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We develop a theoretical framework to characterize the hardness of indexing data sets on block-
access memory devices like hard disks. We define an indexing workload by a data set and a set
of potential queries. For a workload we can construct an indexing scheme, which is a collection
of fixed-sized subsets of the data. We identify two measures of efficiency for an indexing scheme
on a workload: storage redundancy, r (how many times each item in the data set is stored), and
access overhead, A (how many times more blocks than necessary does a query retrieve).

For many interesting families of workloads, there exists a trade-off between storage redundancy
and access overhead. Given a desired access overhead A, there is a minimum redundancy that

any indexing scheme must exhibit. We prove a lower-bound theorem for deriving the minimum
redundancy. By applying this theorem we show interesting upper and lower bounds and trade-offs
between A and r in the case of multi-dimensional range queries and set queries.

Categories and Subject Descriptors: H.2.2 [Information Systems]: Database Management—Access Methods

General Terms: Theory
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1. INTRODUCTION

Upon its definition, the B-tree promptly proved to be an effective access method for the
primary applications of relational databases [Bayer and McCreight 1972]. The success
and ubiquity of the relational data model arguably owes much to the timely definition of
the B-tree. Since then, a major thrust of database research has been to extend the relational
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model and relational systems to manage more complex types and more expressive query
languages. The B-tree is widely recognized to be an inadequate data structure in many of
the novel contexts, and no single, general-purpose successor has emerged to enable the di-
versity of applications and requirements for contemporary information systems. Therefore,
it is important to develop general methodologies and tools for the design of new indexing
methods, as well as mathematical tools to, a priori, evaluate their performance and identify
their limitations.

A systems approach to the “generalized indexing” problem has been proposed and im-
plemented [Hellerstein et al. 1995; Kornacker et al. 1997; Aoki 1998; Kornacker 1999].
The results highlighted the need for theoretical tools to rigorously analyze indexing prob-
lems. To aid developers of new indexes in this general framework, a kind of theory of
indexability is required: a mathematical model that allows the performance and scalabil-
ity of an indexing scheme to be evaluated much as complexity theory is used to evaluate
algorithms. Where complexity theory considers in-memory data structures, a theory of
indexability must consider the impact of disk-based secondary storage.

Our pragmatic results focus on the multi-dimensional range search problem, a common
workload for many advanced applications. An enormous amount of experimental research
has been devoted to this problem: a recent survey cites over 50 different multi-dimensional
data structures [Gaede and Günther 1998]. Many commercial vendors of Object-Relational
Database Systems and Geographic Information Systems use one of these structures, typ-
ically some variant of the R-tree [Guttman 1984], the Grid File [Nievergelt et al. 1984]
or disk-resident adaptations of the quad-tree [Samet 1989]. This research is primarily ex-
perimental. Analytic research on these structures has concentrated on probabilistic and
empirical studies of their average-case performance, under various data and query distri-
butions.

At the same period of time that heuristic disk-based indices such as the R-Tree were in-
troduced, the computational geometry community was studying main-memory data struc-
tures for range searching, paying little attention to secondary memory. In contrast to most
multi-dimensional indexing research by the database community, the work in computa-
tional geometry is mostly theoretically oriented, with an emphasis on worst-case asymp-
totic performance. We believe that the striking contrast between these two approaches to
the same problem arose from a fundamental fact: for two-dimensional range searching
(and more so for higher dimensions), optimal query cost cannot be achieved with space
proportional to the data set, but instead requires significant storage redundancy, typically
by a multiplicative factor at least logarithmic to the size of the data set [Chazelle 1990a].
Of course, redundancy has often been used in databases to accelerate performance: index
structures are themselves typically redundant to the data sets they index, and the addition
of logarithmic space is standard for upper levels in search trees. However, the space cost
of redundancy in databases has rarely been as high as a logarithmic multiple to the size
of the data set. This is only reasonable: databases usually store very big data sets, on
top of which a logarithmic factor of redundancy makes the solution considerably more ex-
pensive in space. Also, high redundancy increases the I/O cost of online updates, at least
proportionally to the redundancy. For these reasons, low-redundancy access methods are
typically used in practice [Kornacker 1999; Kanth et al. 1999]1.

1A notable exception to this rule is the inverted index technique widely used for text retrieval (see, e.g., [Witten
et al. 1999]), in which each document identifier is replicated in the index about as many times as terms in the
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Thus, database research concentrated on data structures with low redundancy, with very
bad worst-case behavior, but with the hope of reasonable average-case behavior for real
workloads. Lowering the observed average-case cost has typically been achieved through
problem-specific heuristics, which take into account the particularities of various data sets
and query workloads. For example, access methods for two-dimensional geographic data
have been differentiated from access methods for temporal queries over one-dimensional
data, by a choice of heuristics appropriate to the expected distributions of respective data
sets and typical queries, despite the fact that from a conceptual point of view the two
problems are equivalent.

The two approaches presented above (ad hoc and application-dependent indexing schemes
versus highly redundant computational geometry data structures) are in a sense extreme:
one penalizes worst-case query performance by keeping space linear, the other strongly
favors query performance without regard to the storage cost becoming prohibitive. The
results in this paper strive to reconcile these two approaches by exposing and studying the
fundamental trade-off between I/O time and space for these problems, and investigating
techniques that are parameterized by the total space or the desired worst-case query cost.

1.1 Indexing Workloads and Indexing Schemes

Database access methods must be evaluated in the context of a particular workload. A
workload consists of an instance of a database (a finite subset of some domain), together
with a set of queries (a given set of subsets of the instance). In one-dimensional indices
such as B-trees, for example, the instance is some totally ordered finite set, and the most
common queries considered are range queries, that is to say, intervals of this order. Other
common workloads include multi-dimensional point sets with range queries, sets of inter-
vals with stabbing queries, and powersets with intersection or inclusion queries.

In what we term indexability theory, the workload plays a role similar to the role a par-
tially recursive language plays in complexity or decidability theory: it is the unit whose
complexity must be characterized2. For each workload we have a space of possible index-
ing schemes; the analog of algorithms that partially decide the language. Such an indexing
scheme is a collection of B-subsets of the instance, which we call blocks. The block size
B is assumed fixed and very large (usually in the hundreds). The union of the blocks ex-
hausts the instance. Each query is answered by retrieving a set of blocks, whose union is a
superset of the query.

Our approach suppresses important aspects of indexing, such as the algorithms for de-
termining the partition of the instance into blocks (possibly with repetitions), as well as the
algorithms for determining, given a query, the blocks in the indexing scheme that cover it
(e.g., the cost of traversing a tree to its leaf level). Furthermore, we also ignore the storage
and retrieval costs necessary to support such algorithms, e.g., auxiliary information such
as “directories” or “internal nodes”. These omissions are justified in three ways: first, we
are mostly interested in lower bounds, and therefore we are free to disregard aspects of the
complexity of the problem. Second, in practice, these aspects do not appear to be the source
of design difficulties or of complexity—it appears that good assignment of data items to

document. This replication means that online, concurrent updates to text indexes are not widely supported in
practice in text retrieval systems.
2More accurately, the analog of a language is a family of workloads, one for each cardinality of the instance.
Such growing families of workloads allow us to focus on asymptotic analysis and ignore additive constants.
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blocks tends to suggest efficient traversal algorithms, and to have low storage overhead.
Third, secondary storage techniques such as buffer management mask and absorb many of
these auxiliary cost components. However, our model also ignores the dynamic aspect of
the problem, i.e., the cost of insertion and deletion. Its consideration could be a source of
added complexity, and in a more general model the source of more powerful lower bounds.

In this paper we propose a model for the indexing of a data set with respect to a given
workload, and explore in its light the fundamental properties and trade-offs of indexing,
with an emphasis on lower bounds. In particular, we introduce a lower-bound theorem
that is applicable to arbitrary workloads —although it is not guaranteed to always yield
tight bounds. We also analyze within this model a number of interesting families of work-
loads, including multi-dimensional point sets with range queries, and powersets with sub-
sumption queries. Besides revealing some interesting laws, our results indicate positive
prospects for the use of limited redundancy. For example, for two-dimensional range
queries, even a small amount of redundancy can significantly decrease the worst-case query
cost.

2. RELATED WORK

This work was initially motivated by the work of Hellerstein, Naughton and Pfeffer on the
Generalized Search Tree (or GiST) [Hellerstein et al. 1995]. The GiST is an extensible
template indexing structure, organized as a balanced search tree. In their discussion of
indexing issues, the authors stated the need for a “theory of indexability”, a formal frame-
work that would “describe whether or not trying to index a given data set is practical for a
given set of queries.”

The research into external data structures has largely been experimental. Theoretical
work on the B-tree and its variants, as well as on external hashing, concentrated mainly on
probabilistic analysis of performance, under various distributions of the indexed data. For
these problems, the worst-case asymptotic performance has been known for a long time.

Previous work on index data structures concentrated on the study of specialized prob-
lems. In the area of multi-dimensional indexing, data structures are often classified into
two categories: those that partition the data set, such as R-trees and their variants, and
those that partition the search space, such as quad-trees and their variants. In both cat-
egories, most of the proposed algorithms are based on heuristics, and all have relatively
bad worst-case asymptotic performance. It is not clear whether this classification has any
definitive bearing on performance, and no clear winner has emerged among the many pro-
posals, even for well-understood families of workloads. A comprehensive exposition of
the relevant work can be found in the survey of spatial access methods of Gaede and
Günther [Gaede and Günther 1998], and the survey of temporal access methods of Salzberg
and Tsotras [Salzberg and Tsotras 1999].

This situation has been changing in the past few years, mostly due to the work of Kanel-
lakis, Vitter, and their collaborators. In [Kanellakis et al. 1993], it was shown that multi-
dimensional range search generalizes indexing problems in new database paradigms such
as constraint databases and class hierarchies. In subsequent publications, [Ramaswamy
and Subramanian 1994; Ramaswamy and Kanellakis 1995; Subramanian and Ramaswamy
1995; Vengroff and Vitter 1996] asymptotically efficient dynamic algorithms are presented
for two-sided and three-sided range queries, and for interval stabbing queries. An opti-
mal solution to the interval management problem has recently been found by Arge and
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Vitter [Arge and Vitter 1996]. Most of this work involves upper bounds, and is therefore
mainly concerned with the analysis of the searching aspect of the problem. There are two
exceptions: First, in [Kanellakis et al. 1996] there is an argument (proof of Lemma 2.7)
that anticipates our Theorem 4.1, namely, that the access overhead must be

√
B in the spe-

cial case in which the blocks are restricted to be rectangular. Second, in the last section
of [Subramanian and Ramaswamy 1995], there is an interesting lower bound, where it is
shown (by extending a result by Chazelle [Chazelle 1990a] to the case of block accesses)
that storage redundancy Ω(log n/ log logB n) is necessary if additive (as opposed to our
multiplicative) access overhead is to remain polynomial in logB n. Also related are the
results in [Nodine et al. 1993], who use cost metrics similar to ours, to characterize the
locality in external graph searching.

The question of lower bounds in multi-dimensional searching has been addressed in [Mehlhorn
1984], without, however, our emphasis on block accesses. Similar work is presented in
[Smid and Overmars 1990], where lower bounds are derived in a model involving binary
trees with certain further restrictions; the block size is considered in that paper as a function
of n, the number of points. Finally, in the database literature there has been extensive anal-
ysis (worst case, expected case, or empirical/experimental) of many access methods for
multi-dimensional searching (see, for example, [Pagel et al. 1993; Faloutsos and Kamel
1994; Belussi and Faloutsos 1995]). More recently, the ideas presented here have been
used in a more rigorous framework for empirically analyzing and tuning indexing perfor-
mance [Shah et al. 1999].

The concept of a space/time tradeoff in main-memory range searching has been stud-
ied thoroughly [Fredman 1980; 1981; Yao 1982; Vaidya 1989; Chazelle 1990a; 1990b;
1995]. All these works consider variants of either the RAM machine, or the pointer ma-
chine. These memory models are fundamentally different from block-structured secondary
memory.

The cell probe model, originally introduced by Yao [Yao 1981], is a general framework
for dealing with data structure problems, especially valuable for proving lower bounds,
and space-time trade-offs in particular. Let f be any mapping from query Q ∈ {0, 1}q

and dataset d ∈ {0, 1}n to the answer f(Q, d) of query Q over d. The cell probe model
assumes the existence of a memory of s cells, each cell of b bits. Let t be the maximum,
over all Q and d, of the least number of cells that must be accessed in order to compute
f(Q, d). We are interested in trade-offs between s and t, with b a parameter of the model.
Miltersen et.al [Miltersen et al. 1995] proposed some general lower bounds techniques,
employing asymmetric communication complexity, and applied them to certain data struc-
ture problems related to set membership.

The cell probe model is more general than the indexability model in this paper, because
in it memory can be organized in an arbitrary way, whereas in indexability we assume that
the memory contains explicit representations of the records. The cell probe model has been
used in the past to derive lower bounds in geometric problems; for example, [Chakrabarti
et al. 1999; Barkol and Rabani 2000] applied this model to the nearest neighbor problem,
a pure search problem for which indexability yields trivial results. However, to date the
cell probe model has not been applied to range reporting problems, which is the class of
problems with which indexability is concerned. By “reporting problems” we mean, infor-
mally, data structure problems in which the output of the algorithm must be a set of records
(think of them as strings or pointers), and the algorithm is not allowed to look inside these
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records. Reporting problems are an appropriate framework for database storage problems,
as they reflect the data independence present in databases. For reporting problems, it makes
sense to restrict the data structure solutions so that each memory location holds a record, as
we do in the indexability framework, forfeiting the generality of the cell probe model. As
one of the referees pointed out to us, by restricting the records stored to be single bits, the
cell probe model can be adapted to prove certain lower bounds similar to our bounds for
set workload reporting problems (Section 7), starting from the communication complexity
results of [Miltersen et al. 1995]. These bounds are quantitatively weaker than ours, but
hold in a more general model (albeit a model the generality of which is inaccessible to the
database problems of interest here). It would be interesting to find such cell probe lower
bounds for range search workloads (our main concern in this paper).

3. DEFINITIONS

In this section, we set out a simple framework for defining an indexing problem, and for
measuring the efficiency of a particular indexing scheme for the problem.

3.1 Indexing Workloads

Indexing schemes must be evaluated in the context of a particular workload, consisting of
a finite subset of some domain together with a set of queries. More formally, we have the
following definition:

DEFINITION 3.1. A workload W is a tuple W = (D, I,Q), where D is a non-empty
set (the domain), I ⊆ D is a non-empty finite set (the instance), and Q is a set of subsets
of I (the query set).

A workload we consider extensively is the set of two-dimensional range queries. This
workload consists of the domain R

2, the instance I = {(i, j) : 1 ≤ i, j,≤ n}, and the
family of “range queries” Q[a, b, c, d] = {(i, j) : a ≤ i ≤ b, c ≤ j ≤ d}, one for
each quadruple (a, b, c, d) with 1 ≤ a ≤ b ≤ n, 1 ≤ c ≤ d ≤ n. Notice that this is a
family of workloads, with instances of increasing cardinality, one for each n ≥ 0. Another
family of workloads (the set inclusion queries) has as its domain, for each n, all subsets
of {1, 2, . . . , n}, and for each subset I of the domain, the set of queries Q = {QS : S ⊆
{1, 2, . . . , n}}, where QS = {T ∈ I : T ⊆ S}.

In the terminology of combinatorics, W is a simple hypergraph, where I is the vertex
set, and Q is the edge set. The hypergraph abstraction has been used in related work
to measure the quality of existing indexing schemes on particular workloads [Shah et al.
1999]. We do not use this terminology here, choosing instead to define terms more natural
for databases. There is no analog of the domain D in hypergraphs. We could have dropped
it from our definition, but it is suggestive of a parameterization of workloads. For example,
all two-dimensional range-query workloads have the same domain.

3.2 Indexing Schemes

DEFINITION 3.2. An indexing scheme S = (W,B) consists of a workload W =
(D, I,Q), and for some positive integer B a set B of B-subsets of I , such that B cov-
ers I .

We refer to the elements of B as blocks, and to B as the set of blocks. We refer to B as
the block size, and K stands for the total number of blocks |B|. Notice that an indexing
scheme is a simple, B-regular hypergraph with vertex set I .
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As a convention in this paper, we will use lower-case letters from the end of the alphabet,
x, y, z to represent elements of I , letter Q, possibly with subscripts, to denote queries, and
letter b, possibly with subscripts, to denote blocks. Also, we typically use U to represent
sets of blocks.

3.3 Performance Measures

We now define two performance measures on indexing schemes, redundancy and access
overhead, evaluating the performance of the scheme in terms of space and I/O, respectively.
In particular, redundancy measures the amount of space needed by the indexing scheme,
while access overhead measures the amount of I/O required by queries. In both cases,
the measures are normalized by the ideal performance (linear space and size of the query,
respectively). In the following definitions, let S = (W,B) be an indexing scheme of block
size B on workload W = (D, I,Q), and let N = |I |.

3.3.1 Storage Redundancy

DEFINITION 3.3. The redundancy r(x) of x ∈ I is the number of blocks that contain
x:

r(x) = |{b ∈ B : x ∈ b}|
The redundancy r of S is then defined as the average of r(x) over all objects:

r =
1

N

∑

x∈I

r(x)

It is easy to see that the number of blocks is K = rN
B

.
We also define the maximum redundancy r̂ in S, as r̂ = max x∈I r(x).

3.3.2 Access Overhead

DEFINITION 3.4. A set of blocks, U ⊆ B, covers a query Q ∈ Q, iff Q ⊆ ⋃b∈U b.

DEFINITION 3.5. A cover set, CQ ⊆ B, for query Q ∈ Q is a minimum-size set of
blocks that covers Q.

Notice that a query may have multiple cover sets.

DEFINITION 3.6. The access overhead A(Q) of query Q ∈ Q is defined as

A(Q) =
|CQ|
⌈

|Q|
B

⌉

where CQ ⊆ B is a cover set for Q.

It is easy to see that 1 ≤ A(Q) ≤ B, since any query Q will be covered by at most |Q|
blocks.

Informally, A(Q) models the observed cost of query Q normalized by its ideal cost, in
terms of block accesses. For a given query Q, d|Q|/Be is the minimum number of blocks
required. A(Q) is the multiplicative overhead associated with Q for a particular indexing
scheme.

We now define the access overhead A of indexing scheme S, to be the maximum of
A(Q) over all queries.
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DEFINITION 3.7. The access overhead A for indexing scheme S is

A = max
Q∈Q

A(Q)

Notice that, although the redundancy is defined as an average (over all data items), the
access overhead is a maximum (over all queries). This is less arbitrary than it may seem
at first. By averaging over all data items we capture the true (worst-case) space perfor-
mance of the indexing scheme, while averaging I/O performance over all queries would
be much less defensible since queries are generally not equiprobable, and guarantees, and
thus worst-case analysis, are desirable in the context of query response time.

3.4 Some Trivial Bounds and Tradeoffs

Based on standard properties of databases and disks, we assume that the number of objects
N is always much greater than the block size B, although B is not limited in any concrete
way.

For some indexing scheme S, the minimum possible redundancy is 1, when B is a
partition of I , and the maximum redundancy is

(

N−1
B−1

)

, when B =
(

I
B

)

.3 For S having
maximum redundancy, A is exactly 1, which is minimum; in that case, every query Q can
be covered by a set of disjoint blocks whose union contains Q. Also, for r = 1 it is easy to
devise a problem where A = B, which is maximum (e.g., Q =

(

I
B

)

).

4. TRADEOFFS FOR A TWO-DIMENSIONAL WORKLOAD

Given this framework for indexability, we proceed to examine some families of workloads
that have received significant attention in the indexing literature. Our main goal is to ex-
pose the tradeoffs in lower bounds of r and A for these workloads, delimiting the potential
efficiency of indexes for these workloads. We start with some simple positive results (up-
per bounds) that are useful in two ways. First, they illustrate the framework of indexing
schemes. And second, they allow us to conclude later that the lower bounds of this paper
are tight.

Our main lower bound results are driven by the Redundancy Theorem that we develop in
Section 5. However, we do not need the Redundancy Theorem to obtain our first interesting
lower bound, which is presented in the second part of section.

4.1 Two-Dimensional Queries

We shall consider here workloads over the two-dimensional domain R
2, with I = {(i, j) :

1 ≤ i, j,≤ n}, and 2-d range queries over this instance. We are interested in determining
the minimum possible access overhead when the redundancy r is fixed.

PROPOSITION 1. For each integer r, there is an indexing scheme Sr with redundancy
r and access overhead 2B

1
2r + 2.

PROOF. The main idea for the indexing scheme Sr is that each query Q of x× y points
will be covered by disjoint blocks of Sr that have “almost” the same aspect ratio y/x with
Q. The ideal situation is to have blocks with aspect ratio y/x, so that the query Q is tiled
nicely by these blocks; compare this with the worst case when the query Q is “long and
narrow” and it is covered by “short and wide” blocks. Because of the restriction on the

3For set S and n ≥ 0,
(

S
n

)

denotes the set of all n-subsets of S.
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redundancy r of the indexing scheme Sr, it is not possible to have blocks for each aspect
ratio. However, we can choose blocks so that any aspect ratio can be approximated.

More precisely, for each i = 1, 2, . . . , r, our indexing scheme Sr contains all B
2i−1

2r ×
B

2r−2i+1

2r blocks that partition I . The aspect ratios B
r−2i+1

r , for i = 1, 2, . . . , r, of these
blocks are evenly distributed. It is immediate that Sr has redundancy r (maximum as well
as average). To see that Sr has access overhead at most 2B

1
2r + 2, consider the set of

B
j

r × B
r−j

r queries, j = 0, 1, . . . , r. Clearly, the best coverage of such a query is by
blocks that have almost the same aspect ratio, that is, blocks of size B

2j−1

2r × B
2r−2j+1

2r

or blocks of size B
2j+1

2r × B
2r−2j−1

2r . In both cases, when the query is “aligned” with
the blocks, it requires B

1
2r blocks (either one row of B

1
2r blocks or one column of B

1
2r

blocks). For non-aligned queries the ratio can be as high as 2B
1
2r + 2; to see this, consider

the case where an aligned query is satisfied by a row of B
1
2r blocks. If we shift this query

out of horizontal and vertical alignment, we need two rows of blocks instead of one, and at
one of the ends we need an additional column of two blocks as well. On the other hand, it
is not difficult to see that these are the worst queries for this indexing scheme.

If the access ratio is A, the above scheme has both average and maximum redundancy
r = Ω(log B/ logA). We will show that this is the best possible relation between r and A.
Indeed, in the remainder of this section we prove that this is the case when the maximum
redundancy is one. We will defer the study of the general case after we introduce our
lower-bound theorem.

4.2 A lower bound for redundancy r = 1

We will show that up to a constant factor the above indexing scheme is optimal when
r = 1. In [Kanellakis et al. 1993], the result below was shown for the special case when
the blocks are restricted to be rectangular.

THEOREM 4.1. Any indexing scheme for 2-dimensional range queries with redundancy
r = 1 has access overhead at least A = B

1
2 . For the d-dimensional case, the lower bound

is A = B1− 1
d .

PROOF. We consider first the 2-dimensional case, the general case being a straightfor-
ward generalization. For simplicity, we assume that n is a multiple of B.

For the lower bound, we consider only queries of size 1× B and B × 1. The queries of
size 1 × B partition the instance and so do the queries of size B × 1. The total number of
queries is 2n2/B.

Now fix a block b ∈ B that intersects x 1 horizontal lines and x2 vertical lines (by a “line”
we mean a set of data points of the form {(1, j), (2, j), . . . , (n, j)} or {(i, 1), (i, 2), . . . , (i, n)}).
Since every block has B points, we must have x1x2 ≥ B; hence x1 + x2 is at least 2B

1
2 .

Therefore, every block intersects at least 2B
1
2 of the above queries. Taking into account

that the number of queries is twice the number of blocks, we can conclude that, on the
average, every query of the above collection is intersected by B

1
2 blocks at least. (To see

this in detail, consider the number of pairs of intersecting blocks and queries; it is no less
than 2B

1
2 times the total number of blocks, which is 2B

1
2 n2/B; since there are 2n2/B

queries in total in the collection, the average number of intersecting blocks per query is
B

1
2 .) When the redundancy is r = 1, all these blocks are needed to cover the query.
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Notice that we showed not only that there exists a query with access overhead B
1
2 , but

that this is the expected access overhead for a random query from the above set.
The generalization to the d-dimensional case is straightforward (for example we now

have x1 + . . . + xd ≥ dB
1
d which gives access overhead at least B1− 1

d ).

5. THE REDUNDANCY THEOREM

We now turn our attention to a workload-independent analysis of the indexability model
that culminates with the Redundancy Theorem.

We first state and prove a set-theoretic result that is of central importance to our work.
Note that this theorem is not specific to indexing schemes; it arises in extremal set theory.
The reader is warned that the notation does not correspond to indexing schemes.

THEOREM 5.1. Let S1, S2, . . . , Sa (a ≥ 1) be non-empty finite sets, S = S 1∪S2∪. . .∪
Sa be their union, and L ≤ |S| be a positive integer. Let k denote the maximum integer
such that there exist k pair-wise disjoint sets P1, P2, . . . , Pk, so that for all i, 1 ≤ i ≤ k,

(1) |Pi| = L, and

(2) Pi ⊆ Sj for some j, 1 ≤ j ≤ a.

or k = 0 if no such sets exist. Then,

k ≥ |S|
L

− a (1)

PROOF. Let P1, . . . , Pk be sets that satisfy the properties of the theorem and let P be
their union, P = P1 ∪ P2 ∪ . . . ∪ Pk. The maximality of k guarantees that P contains
all but at most L elements from every Si, i = 1, . . . , a. That is, |Si \ P | < L (otherwise
we can add any subset of L elements of Si \ P to the collection of Pi’s). We can now
estimate |S \ P | = |(⋃Si) \ P | = |⋃(Si \ P )| ≤ ∑a

i=1 |Si \ P | < aL. Since every
Pj has cardinality L we conclude that kL = |P | > |S| − aL which implies the desired
k > |S|/L− a.

To apply the above theorem to the domain of indexing schemes, we define a convenient
concept, flakes, to capture the overlap of queries and blocks.

DEFINITION 5.2. Let S = (W,B) be an indexing scheme on workload W = (D, I,Q).
A flake is any set of objects F ⊆ I such that for some query Q and some block b, F ⊆ Q∩b.

Note that a flake is a subset (potentially a proper subset) of the intersection of a block and a
query. The flexibility to deal with proper subsets will allow us to consider flakes of a fixed
size, allowing us to apply certain combinatorial results below.

We now have the following lemma on flakes:

LEMMA 5.1 FLAKING LEMMA. Let S be an indexing scheme, A be its access over-
head, and ϑ be a real number in the interval [2, B

A
] such that B

ϑA
is an integer. Then, any

query Q with |Q| ≥ B/2 will contain at least (ϑ− 2)A |Q|
B

pair-wise disjoint flakes of size
B
ϑA

.
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PROOF. The parameter ϑ exists only to guarantee that B
ϑA

is integer.
Choose a cover set for Q, say CQ = {b1, . . . , ba}, of size a. Let S1, . . . , Sa be flakes

defined by S i = Q ∩ bi for 1 ≤ i ≤ a. We have

a = A(Q)

⌈ |Q|
B

⌉

≤ A

⌈ |Q|
B

⌉

≤ 2A
|Q|
B

(because |Q| ≥ B/2). We apply Theorem 5.1 on Si for L = B
ϑA

, and conclude that the
number k of flakes of size B

ϑA
is at least

k ≥ |Q|
B
ϑA

− a

≥ ϑA
|Q|
B

− 2A
|Q|
B

= (ϑ − 2)A
|Q|
B

We proceed to prove a second technical tool from extremal set theory. In coding the-
ory, under a slightly different statement, this result is known as Johnson’s bound [Johnson
1962]. Again, the notation does not correspond to indexing schemes.

THEOREM 5.3 JOHNSON’S BOUND. Let S be a finite set, and S 1, S2, . . . , Sk be sub-
sets of S, each of size at least α|S|, such that the intersection of any two of them is of size
at most β|S|. If β < α2

2−α
, the number of subsets k is at most α/β.

PROOF. Since S1, S2, . . . , St, t ≤ k, are subsets of S, their union S1 ∪ S2 ∪ . . . ∪ St is
also a subset of S and therefore

|
t
⋃

j=1

Sj | ≤ |S|.

It follows that
t
∑

j=1

|Sj | −
t
∑

j=1

t
∑

l=j+1

|Sj ∩ Sl| ≤ |S|.

By the assumptions about the sizes of the subsets and their pairwise intersection, the last
inequality implies that

tα|S| −
(

t

2

)

β|S| ≤ |S|.

Therefore, every t ≤ k must satisfy the inequality αt − β
(

t
2

)

− 1 ≤ 0. It immediately
follows that if a positive integer t does not satisfy this inequality, then the number k of
subsets must be less than t. So, in order to upper bound the number k of subsets, we need
to guarantee that the above inequality is not satisfied by at least one positive integer. This
can be easily done if we require that the two roots of the polynomial αt − β

(

t
2

)

− 1 differ
by more than 1. Since the roots of the polynomial are

α + β/2 ±
√

(α + β/2)2 − 2β

β
,
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12 · Joseph M. Hellerstein et al.

it is easy to verify that they differ by more than 1 when β < α2/(2− α).
But then, the number of subsets is at most equal to the minimum root of the above

polynomial. Thus

k ≤ α + β/2 −
√

(α + β/2)2 − 2β

β
.

This last inequality implies that k ≤ α/β.

Note that the hypotheses of the above lemma cannot be improved by a factor of more
than 2, because when β ≥ α2, the number of possible subsets is unbounded, i.e., it is an
increasing function of |S|.

We are now ready to state and prove our main result.

THEOREM 5.4. Let S be an indexing scheme, and let Q1, Q2, . . . , QM be queries, such
that for every i, 1 ≤ i ≤ M :

(1) |Qi| ≥ B/2, and

(2) |Qi ∩ Qj | ≤ B
2(ϑA)2 for all j 6= i, 1 ≤ j ≤ M .

Then, the redundancy is bounded by

r ≥ ϑ − 2

2ϑ

1

N

M
∑

i=1

|Qi|

where ϑ is any real number in the interval [2, B
A

] such that B
ϑA

is integer.

PROOF. We will prove the lower bound in two steps. First, we compute the minimum
number of flakes contained in queries Q 1, Q2, . . .QM . Let this number be f1. Then we
will compute the maximum number of flakes contained in each block. Let this number be
f2. Clearly, there will be at least f1/f2 blocks in B.

5.0.0.1 Step 1. Consider any query Qi. By the flaking lemma, this query contains at
least (ϑ−2)A |Qi|

B
disjoint flakes of size B

ϑA
. Let F be such a flake. F cannot be contained

in some other query Qj , j 6= i, because if it were, then it would be a subset of Qj as well
as of Qi, and thus |Qi ∩ Qj | ≥ B

ϑA
> B

2(ϑA)2 . We conclude that

f1 =
M
∑

i=1

(ϑ − 2)A
|Qi|
B

= (ϑ − 2)A
M
∑

i=1

|Qi|
B

5.0.0.2 Step 2:. Consider any block b, and let F1, F2, . . . , Fk be the flakes contained
in this block. Since all these flakes are subsets of b, we upper bound the number of flakes
k, using Johnson’s bound. Each flake F i is of size B

ϑA
. Also, for two distinct flakes F i and

Fj , i 6= j, |Fi ∩ Fj | ≤ B
2(ϑA)2 , by the following argument: If the flakes are contained in

the same query, then they are disjoint. If the flakes are contained in different queries, then
their intersection is bounded by the intersection of these queries. Thus, Johnson’s bound is
applicable with α = 1

ϑA
, and β = 1

2(ϑA)2 . It can easily be checked that β < α2/(2 − α).
Thus, we conclude that

f2 =
α

β
= 2ϑA
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Substituting we get

f1/f2 =
ϑ − 2

2ϑ

M
∑

i=1

|Qi|
B

The proof is complete, by the inequality K = rN
B

≥ f1

f2
which simplifies to

r ≥ ϑ − 2

2ϑ

1

N

M
∑

i=1

|Qi|

Notice that the theorem is useful only for access overhead A = O(
√

B): either all
queries are disjoint (implying access overhead 1), or for non-disjoint queries Qi and Qj ,
the second premise in the statement of the theorem implies that B

2(ϑA)2 ≥ 1.
We now simplify the theorem by removing the parameter ϑ.

THEOREM 5.5 REDUNDANCY THEOREM. Let S be an indexing scheme with access
overhead A ≤

√
B/4, and let Q1, Q2, . . . , QM be queries, such that for every i, 1 ≤ i ≤

M :

(1) |Qi| ≥ B/2, and
(2) |Qi ∩ Qj | ≤ B

16A2 for all j 6= i, 1 ≤ j ≤ M .

Then, the redundancy is bounded by

r ≥ 1

12N

M
∑

i=1

|Qi|.

PROOF. Let ϑ1 = 12/5 and ϑ2 = 2
√

2. We first show that there exists ϑ ∈ [ϑ 1, ϑ2]
such that B

ϑA
is integer. This follows from B

ϑ1A
− B

ϑ2A
= ( 1

ϑ1
− 1

ϑ2
)B

A
≥ ( 1

ϑ1
− 1

ϑ2
) B

A2 ≥
( 1

ϑ1
− 1

ϑ2
)16 > 1.

Using such a ϑ in Theorem 5.4, the second premise becomes

|Qi ∩ Qj | ≤
B

16A2
=

B

2(ϑ2A)2
≤ B

2(ϑA)2

and the factor ϑ−2
2ϑ

of the conclusion becomes

ϑ − 2

2ϑ
≥ ϑ1 − 2

2ϑ1
=

1

12
.

Observe that given any set of queries M = {Q1, . . . , QM}, we can construct blocks for
each query independently, for a total of

TM =

M
∑

i=1

⌈ |Qi|
B

⌉

blocks, achieving a perfect access overhead of one, with redundancy r = TM
B
N

≥
∑

M
i=1

|Qi|

N
. The Redundancy Theorem states that when the queries intersect pairwise in

at most B
16A2 elements for some A, increasing the access overhead to A does not yield an

improvement in space by more than a constant factor of TM.
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6. LOWER BOUNDS FOR MULTI-DIMENSIONAL RANGE QUERIES

We now apply the Redundancy Theorem to d-dimensional range queries. First, we examine
the case for 2-dimensional range queries, and then we generalize to d dimensions.

For any d ≥ 1, we define the d-dimensional range query workload, R d
n, whose domain

is R
d, with instance I = [1 : n]d and query set

Q = {[a1 : b1] × . . . × [ad : bd] | 1 ≤ ai ≤ bi ≤ n}

For this workload, N = nd.

6.1 2-d Range Queries

In order to apply the Redundancy Theorem, we must identify queries Q1, Q2, . . . , QM ,
each of size at least B/2, and with pairwise intersections at most B

16A2 . We consider only
queries of size cj × B

cj , for j = 0, 1, . . . , logc B. For each aspect ratio we will partition the

n × n grid, obtaining a total of M = n2

B
(1 + logc B) queries of size B each. Before we

apply the theorem, we compute the parameter c.

Qj Qj’

Qj

Qj’

B

c j’

c j

Fig. 1. Two rectangles of sizes cj × B

cj and cj′ × B

cj′
, j < j′, intersecting in at most B

cj′−j
points.

Let j and j′ be integers 0 ≤ j < j ′ ≤ logc B, and Qj and Qj′ be queries of dimensions
cj × B

cj and cj′ × B

cj′
respectively. Figure 1 depicts the setup. It is easy to see that for any

j and j′, |Qj ∩ Qj′ | ≤ B

cj′−j
≤ B

c
. Thus, we take c = 16A2.
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We are now ready to apply the Redundancy Theorem. From the theorem,

r ≥ 1

12

MB

n2

=
1

12

1

n2

(

B
n2

B
(1 + logc B)

)

=
1

12
(1 + logc B)

≥ 1

12
logc B

=
1

12

log B

log(16A2)

and thus we have

r = Ω

(

log B

log A

)

6.2 d-Dimensional Queries

We can generalize the above technique to d-dimensional queries. We consider queries of
size B, with dimensions cj1×cj2×. . .×cjd , for all nonnegative integer j1, j2, . . . , jd, such
that

∑d

k=1 jk = logc B. For each sequence j1, j2, . . . , jd, we partition the d-dimensional
cube into nd/B (hyper)rectangles, of dimensions cj1 × cj2 × . . . × cjd .

In order to select the appropriate value for c, we consider the size of pairwise intersec-
tions of rectangles with different dimensions. It is easy to see that c = 16A2 is applicable
in this case also, guaranteeing that the intersection of any two rectangles will have size at
most B

16A2 .
We also use the well-known fact that the number of distinct sequences of d nonnegative

integers, whose sum is n, is given by
(

n + d − 1

d − 1

)

(cf. Bose-Einstein distribution).
Thus, the total number of queries (each of size B) will be

M =
nd

B

(

logc B + d − 1

d − 1

)

=
nd

B

( log B
log(16A2) + d − 1

d − 1

)

and for the redundancy we have

r ≥ 1

12

( log B
log(16A2) + d − 1

d − 1

)

For d a constant, the above quantity is a polynomial of degree d− 1. Thus, we have shown
the following theorem:

THEOREM 6.1. For workload Rd
n, the storage redundancy is bound by

r =

(

Ω
(

log B
log A

)

+ d − 1

d − 1

)

= Ω

(

(

log B

log A

)d−1
)
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6.3 Fibonacci Workload

So far, our trade-offs have depended only on the block size B, but not on the size of the
instance. Unfortunately, this is not always the case. In this section, we study a family of
workloads for two-dimensional range queries that exhibits much worse performance.

Using our framework of indexing schemes, it was shown in [Koutsoupias and Taylor
1998] that there exist simple 2-dimensional workloads with tradeoffs that depend on the
instance size. In particular, they studied range queries of the Fibonacci lattice (to be defined
shortly) and showed that any indexing scheme with redundancy less than Θ(log n) has the
worst possible overhead A = B. The bound Θ(log n) is tight up to a constant factor. They
later extended the results to random sets of points and higher dimensions [Koutsoupias and
Taylor 1999].

Here we illustrate the power of the Redundancy Theorem by extending the results for
the Fibonacci lattice when the access overhead is small, A = O(

√
B). Furthermore, we

give the precise trade-off between redundancy and access overhead.
We now define the Fibonacci lattice, which is the regular lattice rotated appropriately.

Let n = fk be the k-th Fibonacci number. The Fibonacci lattice Fn is the set of points
defined by:

Fn = {(i, ifk−1 mod n) : i = 0, 1, . . . , n − 1} for n = fk.

The Fibonacci workload over domain R
2 is defined by taking the Fibonacci lattice as the

instance I , and all rectangular queries as Q .
We will only need the following property of the Fibonacci lattice, from [Fiat and Shamir

1989]:

PROPOSITION 2. For the Fibonacci lattice Fn of n points, and for t ≥ 0, any rectangle
with area t ·n contains between bt/c1c and dt/c2e points, where c1 ≈ 1.9 and c2 ≈ 0.45.

Now we apply the Redundancy Theorem to the Fibonacci workload. We have to define
an appropriate set of queries Q1, . . . , QM , each of cardinality at least B/2.

We consider rectangles of area a = c1Bn/2. By Proposition 2, each such rectangle
will contain at least B/2 points. Let c be a parameter to be specified later. We consider
rectangles of dimensions ci × a

ci , for appropriate values of i. For each such aspect ratio,
we partition the Fibonacci lattice into non-overlapping rectangles, in a tiling fashion. Each
of these rectangles will define a query.

Because no rectangle can have a side longer than n, we must constrain i to obey

ci ≤ n and
a

ci
≤ n

From these, we compute that i must range between logc
c1B
2 and logc n, i.e., approximately

logc
2n

c1B
aspect ratios. Since for each i we cover the whole set of points, the Redundancy

Theorem gives

r ≥ 1

12
logc

2n

c1B
= Ω

(

log n
B

log c

)

Now we specify an appropriate value of parameter c that satisfies the second premise
of the Redundancy Theorem—which states that no two queries can intersect by more than

B
16A2 points. We observe that rectangles of the same aspect ratio do not intersect, and rect-
angles of different aspect ratios have intersections of area at most a/c. Again by Proposi-
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tion 2, it suffices to have
⌈

a/c

c2n

⌉

≤ B

16A2

which is satisfied by

c ≈ 8
c1

c2
A2.

Thus, we have the following theorem:

THEOREM 6.2. For the Fibonacci workload, any indexing scheme with the access
overhead A ≤

√
B/4 must have redundancy

r = Ω

(

log(n/B)

log A

)

.

The Fibonacci lattice is only one of many low-discrepancy [Matousek 1999], planar
point sets we could have used. For example, we could have used the point set used by
Chazelle [Chazelle 1990a], in his proof of a lower bound for range search in the pointer
machine model. Matousek [Matousek 1999] discusses the discrepancy properties of the
Fibonacci lattice, and many other point sets. However, none of these will improve the
trade-off of Theorem 6.2 by more than a small constant factor.

7. SET WORKLOADS

We now turn our attention to the problem of indexing for arbitrary sets. An interesting
workload is the λ-set workload Kn,λ, whose instance is the set {1, . . . , n} and whose
query set is the set of all λ-subsets of the instance. We show that these workloads are far
worse than 2-dimensional queries.

Our Redundancy Theorem is applicable only when λ > B/2. In practice we are also
interested in workloads with small values for λ. To analyze these workloads, we prove a
corollary of the following famous theorem by Turán [Turán 1941; J.H. van Lint and Wilson
1992]:

THEOREM 7.1 TURÁN’S THEOREM. If a simple graph of n vertices has more than

(p − 2)n2

2(p − 1)
− r(p − 1 − r)

2(p − 1)
(r = n mod p)

edges, then it contains a complete graph of p vertices (a p-clique).

For a given graph, an independent set is a subset of its vertices such that there is no edge
between any pair of these vertices.

COROLLARY 1. In a simple graph G(V, E), with |V | = n, if

|E| ≤ n2 − n(p − 1)

2(p − 1)

then G has an independent set of size p.

PROOF. Let G̃(V, Ẽ) be the graph with

Ẽ =

{

(v1, v2) ∈
(

V

2

)

∣

∣

∣
(v1, v2) 6∈ E

}
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Then,

|Ẽ| =

(

n

2

)

− |E| >
(p − 2)n2

2(p − 1)

and thus by Turán’s Theorem G̃ has a p-clique. The vertices of the clique form an inde-
pendent set in G.

We now show a lower bound for set workloads.

THEOREM 7.2. For workload Kn,λ(I,Q), B ≥ λ, any indexing scheme with redun-
dancy

r <
n − λ + 1

(λ − 1)(B − 1)

has the worst possible access overhead A = λ.

PROOF. Construct graph G(I, E) where (x1, x2) ∈ E iff there exists a block containing
both x1 and x2. This graph will have at most

r
n

B

(

B

2

)

<
n2 − n(λ − 1)

2(λ − 1)

edges. By Corollary 1, it has an independent set of size λ. This set, taken as a query, will
require exactly λ distinct blocks to be covered (by the construction of G).

The last theorem states that Kn,λ requires space at least quadratic in n/B to avoid the
worst possible access overhead. We show that within a factor of 2, the bound of the theorem
is tight.

THEOREM 7.3. For workload Kn,λ and B ≥ λ there exists an indexing scheme of
access overhead A = λ − 1 and redundancy

r =
2n

(λ − 1)B
− 1

PROOF. We arbitrarily partition the instance into λ − 1 sets of roughly equal size,
S1, . . . , Sλ−1. For each set Si, we will construct suitable blocks so that for any x, x′ ∈ Si

there is a single block containing both. Then, for every query Q, some elements x1 and
x2 will belong to the same set Si, and thus will be covered by a single block, and so
A(Q) ≤ λ − 1.

To construct blocks for set Si, we arbitrarily partition the set Si into k = 2n
(λ−1)B sets

tj , j = 1, . . . , k of size B/2 each. For each pair of these sets we construct a block con-
taining their union. Thus, for any pair of elements of Si, there exists a block containing
both.

For each of the λ − 1 sets Si we constructed
(

k
2

)

blocks. The total number of blocks
constructed thus is

(λ − 1)

( 2n
(λ−1)B

2

)

=
n

B

(

2n

(λ − 1)B
− 1

)

which yields the required redundancy.
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8. CONCLUSIONS

We have presented a new framework for the modeling and study of indexing in external
memory. Our cost model is minimalistic, in that it ignores important parameters of external
memory and indexing. This is not by accident but rather by design. There exist more
precise (and more complex) cost models that are more accurate in predicting space and/or
I/O indexing costs, e.g., models that include the search aspects of indexing, or models
that describe hard disk performance more accurately. In our view, however, a successful
model is not one that represents reality faithfully, but rather one that manages to capture the
essence of a facet of the real world in a way that allows for deeper study and understanding
of this facet.

Having argued in favor of the minimalistic aspects of indexability, we should stress
that we expect indexability results to often carry over to more detailed models straight-
forwardly, and also to the implementation domain. Recent results by Arge, Samoladas
and Vitter [Arge et al. 1999] indicate that it may be possible to employ indexability tech-
niques as subroutines in external data structures, as part of a systematic approach to the
“externalization” of main memory data structures. Kornacker, Shah, and Hellerstein have
developed an index analysis tool called amdb [Shah et al. 1999]; among its features is a
test for unit redundancy indexability, which serves as a concrete performance target for
index developers.
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