType
PolarsObject
Values need to implement this so that they can be stored into a Series and DataFrame
PolarsPhysicalType
PolarsRoundtemporal
PolarsTemporalGroupbylazy
PolarsTruncatetemporal
PolarsUpsampletemporal
QuantileAggSeries
Reinterpret
RoundSeriespolars-ops
SchemaExt
SchemaExtPl
SchemaNamesAndDtypes
SeedableFromU64SeedExt
SerReaderpolars-io
SerWriterpolars-io
SeriesJoinpolars-ops
SeriesMethodspolars-ops
SeriesOpsTimetemporal
SeriesRankpolars-ops
SeriesSealedpolars-ops
SeriesTrait
SlicedArray
Utility trait to slice concrete arrow arrays whilst keeping their concrete type. E.g. don’t return Box<dyn Array>.
StaticArray
StringMethodstemporal
StringNameSpaceImplpolars-ops
SumMeanHorizontalpolars-ops
TakeChunkedpolars-ops
Gather by ChunkId
TakeChunkedHorParpolars-ops
TemporalMethodstemporal
TimeMethodstemporal
ToDummiespolars-ops
UdfSchemalazy
VarAggSeries
VecHash

Functions§

_coalesce_full_joinpolars-ops
_join_suffix_namepolars-ops
_set_check_length
Meant for internal use. In very rare conditions this can be turned off.
abspolars-ops
Convert numerical values to their absolute value.
alllazy
Selects all columns.
all_horizontallazy
Create a new column with the bitwise-and of the elements in each row.
any_horizontallazy
Create a new column with the bitwise-or of the elements in each row.
apply_binarylazy
Like map_binary, but used in a group_by-aggregation context.
apply_multiplelazy
Apply a function/closure over the groups of multiple columns. This should only be used in a group_by aggregation.
apply_projectionpolars-io
arangelazy
Generate a range of integers.
arg_sort_bylazy
Find the indexes that would sort these series in order of appearance.
arg_wherelazy
Get the indices where condition evaluates true.
as_structlazy
Take several expressions and collect them into a StructChunked.
avglazy
Find the mean of all the values in the column named name. Alias for mean.
base_utc_offsettemporal
binary_exprlazy
Compute op(l, r) (or equivalently l op r). l and r must have types compatible with the Operator.
build_streaming_query_executorlazy
by_namelazy
Select multiple columns by dtype.
castlazy
Casts the column given by Expr to a different type.
clippolars-ops
Set values outside the given boundaries to the boundary value.
clip_maxpolars-ops
Set values above the given maximum to the maximum value.
clip_minpolars-ops
Set values below the given minimum to the minimum value.
coalescelazy
Folds the expressions from left to right keeping the first non-null values.
coalesce_columnspolars-ops
collazy
Create a Column Expression based on a column name.
collect_alllazy
Collect all LazyFrame computations.
colslazy
Select multiple columns by name.
columns_to_projectionpolars-io
concatlazy
Concat multiple LazyFrames vertically.
concat_arrlazy
Horizontally concatenate columns into a single array-type column.
concat_exprlazy
concat_lf_diagonallazy
Concat LazyFrames diagonally. Calls concat internally.
concat_lf_horizontallazy
Concat LazyFrames horizontally.
concat_listlazy
Concat lists entries.
concat_strlazy
Horizontally concat string columns in linear time
convert_inner_type
Cast null arrays to inner type and ensure that all offsets remain correct
convert_to_unsigned_indexpolars-ops
count_onespolars-ops
count_rowspolars-io
Read the number of rows without parsing columns useful for count(*) queries
count_rows_from_slicepolars-io
Read the number of rows without parsing columns
count_rows_from_slice_parpolars-io
Read the number of rows without parsing columns useful for count(*) queries
count_zerospolars-ops
create_sorting_mappolars-io
cum_countpolars-ops
cum_fold_exprslazy
Accumulate over multiple columns horizontally / row wise.
cum_maxpolars-ops
Get an array with the cumulative max computed at every element.
cum_minpolars-ops
Get an array with the cumulative min computed at every element.
cum_prodpolars-ops
Get an array with the cumulative product computed at every element.
cum_reduce_exprslazy
Accumulate over multiple columns horizontally / row wise.
cum_sumpolars-ops
Get an array with the cumulative sum computed at every element
date_rangeslazy
Create a column of date ranges from a start and stop expression.
datetimelazy
Construct a column of Datetime from the provided DatetimeArgs.
datetime_rangelazy
Create a datetime range from a start and stop expression.
datetime_rangeslazy
Create a column of datetime ranges from a start and stop expression.
datetime_to_timestamp_ms
datetime_to_timestamp_ns
datetime_to_timestamp_us
decode_json_responsepolars-io
Utility for decoding JSON that adds the response value to the error message if decoding fails. This makes it much easier to debug errors from parsing network responses.
default_join_idspolars-ops
deserializepolars-io
Deserializes the statistics in the column chunks from a single row_group into Statistics associated from field’s name.
diffpolars-ops
dst_offsettemporal
dtype_collazy
Select multiple columns by dtype.
dtype_colslazy
Select multiple columns by dtype.
durationlazy
Construct a column of Duration from the provided DurationArgs
emptylazy
Selects no columns.
ensure_duration_matches_dtypetemporal
ensure_is_constant_durationtemporal
ensure_matching_schema
ensure_same_categories
ensure_same_frozen_categories
escape_regexpolars-ops
escape_regex_strpolars-ops
estimate_n_lines_in_chunkpolars-io
Total len divided by max len of first and last non-empty lines. This is intended to be cheaper than estimate_n_lines_in_file.
estimate_n_lines_in_filepolars-io
expand_pathspolars-io
Recursively traverses directories and expands globs if glob is true.
expand_paths_hivepolars-io
Recursively traverses directories and expands globs if glob is true. Returns the expanded paths and the index at which to start parsing hive partitions from the path.
expanded_from_single_directorypolars-io
Returns true if expanded_paths were expanded from a single directory
firstlazy
First column in a DataFrame.
floor_div_seriespolars-ops
fmt_group_by_column
fold_exprslazy
Accumulate over multiple columns horizontally / row wise.
format_strlazy
Format the results of an array of expressions using a format string
get_column_write_optionspolars-io
get_glob_start_idxpolars-io
Get the index of the first occurrence of a glob symbol.
get_reader_bytespolars-io
get_strftime_format
group_by_valuestemporal
Different from group_by_windows, where define window buckets and search which values fit that pre-defined bucket.
group_by_windowstemporal
Window boundaries are created based on the given Window, which is defined by:
hor_str_concatpolars-ops
Horizontally concatenate all strings.
impl_durationpolars-ops
impl_replace_time_zonepolars-ops
impl_replace_time_zone_fastpolars-ops
If ambiguous is length-1 and not equal to “null”, we can take a slightly faster path.
in_nanoseconds_windowtemporal
index_colslazy
Select multiple columns by index.
indexes_to_usizes
infer_file_schemapolars-io
Infer the schema of a CSV file by reading through the first n rows of the file, with max_read_rows controlling the maximum number of rows to read.
infer_schemapolars-io
Infers a ArrowSchema from parquet’s FileMetadata.
int_rangelazy
Generate a range of integers.
int_rangeslazy
Generate a range of integers for each row of the input columns.
interpolatepolars-ops
interpolate_bypolars-ops
is_betweenpolars-ops
is_closepolars-ops
is_first_distinctpolars-ops
is_inpolars-ops
is_last_distinctpolars-ops
is_not_nulllazy
A column which is false wherever expr is null, true elsewhere.
is_nulllazy
A column which is true wherever expr is null, false elsewhere.
is_positive_idx_uncertainpolars-ops
May give false negatives because it ignores the null values.
is_positive_idx_uncertain_colpolars-ops
May give false negatives because it ignores the null values.
json_linespolars-io
known_timezonestemporal
lastlazy
Last column in a DataFrame.
leading_onespolars-ops
leading_zerospolars-ops
lenlazy
Return the number of rows in the context.
linear_spacelazy
Generate a series of equally-spaced points.
linear_spaceslazy
Create a column of linearly-spaced sequences from ‘start’, ‘end’, and ‘num_samples’ expressions.
litlazy
Create a Literal Expression from L. A literal expression behaves like a column that contains a single distinct value.
map_binarylazy
Apply a closure on the two columns that are evaluated from Expr a and Expr b.
map_multiplelazy
Apply a function/closure over multiple columns once the logical plan get executed.
materialize_empty_dfpolars-io
materialize_projectionpolars-io
maxlazy
Find the maximum of all the values in the column named name. Shorthand for col(name).max().
meanlazy
Find the mean of all the values in the column named name. Shorthand for col(name).mean().
medianlazy
Find the median of all the values in the column named name. Shorthand for col(name).median().
merge_dtypes
minlazy
Find the minimum of all the values in the column named name. Shorthand for col(name).min().
negatepolars-ops
negate_bitwisepolars-ops
new_int_rangepolars-ops
new_linear_space_f32polars-ops
new_linear_space_f64polars-ops
notlazy
Negates a boolean column.
nthlazy
Nth column in a DataFrame.
overwrite_schemapolars-io
parse_ndjsonpolars-io
prepare_cloud_planlazy
Prepare the given DslPlan for execution on Polars Cloud.
private_left_join_multiple_keyspolars-ops
quantilelazy
Find a specific quantile of all the values in the column named name.
reduce_exprslazy
Analogous to Iterator::reduce.
remove_bompolars-io
repeatlazy
Create a column of length n containing n copies of the literal value.
repeat_bypolars-ops
replacepolars-ops
Replace values by different values of the same data type.
replace_datetemporal
Replace specific time component of a DateChunked with a specified value.
replace_datetimetemporal
Replace specific time component of a DatetimeChunked with a specified value.
replace_or_defaultpolars-ops
Replace all values by different values.
replace_strictpolars-ops
Replace all values by different values.
replace_time_zonepolars-ops
resolve_homedirpolars-io
Replaces a “~” in the Path with the home directory.
rlepolars-ops
Get the lengths of runs of identical values.
rle_idpolars-ops
Similar to rle, but maps values to run IDs.
rle_lengthspolars-ops
Get the run-Lengths of values.
rolling_kurtosispolars-ops
rolling_skewpolars-ops
split_helperpolars-ops
split_to_structpolars-ops
str_joinpolars-ops
strip_charspolars-ops
strip_chars_endpolars-ops
strip_chars_startpolars-ops
strip_prefixpolars-ops
strip_suffixpolars-ops
substring_ternary_offsets_valuepolars-ops
sumlazy
Sum all the values in the column named name. Shorthand for col(name).sum().
ternary_exprlazy
time_rangeslazy
Create a column of time ranges from a start and stop expression.
trailing_onespolars-ops
trailing_zerospolars-ops
try_raise_keyboard_interrupt
Checks if the keyboard interrupt flag is set, and if yes panics as a keyboard interrupt. This function is very cheap.
try_set_sorted_flagpolars-io
unique_countspolars-ops
Returns a count of the unique values in the order of appearance.
unpack_dtypes
update_viewpolars-ops
whenlazy
Start a when-then-otherwise expression.
write_partitioned_datasetpolars-io
Write a partitioned parquet dataset. This functionality is unstable.

Type Aliases§

AllowedOptimizationslazy
AllowedOptimizations
ArrayChunked
ArrayRef
ArrowSchema
An ordered sequence of Fields
BinaryChunked
BinaryChunkedBuilder
BinaryOffsetChunked
BooleanChunked
BorrowIdxItem
CatSize
Categorical8Chunked
Categorical16Chunked
Categorical32Chunked
CategoricalChunked
ChunkJoinOptIdspolars-ops
DateChunked
DatetimeChunked
DecimalChunked
DurationChunked
FieldRef
FieldsNameMapperlazy
FileMetadataRefpolars-io
FillNullLimit
Float32Chunked
Float64Chunked
GetOutputlazy
GroupsSlice
Every group is indicated by an array where the
IdxArr
IdxCa
IdxItem
IdxSize
IdxType
InnerJoinIdspolars-ops
Int8Chunked
Int16Chunked
Int32Chunked
Int64Chunked
Int128Chunked
LargeBinaryArray
LargeListArray
LargeStringArray
LeftJoinIdspolars-ops
ListChunked
ObjectChunked
OpaqueColumnUdflazy
PlFixedStateQuality
PlHashMap
PlHashSet
PlIdHashMap
This hashmap uses an IdHasher
PlIndexMap
PlIndexSet
PlRandomState
PlRandomStateQuality
PlSeedableRandomStateQuality
PolarsResult
RenameAliasRustFnlazy
RowGroupIterColumnspolars-io
Schema
SchemaRef
StringChunked
StringChunkedBuilder
StructChunked
TimeChunked
UInt8Chunked
UInt16Chunked
UInt32Chunked
UInt64Chunked