ISSN 0376 - 9453

Amtsblatt

L 248

34. Jahrgang

5. September 1991

der Europäischen Gemeinschaften

Ausgabe in deutscher Sprache

Rechtsvorschriften

Inhalt

- Veröffentlichungsbedürftige Rechtsakte
- ★ Verordnung (EWG) Nr. 2568/91 der Kommission vom 11. Juli 1991 über die Merkmale von Olivenölen und Oliventresterölen sowie die Verfahren zu ihrer Bestimmung . . .

Preis: 12 ECU

Ι

(Veröffentlichungsbedürftige Rechtsakte)

VERORDNUNG (EWG) Nr. 2568/91 DER KOMMISSION

vom 11. Juli 1991

über die Merkmale von Olivenölen und Oliventresterölen sowie die Verfahren zu ihrer Bestimmung

DIE KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN —

gestützt auf den Vertrag zur Gründung der Europäischen Wirtschaftsgemeinschaft,

gestützt auf die Verordnung Nr. 136/66/EWG des Rates vom 22. September 1966 über die Errichtung einer gemeinsamen Marktorganisation für Fette (¹), zuletzt geändert durch die Verordnung (EWG) Nr. 3577/90 (²), insbesondere auf Artikel 35a,

in Erwägung nachstehender Gründe:

Im Anhang der Verordnung Nr. 136/66/EWG sind die Bezeichnungen und Begriffsbestimmungen für Olivenöle und Oliventresteröle zur Vermarktung im innerstaatlichen und innergemeinschaftlichen Handel sowie im Handel mit Drittländern festgelegt.

Unbeschadet der bereits geltenden einschlägigen Bestimmungen müssen zur Unterscheidung der Olivenölkategorien die entsprechenden chemisch-physikalischen Merkmale sowie die organoleptischen Merkmale nativer Olivenöle festgelegt werden, damit Reinheit und Qualität der betreffenden Erzeugnisse gewährleistet sind.

Die Merkmale der einzelnen Olivenöle müssen gemeinschaftsweit einheitlich bestimmt werden. Daher müssen gemeinschaftliche Verfahren für die chemische Analyse und die organoleptische Prüfung festgelegt werden. Allerdings sollten während einer Übergangszeit auch andere in den Mitgliedstaaten übliche Analyseverfahren zulässig sein, wobei jedoch vorzusehen ist, daß bei abweichenden Ergebnissen die nach dem gemeinschaftlichen Verfahren erzielten Ergebnisse gelten.

Die Festlegung der chemisch-physikalischen Merkmale von Olivenölen und der Analyseverfahren erfordert eine Anpassung der Zusatzvorschriften zu Kapitel 15 der Kombinierten Nomenklatur.

Zur Bewertung der organoleptischen Merkmale nativer Olivenöle müssen Gruppen von ausgewählten und geschulten sensorischen Prüfern gebildet werden; dafür ist eine ausreichende Zeitspanne vorzusehen. Da einige Mitgliedstaaten solche Prüfergruppen nicht ohne weiteres zusammenstellen können, muß ihnen die Möglichkeit eingeräumt werden, die in anderen Mitgliedstaaten eingesetzten Prüfergruppen zu befassen.

Damit das einwandfreie Funktionieren der für die Einfuhr von Oliventresteröl geltenden Abschöpfungsregelung gewährleistet ist, muß ein einheitliches Verfahren zur Bestimmung des Ölgehalts dieser Erzeugnisse vorgesehen werden.

Um Nachteile für den Handel auszuschließen, sollte Olivenöl, das vor Inkrafttreten dieser Verordnung abgefüllt wurde, während einer bestimmten Zeit noch vermarktet werden dürfen.

Die Verordnung (EWG) Nr. 1058/77 der Kommission (3), zuletzt geändert durch die Verordnung (EWG) Nr. 1858/88 (4), ist aufzuheben.

Der Verwaltungsausschuß für Fette hat nicht innerhalb der ihm von seinem Vorsitzenden gesetzten Frist Stellung genommen —

HAT FOLGENDE VERORDNUNG ERLASSEN:

Artikel 1

- (1) Native Olivenöle im Sinne der Nummer 1 Buchstaben a), b) und c) des Anhangs der Verordnung Nr. 136/66/EWG sind Öle, deren Merkmale mit den in Anhang I Nummern 1, 2 und 3 dieser Verordnung genannten Merkmalen übereinstimmen.
- (2) Natives Lampantöl im Sinne der Nummer 1 Buchstabe d) des Anhangs der Verordnung Nr. 136/66/EWG ist Öl, dessen Merkmale mit den in Anhang I Nummer 4 dieser Verordnung genannten Merkmalen übereinstimmen.
- (3) Raffiniertes Olivenöl im Sinne der Nummer 2 des Anhangs der Verordnung Nr. 136/66/EWG ist Olivenöl, dessen Merkmale mit den in Anhang I Nummer 5 dieser Verordnung genannten Merkmalen übereinstimmen.

⁽¹⁾ ABl. Nr. 172 vom 30. 9. 1966, S. 3025/66.

⁽²⁾ ABl. Nr. L 353 vom 17. 12. 1990, S. 23.

⁽³⁾ ABl. Nr. L 128 vom 24. 5. 1977, S. 6.

⁽⁴⁾ ABl. Nr. L 166 vom 1. 7. 1988, S. 10.

- (4) Olivenöl im Sinne der Nummer 3 des Anhangs der Verordnung Nr. 136/66/EWG ist Öl, dessen Merkmale mit den in Anhang I Nummer 6 dieser Verordnung genannten Merkmalen übereinstimmen.
- (5) Rohes Oliventresteröl im Sinne der Nummer 4 des Anhangs der Verordnung Nr. 136/66/EWG ist Olivenöl, dessen Merkmale mit den in Anhang I Nummer 7 dieser Verordnung genannten Merkmalen übereinstimmen.
- (6) Raffiniertes Oliventresteröl im Sinne der Nummer 5 des Anhangs der Verordnung Nr. 136/66/EWG ist Olivenöl, dessen Merkmale mit den in Anhang I Nummer 8 dieser Verordnung genannten Merkmalen übereinstimmen.
- (7) Oliventresteröl im Sinne der Nummer 6 des Anhangs der Verordnung Nr. 136/66/EWG ist Olivenöl, dessen Merkmale mit den in Anhang I Nummer 9 dieser Verordnung genannten Merkmalen übereinstimmen.

Artikel 2

- (1) Die Merkmale der Öle gemäß Anhang I dieser Verordnung werden nach folgenden Analysenverfahren bestimmt:
- freie Fettsäuren, berechnet in Prozent Ölsäure, nach dem Verfahren des Anhangs II;
- Peroxidzahl nach dem Verfahren des Anhangs III;
- aliphatische Alkohole nach dem Verfahren des Anhangs IV;
- Sterinfraktion nach dem Verfahren des Anhangs V;
- Erythrodiol nach dem Verfahren des Anhang VI;
- gesättigte Fettsäuren in 2-Stellung der Triglyceride nach dem Verfahren des Anhangs VII;
- Trilinoleingehalt nach dem Verfahren des Anhangs VIII;
- spektrophotometrische Analyse nach dem Verfahren des Anhangs IX;
- Fettsäurezusammensetzung nach dem Verfahren der Anhänge XA und XB;
- flüchtige halogenierte Lösungsmittel nach dem Verfahren des Anhangs XI;
- Bestimmung der organoleptischen Merkmale nativer Olivenöle nach dem gemäß Absatz 2 angewandten Verfahren des Anhangs XII;
- Raffinationsnachweis nach dem Verfahren des Anhangs XIII.
- (2) Die organoleptischen Merkmale werden von einem Analytiker auch unter Hinzuziehung von Sachverständigen nach dem im Prüfbogen gemäß Anhang XII vorgesehenen Verfahren bewertet. Stellt der Analytiker Abweichungen zwischen den von ihm erfaßten und den aufgrund der Produktbezeichnung zu erwartenden organoleptischen Merkmalen fest, so muß er die Probe von einer Gruppe von sensorischen Prüfern gemäß den Bestimmungen des Anhangs XII prüfen lassen.

Die Kontrollanalysen werden von der Gruppe nach denselben Bestimmungen durchgeführt.

Die Prüfergruppe bewertet die organoleptischen Eigenschaften im Zusammenhang mit Interventionsmaßnahmen nach den Vorschriften des Anhangs XII.

Artikel 3

Unbeschadet der Einführung der Analysenverfahren gemäß Artikel 2 dürfen die Mitgliedstaaten bis 31. Oktober 1992 andere erprobte und wissenschaftlich begründete Verfahren verwenden, soweit der freie Verkehr mit den in Anwendung der Gemeinschaftsverfahren als vorschriftsmäßig anerkannten Erzeugnissen nicht behindert wird. Die betreffenden Mitgliedstaaten notifizieren der Kommission diese anderen Verfahren vor ihrer Verwendung.

Führt eines dieser anderen Verfahren zu einem anderen Ergebnis als das Gemeinschaftsverfahren, so gilt das nach dem Gemeinschaftsverfahren erzielte Ergebnis.

Artikel 4

- (1) Zur Beurteilung der organoleptischen Merkmale bilden die Mitgliedstaaten Gruppen von sensorischen Prüfern, die nach den Regeln des in Anhang XII beschriebenen Verfahrens geschult wurden.
- (2) Sollte ein Mitgliedstaat in seinem Hoheitsgebiet nicht ohne weiteres eine Prüfergruppe bilden können, so kann er eine in einem anderen Mitgliedstaat tätige Prüfergruppe befassen.

Artikel 5

Die zusätzlichen Vorschriften 2, 3 und 4 zu Kapitel 15 der Kombinierten Nomenklatur werden durch die des Anhangs XIV ersetzt.

Artikel 6

- (1) Der Ölgehalt von Trester und anderen Rückständen der Olivenölextraktion (KN-Codes 2306 90 11 und 2306 90 19) wird nach dem Verfahren des Anhangs XV bestimmt
- (2) Der Ölgehalt gemäß Absatz 1 wird in Massenprozenten, bezogen auf die Trockenmasse, berechnet.

Artikel 7

Für andere als im Anhang XI aufgeführte unerwünschte Stoffe gelten die entsprechenden Gemeinschaftsvorschriften.

Artikel 8

(1) Die Mitgliedstaaten teilen der Kommission die Maßnahmen mit, die sie zur Durchführung dieser Verordnung getroffen haben. (2) Die Mitgliedstaaten übermitteln der Kommission zu Beginn jedes Halbjahres eine Zusammenstellung der analytischen Daten der im vorangegangenen Halbjahr durchgeführten Bestimmungen.

Diese Ergebnisse werden vom Verwaltungsausschuß für Fette nach dem Verfahren des Artikels 39 der Verordnung Nr. 136/66/EWG geprüft.

Artikel 9

Die Verordnung (EWG) Nr. 1058/77 wird aufgehoben.

Artikel 10

(1) Diese Verordnung tritt am dritten Tag nach ihrer Veröffentlichung im Amtsblatt der Europäischen Gemeinschaften in Kraft.

Das Verfahren des Anhangs XII ist jedoch, außer wenn es sich um Interventionsmaßnahmen handelt, ab 1. Januar 1992 anwendbar.

(2) Diese Verordnung gilt nicht für Olivenöl und Oliventresteröl, das vor dem Tag des Inkrafttretens dieser Verordnung abgefüllt und bis zum 31. Oktober 1992 vermarktet wurde.

Diese Verordnung ist in allen ihren Teilen verbindlich und gilt unmittelbar in jedem Mitgliedstaat.

Brüssel, den 11. Juli 1991

Für die Kommission Ray MAC SHARRY Mitglied der Kommission

ANHÄNGE

Inhalt

		Seite
Anhang I:	Merkmale von Olivenölen	4
Anhang II:	Bestimmung der freien Fettsäuren	6
Anhang III:	Bestimmung der Peroxidzahl	8
Anhang IV:	Bestimmung des Gehalts an aliphatischen Alkoholen mit der Kapillar-Gaschromatographie	10
Anhang V:	Bestimmung der Zusammensetzung und des Gehalts an Sterinen mit der Kapillar-Gaschromatographie	15
Anhang VI:	Bestimmung des Erythrodiols und des Uvaols	23
Anhang VII:	Bestimmung von Fettsäuren in 2-Stellung der Triglyceride	25
Anhang VIII:	Bestimmung des Trilinoleingehalts	29
Anhang IX:	UV-spektrophotometrische Analyse	33
Anhang XA:	Gaschromatographische Analyse der Fettsäuremethylester	36
Anhang XB:	Vorbereitung der Fettsäuremethylester	44
Anhang XI:	Bestimmung des Gehalts an flüchtigen halogenierten Lösungsmitteln in Olivenöl	48
Anhang XII:	Organoleptische Prüfung von nativem Olivenöl	49
Anhang XIII:	Raffinationsnachweis	75
Anhang XIV:	Zusätzliche Anmerkungen 2, 3 und 4 zu Kapitel 15 der Kombinierten Nomenklatur	77
Anhang XV:	Ölgehalt der Oliventrester	80
Anhang XVI:	Bestimmung der Iodzahl	82

ANHANG I

MERKMALE VON OLIVENÖLEN

Gehalt an freien Fett- säuren %	Peroxidzahl meq O ₂ /kg	Halogenierte Aliphatische Lösungs- Alkohole mittel mg/kg (1)	Aliphatische Alkohole mg/kg	Gesättigte Fettsäuren in 2-Stellung der Triglyceride %	Erythrodiol + Uvaol %	Trilinolein %	Cholesterm 1%	Cholesterin Brassicasterin Campesterin Stigmasterin %	Campesterin %	Stigmasterin %	Beta- Sitosterin % (²)	Delta-7- Stigmasterin %	Gesamt- sterine mg/kg
M 1,0 M 20	i .	M 0,20	M 300	M 1,3	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	m 93,0	M 0,5	m 1 000
M 2,0 M 20		M 0,20	M 300	M 1,3	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	ш 93,0	M 0,5	m 1 000
M 3,3 M 20		M 0,20	M 300	M 1,3	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	m 93,0	M 0,5	m 1 000
> 3,3		> 0,20	M 400	M 1,3	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	1	m 93,0	M 0,5	m 1 000
M 0,5 M 10		M 0,20	M 350	M 1,5	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	m 93,0	M 0,5	m 1 000
M1,5 M15		M 0,20	M 350	M 1,5	M 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	m 93,0	M 0,5	m 1 000
m 2,0 —		ı	1	M 1,8	m 12	M 0,5	M 0,5	M 0,2	M 4,0	ı	т 93,0	M 0,5	m 2 500
M 0,5 M 10		M 0,20	1	M 2,0	m 12	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	m 93,0	M 0,5	m 1 800
M1,5 M15		M 0,20	ı	M 2,0	> 4,5	M 0,5	M 0,5	M 0,2	M 4,0	< Camp.	т 93,0	M 0,5	m 1 800

M = Höchstgehalt, m = Mindestgehalt.
 (1) Höchstgehalt für die Summe aller Verbindungen bei Nachweis mittels Elektroneneinfang Detektor. Für jede einzelne Verbindung beträgt der Höchstgehalt 0,10 mg/kg.
 (2) Summe aus Delta-5,24-Stigmastadienol, Chlerosterin, Beta-Sitosterin, Sitostanol, Delta-5-Avenasterin und Delta-5,24-Stigmastadienol.

Anmerkung:

Auch wenn nur ein einziges Merkmal nicht mit dem vorgeschriebenen Grenzwert übereinstimmt, muß das Öl einer anderen Klasse zugeordnet oder als nicht seinen Reinheitskriterien entsprechend bezeichnet werden.

		į	Gehalt an	lt an					K ₂₇₀ nach		
Kategorie	Myristinsäure %	Linolensäure %	· Arachinsäure %	Eicosensäure %	Behensäure %	Lignocerinsäure %	K ₂₃₂	K270	Aluminium- oxid (1)	Delta K	Sensorische Prüfung
1. Natives Olivenöl extra	M 0,1	6'0 W	Z*0 W	M 0,5	M 0,3	M 0,5	M 2,40	M 0,20	M 0,10	M 0,01	\$,9€
2. Natives Olivenöl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 2,50	M 0,25	M 0,10	M 0,01	8,5≤
3. Gewöhnliches natives Olivenöl	M 0,1	M 0,9	M 0,7	M 0,5	M 0,3	M 0,5	M 2,50	M 0,25	M 0,10	M 0,01	≥3,5
4. Lampantöl	M 0,1	W 0,9	M 0,7	M 0,5	M 0,3	M 0,5	M 3,70	> 0,25	M 0,11	1	<3,5
5. Raffiniertes Olivenöl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 3,40	M 1,20	ı	M 0,16	1
6. Olivenöl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 3,30	M 1,00	1	M 0,13	ı
7. Rohes Oliventresteröl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	1	ŀ	1	!	1
8. Raffiniertes Oliventresteröl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 5,50	M 2,50	1	M 0,25	1
9. Oliventresteröl	M 0,1	6,0 M	M 0,7	M 0,5	M 0,3	M 0,5	M 5,30	M 2,00	1	M 0,20	1:
(1) Im Fall von Olivenölen mit einem Gehalt an freien Fettsäuren von mehr als $0,11$ ist. Wenn K_{270} den Grenzwert der entsprechenden Kategorie überschreitet, mu	mit einem Gehalt vert der entsprech	t an freien Fettsäu Ienden Kategorie	ren von mehr als : überschreitet, mul	3,3% muß auf Ra 3 zur Feststellung	affination gemäß der Reinheit K2;	i 3,3% muß auf Raffination gemäß der Methode in Anhang XIII geprüft werden, wenn K270 nach Behandeln mit Aluminiumoxid größer als uß zur Feststellung der Reinheit K270 nach Behandlung mit Aluminiumoxid bestimmt werden.	nhang XIII geprü g mit Aluminium	ft werden, wenn oxid bestimmt w	K ₂₇₀ nach Behand erden.	eln mit Aluminiu	moxid größer als

ANHANG II

BESTIMMUNG DER FREIEN FETTSÄUREN

1. ANWENDUNGSBEREICH

Bestimmung der freien Fettsäuren in Olivenölen. Der Gehalt an freien Fettsäuren wird über den Gehalt an freien Säuren in konventioneller Weise berechnet.

1.1. Prinzip der Methode

Die Probe wird in einem geeigneten Lösungsmittelgemisch gelöst. Dann werden die vorhandenen freien Säuren mit einer ethanolischen Kaliumhydroxidlösung titriert.

1.2. Reagenzien

Alle Reagenzien müssen anerkannte Anaylsenqualität aufweisen; als Wasser ist destilliertes Wasser oder Wasser gleicher Reinheit zu verwenden.

1.2.1. Diethylether/Ethanol 95%ig (V/V), Mischung 1:1.

Vorsicht: Diethylether ist leicht brennbar und kann explosive Peroxide bilden. Es muß daher unter besonderen Vorsichtsmaßnahmen verwendet werden.

Das Diethylether/Ethanol-Gemisch muß unmittelbar vor dem Gebrauch mit einer Kaliumhydroxidlösung (1.2.2) unter Zusatz von 0,3 ml Phenolphthaleinlösung (1.2.3) pro 100 ml Lösungsmittelgemisch neutralisiert werden.

Anmerkung: Wenn Diethylether nicht benutzt werden kann, so kann auch eine Mischung aus Ethanol und Toluol verwandt werden. Eventuell kann auch Ethanol durch 2-Propanol ersetzt werden.

1.2.2. Kaliumhydroxid, ethanolische Lösung, 0,1 molar oder, falls erforderlich, 0,5 molar.

Die genaue Konzentration der ethanolischen Kaliumhydroxidlösung muß bekannt sein und unmittelbar vor der Verwendung überprüft werden. Die Lösung sollte mindestens 5 Tage vorher hergestellt und in eine braune Flasche, die mit einem Gummistopfen verschlossen wird, dekantiert werden. Sie muß farblos oder nur schwach gefärbt sein.

Anmerkung: Eine stabile farblose Kaliumhydroxidlösung kann wie folgt hergestellt werden: 1 000 ml Ethanol mit 8 g Kaliumhydroxid und 0,5 g Aluminiumspäne eine Stunde am Rückflußkühler kochen. Sofort destillieren. Die erforderliche Menge Kaliumhydroxid in dem destillierten Ethanol lösen und mehrere Tage stehen lassen. Die klare Lösung von dem ausgefallenen Karbonat abdekantieren.

Die Lösung kann auch ohne Destillation wie folgt hergestellt werden: 1 000 ml Ethanol mit 4 ml Aluminiumbutylat mehrere Tage stehen lassen. Die überstehende Flüssigkeit abdekantieren und die erforderliche Menge Kaliumhydroxid darin lösen. Diese Lösung ist gebrauchsfertig.

1.2.3. Phenolphthalein, Lösung von 10 g/l in 95-96%igem Ethanol oder Alkaliblau (bei sehr stark gefärbten Fetten), Lösung von 20 g/l in 95-96%igem Ethanol.

1.3. Geräte

Übliche Laborgeräte u. a.:

- 1.3.1. Analysenwaage,
- 1.3.2. 250-ml-Erlenmeyerkolben,
- 1.3.3. 10-ml-Bürette mit 0,05-ml-Graduierung.

1.4. Verfahren

1.4.1. Die Bestimmung erfolgt mit der filtrierten Probe. Beträgt der Gesamtgehalt an Wasser und Verunreinigungen weniger als 1 %, so wird die Bestimmung mit der unfiltrierten Probe durchgeführt.

1.4.2. Probe

Die Größe der Einwaage richtet sich nach dem zu erwartenden Gehalt an freien Fettsäuren (Angaben in der nachstehenden Tabelle).

Erwarteter Gehalt an freien Fettsäuren	Einwaage (in g)	Genauigkeit der Einwaage (in g)
<1	20	0,05
14	10	0,02
4—15	2,5	0,01
15—75	0,5	0,001
>75	0,1	0,0002

Die Probe in den Erlenmeyerkolben (1.3.2) einwiegen.

1.4.3. Durchführung der Bestimmung

Die Probe (1.4.2) in 50 bis 150 ml der neutralisierten Diethylether/Ethanol-Mischung (1.2.1) lösen. Mit der 0,1 molaren Kaliumhydroxidlösung (1.2.2) (Anmerkung 2) unter Schütteln bis zum Umschlag des Indikators titrieren. (Die Rosafärbung des Phenolphthaleins muß mindestens 10 Sekunden anhalten.)

Anmerkungen:

- Die ethanolische Kaliumhydroxidlösung (1.2.2) kann durch eine wäßrige Kaliumhydroxid- oder Natriumhydroxidlösung ersetzt werden, wenn die zugeführte Wassermenge keine Phasentrennung bewirkt.
- Werden zur Titration mehr als 10 ml der 0,1 molaren Kaliumhydroxidlösung benötigt, so ist eine 0,5 molare Lösung zu verwenden.
- Wird die Lösung während der Titration trübe, so ist eine ausreichende Menge Lösungsmittelmischung (1.2.1) zuzufügen, bis die Lösung wieder klar ist.

1.5. Berechnung des Gehalts an freien Fettsäuren in % Ölsäure

Der Gehalt an freien Fettsäuren in Gewichtsprozent ist

$$V \times c \times \frac{M}{1000} \times \frac{100}{m} = \frac{V \times c \times M}{10 \times m}$$

Dabei sind:

V = Verbrauch an Kaliumhydridlösung in ml,

c = genaue Konzentration der Kaliumhydroxidlösung in mol/l,

M = Molekulargewicht in g der Säure, die für die Berechnung zugrunde gelegt wird (= 282),

m = Probeneinwaage in g.

Als Ergebnis gilt das arithmetische Mittel von zwei Bestimmungen.

ANHANG III

BESTIMMUNG DER PEROXIDZAHL

1. ZWECK

Diese Norm beschreibt ein Verfahren für die Bestimmung der Peroxidzahl von Ölen und Fetten.

2. ANWENDUNGSBEREICH

Diese Norm gilt für tierische und pflanzliche Öle und Fette.

3. DEFINITION

Die Peroxidzahl ist die Gesamtmenge solcher Substanzen in der Probe, ausgedrückt in Milliäquivalenten aktiven Sauerstoffs pro kg, die unter den beschriebenen Arbeitsbedingungen Kaliumiodid oxidieren.

4. PRINZIP

Behandlung der in Essigsäure und Chloroform gelösten Probe mit einer Kaliumiodidlösung. Titration des freigesetzten Iods durch eine eingestellte Natriumthiosulfatlösung.

5. GERÄTE

Die Geräte müssen frei von reduzierenden oder oxidierenden Substanzen sein.

Anmerkung: Schliffflächen nicht einfetten.

- 5.1. Mikrobechergläschen, 3 ml.
- 5.2. 250-ml-Schliffkolben mit Stopfen, die zuvor getrocknet und mit einem reinen, trockenen Inertgas (Stickstoff oder vorzugsweise Kohlendioxid) gefüllt wurden.
- 5.3. 25- oder 50-ml-Bürette, mit 0,1-ml-Graduierung.

6. REAGENZIEN

- 6.1. Chloroform, analytisch rein, durch Einleiten von reinem, trockenem Inertgas von Sauerstoff befreit
- 6.2. Eisessig, analytisch rein, durch Einleiten von reinem, trockenem Inertgas von Sauerstoff befreit.
- 6.3. Kaliumiodid, gesättigte wäßrige Lösung, frisch zubereitet, frei von Iod und Iodaten.
- 6.4. Natriumthiosulfat, genau 0,01 oder 0,002 N wäßrige Lösung, unmittelbar vor der Verwendung eingestellt.
- 6.5. Stärkelösung, wäßrige Dispersion, von 10 g/l, aus natürlicher löslicher Stärke frisch hergestellt.

7. PROBE

Die Probe ist unter Lichtabschluß zu entnehmen und zu lagern und kühl in vollständig gefüllten Glasgefäßen, die mit Glas- oder Korkstopfen verschlossen sind, aufzubewahren.

8. VERFAHREN

Die Bestimmung soll bei diffusem Tageslicht oder künstlichem Licht durchgeführt werden. In ein Mikrobechergläschen (5.1) oder aber in einen Kolben (5.2) die Probemenge auf 0,001 g genau einwiegen, unter Berücksichtigung der erwarteten Peroxidzahl gemäß nachstehender Tabelle:

Erwartete Peroxidzahl (meq O ₂ /kg)	Probemenge (g)
0 bis 12	5,0 bis 2,0
12 bis 20	2,0 bis 1,2
20 bis 30	1,2 bis 0,8
30 bis 50	0,8 bis 0,5
50 bis 90	0,5 bis 0,3

Den Stopfen von dem Kolben (5.2) abnehmen und den Mikrobecher mit der Probemenge einführen. 10 ml Chloroform (6.1) hinzufügen. Die Probe schnell unter Rühren auflösen, 15 ml Essigsäure (6.2), dann 1 ml Kaliumiodidlösung (6.3) hinzufügen. Den Stopfen rasch einsetzen, eine Minute schütteln und genau fünf Minuten unter Lichtabschluß bei einer Temperatur von 15 bis 25 °C stehenlassen.

Etwa 75 ml destilliertes Wasser zugeben. Das freigesetzte Iod mit Natriumthiosulfatlösung (6.4) unter kräftigem Schütteln titrieren (0,002-N-Lösung für erwartete Werte unter 12 und 0,01-N-Lösung für erwartete Werte über 12). Stärkelösung (6.5) als Indikator verwenden.

Zwei Bestimmungen mit derselben Probe durchführen.

Zur gleichen Zeit einen Blindversuch durchführen. Übersteigt das Ergebnis des Blindversuchs 0,05 ml einer 0,01-N-Natriumthiosulfatlösung (6.4), so sind die unreinen Reagenzien zu ersetzen.

9. ABFASSUNG DER ERGEBNISSE

Die Peroxidzahl (P.V.), ausgedrückt in Milliäquivalenten aktiven Sauerstoffs pro kg, wird nach folgender Formel errechnet:

$$P.V. = \frac{V \times T \times 1000}{m}$$

Dabei sind:

V = die Anzahl ml der eingestellten Natriumthiosulfatlösung (6.4), die für die Bestimmung verbraucht werden, korrigiert durch den entsprechenden Wert des Blindversuchs,

T = die genaue Normalität der Natriumthiosulfatlösung (6.4),

m = das Gewicht der Probe in g.

Als Ergebnis gilt das arithmetische Mittel der beiden so durchgeführten Bestimmungen.

ANHANG IV

BESTIMMUNG DES GEHALTS AN ALIPHATISCHEN ALKOHOLEN MIT DER KAPILLAR-GASCHROMATOGRAPHIE

1. ANWENDUNGSBEREICH

Die Methode beschreibt ein Verfahren zur Bestimmung der Zusammensetzung und des Gehalts an aliphatischen Alkoholen.

2. KURZBESCHREIBUNG

Das Fett wird mit 1-Eicosanol als internem Standard versetzt, mit ethanolischer Kaliumhydroxidlösung verseift und das Unverseifbare mit Ethylether extrahiert. Die Alkoholfraktion wird dünnschichtchromatographisch über basische Kieselgelplatten vom Unverseifbaren abgetrennt. Die aus dem
Kieselgel isolierten Alkohole werden in Trimethylsilylether überführt und mit Hilfe der Kapillar-Gaschromatographie untersucht.

3. GERÄTE UND HILFSMITTEL

- 3.1. Kolben, 250 ml, mit Rückflußkühler und Schliffstopfen,
- 3.2. Scheidetrichter, 500 ml,
- 3.3. Kolben, 250 ml,
- 3.4. komplette Apparatur für die Dünnschichtchromatographie mit Glasplatten 20 × 20 cm,
- 3.5. UV-Lampe, Wellenlänge 366 oder 254 nm,
- 3.6. Mikroliterspritzen, 100 und 500 µl,
- 3.7. Glasfiltertiegel mit Porenfilter G 3 (Porosität 15 40 µm), etwa 2 cm Durchmesser, 5 cm Höhe, geeignetem Anschlußstück für die Vakuumfiltration und Schliffmuffe 12/21,
- 3.8. Vakuumflasche, 50 ml, mit Schliffmuffe 12/21, für Glasfiltertiegel (3.7),
- 3.9. 10-ml-Röhrchen mit konischem Boden und dichtschließendem Stopfen,
- 3.10. Gaschromatograph, geeignet für die Verwendung von Kapillarsäulen mit Splitsystem, bestehend
- 3.10.1. thermostatisierbarem Säulenofen, einstellbar auf die gewünschte Temperatur mit einer Genauigkeit von ± 1°C,
- 3.10.2. temperaturregelbare Verdampfeinrichtung mit Verdampfer aus persilanisiertem Glas,
- 3.10.3. Flammenionisations-Detektor mit Verstärker,
- 3.10.4. Integrator mit Schreiber, mit Verstärker zu koppeln,
- 3.11. Kapillarsäule aus Glas oder fused silica, 20 30 m Länge, 0,25 0,32 mm Innendurchmesser, Innenwand belegt mit SE-52 oder SE-54 oder einer gleichwertigen stationären Phase, Schichtdicke 0,10 0,30 μm,
- 3.12. Mikroliterspritze für die Gaschromatographie, 10 µl, mit gehärteter Nadel,

4. REAGENZIEN

- 4.1. Kaliumhydroxid, ethanolische Lösung 2 N: 130 g Kaliumhydroxid (Titer mindestens 85%) in 200 ml destilliertem Wasser unter Kühlen lösen und mit Ethanol auf 1 l auffüllen. Die Lösung sollte in gut verschlossenen braunen Glasflaschen aufbewahrt werden,
- 4.2. Ethylether, analysenrein,
- 4.3. wasserfreies Natriumsulfat, analysenrein,

- 4.4. mit Kieselgel beschichtete Glasplatten ohne Fluoreszenzindikator, Schichtdicke 0,25 mm (gebrauchsfertig im Handel erhältlich),
- Kaliumhydroxid, ethanolische Lösung 0,2 N: 13 g Kaliumhydroxid in 20 ml destilliertem Wasser lösen und mit Ethanol auf 1 l auffüllen,
- 4.6. Benzol für die Chromatographie (siehe 5.2.2),
- 4.7. Aceton für die Chromatographie (siehe 5.2.2),
- 4.8. Hexan für die Chromatographie (siehe 5.2.2),
- 4.9. Ethylether für die Chromatographie (siehe 5.2.2),
- 4.10. Chloroform, analysenrein,
- 4.11. Referenzlösung für die Dünnschichtchromatographie: 5%ige Lösung von C₂₀ bis C₂₈-Alkoholen in Chloroform,
- 4.12. 2', 7'-Dichlorfluorescein, 0,2%ige ethanolische Lösung, leicht alkalisch durch Zusatz einiger Tropfen alkoholischer 2-N-Kaliumhydroxid-Lösung,
- 4.13. wasserfreies Pyridin für die Chromatographie,
- 4.14. Hexamethyldisilazan,
- 4.15. Trimethylchlorsilan,
- 4.16. Standardlösung der Trimethylsilylether der aliphatischen Alkohole von C₂₀ C₂₈, unmittelbar vor Gebrauch ansetzen aus einer Mischung der reinen Alkohole,
- 4.17. 1-Eicosanol, 0,1%ige Lösung (m/V) in Chloroform (interner Standard),
- 4.18. Trägergase: Wasserstoff oder Helium, rein für die Gaschromatographie,
- 4.19. Hilfsgase: Wasserstoff und Luft, rein, für die Gaschromatographie.

5. VERFAHREN

5.1. Herstellung des Unverseifbaren

5.1.1. Mit einer 500-μl-Mikroliterspritze so viel von der 0,1%igen 1-Eicosanollösung in Chloroform (4.17) in einen 250-ml-Kolben geben, daß die Menge an 1-Eicosanol (ebensogut kann 1-Eneicosanol verwendet werden) etwa 10% des Gehalts an aliphatischen Alkoholen des zur Analyse verwandten aliquoten Teils der Probe entspricht. So werden z. B. für 5 g Olivenöl oder Samenöl 250 μl der 0,1%igen 1-Eicosanollösung benötigt und für Oliventresteröl 1 500 μl.

Die Probe im Stickstoffstrom bis zur Trocknung eindampfen. In den gleichen Kolben genau 5 g der trockenen und filtrierten Probe einwiegen.

- 5.1.2. Die Probe bei aufgesetztem Rückflußkühler mit 50 ml 2-N-ethanolischer Kaliumhydroxidlösung versetzen, auf dem Wasserbad erhitzen und unter kräftigem Schütteln und schwachem Sieden verseifen (wobei die Lösung klar wird). Die Probe weitere 20 Minuten am Sieden halten und dann durch den Rückflußkühler mit 50 ml destilliertem Wasser versetzen; den Rückflußkühler entfernen und den Kolben auf etwa 30 °C abkühlen.
- 5.1.3. Den Kolbeninhalt quantitativ in einen 500-ml-Scheidetrichter überführen, wobei mehrfach mit insgesamt 50 ml destilliertem Wasser nachgespült wird. Die Probe mit etwa 80 ml Ethylether versetzen, 30 Sekunden kräftig schütteln und absetzen lassen (Anmerkung 1).

Die wäßrige Phase in einen anderen Scheidetrichter ablassen und dann noch zweimal nach dem gleichen Verfahren mit $60-70\,$ ml Ethylether extrahieren.

- Anmerkung 1: Etwaige Emulsionen können mit Hilfe einer Waschflasche durch Zusatz kleiner Mengen Ethylalkohol oder Methylalkohol zerstört werden.
- 5.1.4. Die Etherauszüge in einem Scheidetrichter vereinigen und mehrmals mit jeweils 50 ml destilliertem Wasser waschen, bis das Waschwasser neutral reagiert.

Das Waschwasser ablassen, die Etherphase mit wasserfreiem Natriumsulfat trocknen und über wasserfreiem Natriumsulfat in einen zuvor gewogenen 250-ml-Kolben filtrieren. Scheidetrichter und Filter mit kleinen Mengen Ethylether nachspülen.

5.1.5. Den Ether bis auf wenige ml abdestillieren, den Rückstand unter leichtem Vakuum oder im Stickstoffstrom trocknen, 1/4 Stunde im Trockenschrank bei 100 °C nachtrocknen, im Exsikkator abkühlen lassen und wiegen.

5.2. Abtrennen der Alkoholfraktion

5.2.1. Herstellung der basischen Platten

Die Kieselgelplatten (4.4) vollständig ca. 10 Sekunden lang in eine ethanolische 0,2-N-Kaliumhydroxidlösung (4.5) eintauchen, dann unter einem Abzug 2 Stunden trocknen lassen, anschließend noch 1 Stunde bei 100 °C im Trockenschrank.

Die Platten aus dem Trockenschrank nehmen und in einem Exsikkator über Calciumchlorid bis zum Gebrauch aufbewahren. (Derart behandelte Platten müssen innerhalb von 14 Tagen gebraucht werden.)

Anmerkung 2: Bei Verwendung von basischen Kieselgelplatten zur Abtrennung der Alkoholfraktion erübrigt sich die Behandlung des Unverseifbaren mit Aluminiumoxid. Auf diese Weise bleiben sämtliche sauren Verbindungen (Fettsäuren und andere) an der Startlinie. So erhält man eine saubere Trennung der Zone der aliphatischen Alkohole und Terpenalkohole von den Sterinen.

5.2.2. Die Entwicklerkammer bis zu einer Höhe von etwa 1 cm mit einem Benzol/Aceton-Gemisch 95:5 (V/V) beschicken. Statt dessen kann auch ein Hexan/Ethylether-Gemisch 65:35 (V/V) verwandt werden. Die Kammer mit einem geeigneten Deckel verschließen und mindestens eine halbe Stunde stehen lassen, damit sich ein Gleichgewicht zwischen Flüssigkeit und Dampfphase einstellt. An der Innenwand der Kammer können Filterpapierstreifen befestigt werden, die in das Fließmittel eintauchen. Dadurch kann die Laufzeit um ein Drittel verkürzt und eine gleichmäßige Elution der Komponenten erzielt werden.

Anmerkung 3: Um gut reproduzierbare Trennungen zu erzielen, ist das Gemisch jedesmal frisch anzusetzen.

- 5.2.3. Von einer 5%igen Lösung des Unverseifbaren (5.1.5) in Chloroform mit einer 100-µl-Spritze 0,3 ml als durchgehenden, gleichmäßigen Strich 2 cm vom unteren Plattenrand entfernt auf die Dünnschichtplatte (5.2.1) auftragen. In der Verlängerung der Startlinie werden am Rande 2—3 µl der Standardlösung der aliphatischen Alkohole (4.11) aufgetragen, um die Alkoholzone nach der Entwicklung identifizieren zu können.
- 5.2.4. Die Platte in die nach 5.2.2 vorbereitete Entwicklerkammer stellen. Die Temperatur der Umgebung sollte 15 20 °C betragen. Die Kammer mit dem Deckel verschließen und die Platte so lange entwickeln, bis die Fließmittelfront bis 1 cm unter den oberen Plattenrand gestiegen ist. Dann die Platte aus der Entwicklerkammer nehmen und das Lösungsmittel in einem warmen Luftstrom abdampfen oder die Platte eine geraume Zeit unter dem Abzug liegen lassen.
- 5.2.5. Die Platte vorsichtig und gleichmäßig min 2', 7'-Dichlorfluoresceinlösung besprühen. Die Lage der Zone der aliphatischen Alkohole mit Hilfe des Flecks der Standardlösung bestimmen. Die Zone der aliphatischen Alkohole und die Zone der unmittelbar darüber liegenden Terpenalkohole werden mit einem schwarzen Stift umrandet.
 - Anmerkung 4: Da unter den Bedingungen dieses Verfahrens die Terpenalkohole beträchtliche Mengen an aliphatischen Alkoholen enthalten, müssen beide Zonen zusammen erfaßt werden.
- 5.2.6. Das in der markierten Zone liegende Kieselgel mit einem Metallspatel abkratzen, fein mahlen und in einen Glasfiltertiegel (3.7) überführen. Mit 10 ml warmem Chloroform versetzen, mit Hilfe des Metallspatels gründlich vermischen und unter Vakuum filtrieren. Das Filtrat in der an den Glasfiltertiegel angeschlossenen Vakuumflasche (3.8) auffangen.

Den Rückstand im Glasfiltertiegel dreimal mit je 10 ml Ethylether waschen und das Filtrat wiederum in der Vakuumflasche auffangen. Das Filtrat bis auf ein Volumen von etwa 4—5 ml eindampfen und den Rest der Lösung in das zuvor gewogene 10-ml-Probenglas (3.9) überführen. Durch vorsichtiges Erhitzen unter einem schwachen Stickstoffstrom bis zur Tocknung eindampfen. Mit einigen Tropfen Aceton versetzen, wieder bis zur Trocknung eindampfen, etwa 10 Minuten im Trockenschrank auf 105 °C erhitzen, anschließend im Exsikkator abkühlen lassen und wiegen.

Der Rückstand in dem Probengläschen enthält die Fraktion der aliphatischen Alkohole.

5.3. Herstellung der Trimethylsilylether (TMSE)

5.3.1. Dem Probengläschen mit der Fraktion der aliphatischen Alkohole je Milligramm aliphatischem Alkohol 50 µl Silanisierungsreagenz, bestehend aus einem Gemisch aus Pyridin, Hexamethyldisilazan und Trimethylchlorsilan im Verhältnis 9:3:1 (V/V/V) (Anmerkung 5) zusetzen. Dabei darf es nicht zur Aufnahme von Wasser kommen (Anmerkung 6).

Anmerkung 5: Gebrauchsfertige Lösungen sind im Handel erhältlich; daneben gibt es auch andere Silanisierungsreagenzien, wie beispielsweise N,O- bis -Trimethylsilyltrifluoracetamid + 1 % Trimethylchlorsilan, das mit gleichen Teilen wasserfreiem Pyridin gemischt werden muß. 5.3.2. Das Probengläschen verschließen und gründlich, nicht zu stark schütteln, bis sich die aliphatischen Alkohole gelöst haben. Die Probe mindestens 15 Minuten bei Raumtemperatur stehen lassen und dann einige Minuten zentrifugieren. Die klare Lösung kann nun gaschromatographisch untersucht werden.

Anmerkung 6: Die Beobachtung einer leichten Opaleszenz ist normal und bedeutet keine Störung. Die Bildung eines weißen Niederschlags oder der Eindruck einer Rosafärbung sind Anzeichen der Anwesenheit von Feuchtigkeit oder der Zersetzung des Reagens. In diesem Fall soll der Test wiederholt werden.

5.4. Gaschromatographische Analyse

- 5.4.1. Vorarbeiten, Einfahren der Säule
- 5.4.1.1. Die Säule in den Gaschromatographen einsetzen, wobei das Einlaßteil an den mit dem Trennsystem verbundenen Verdampfer und das Auslaßteil an den Detektor angeschlossen wird. Überprüfung des Gaschromatographen auf Dichtigkeit der Gasleitungen, Betriebsbereitschaft des Detektors, des Trennsystems, des Schreibers usw.
- 5.4.1.2. Wird die Säule zum erstenmal verwendet, ist es ratsam, sie einzufahren. Einen schwachen Gasstrom durch die Säule geben, den Gaschromatographen einschalten und allmählich auf eine Temperatur von mindestens 20 °C über der Arbeitstemperatur (Anmerkung 7) aufheizen. Diese Temperatur ist mindestens 2 Stunden konstant zu halten, und dann sind die Analysenbedingungen einzustellen (Gasstrom, Split, Zünden der Flamme, Schreiberanschluß, Ofentemperatur, Injektor, Detektor). Dann eine Empfindlichkeit wählen, die mindestens doppelt so groß ist wie bei der Durchführung der Analyse. Die Grundlinie muß linear verlaufen, ohne Peaks oder Drift.

Eine negative Drift ist ein Indiz für einen undichten Anschluß der Säule, eine positive deutet auf ein mangelhaftes Einfahren der Säule hin.

Anmerkung 7: Die Einfahrtemperatur muß in jedem Fall 20 °C unter der für die stationäre Phase angegebenen Maximaltemperatur liegen.

5.4.2. Wahl der Arbeitsbedingungen

5.4.2.1. Anhaltspunkte für die Arbeitsbedingungen:

Säulentemperatur: anfangs isotherm 8 Minuten bei 180 °C, dann stufenweise um 5 °C pro Minute bis auf 260 °C ansteigend, anschließend 15 Minuten bei 260 °C;

Verdampfertemperatur: 280 °C;

Detektortemperatur: 290 °C;

Strömungsgeschwindigkeit des Trägergases: Helium 20—35 cm/s, Wasserstoff 30—50 cm/s;

Splitverhältnis: 1/50 — 1/100;

Geräteempfindlichkeit: das 4- bis 16fache der Mindestdämpfung;

Detektorempfindlichkeit: 1-2 mV f. s.;

Papiervorschub: 30-60 cm/Std;

Einspritzvolumen: 0,5—1 µl TMSE-Lösung.

Diese Bedingungen können entsprechend den Kenndaten der Säule und des Gaschromatographen derart geändert werden, daß die damit aufgezeichneten Chromatogramme folgende Bedingungen erfüllen:

- die Retentionszeit des C26-Alkohols muß 18 ± 5 Minuten betragen;
- der Peak des C_{22} -Alkohols muß bei Olivenöl 80 \pm 20 % und bei Samenölen 40 \pm 20 % der gesamten Skala erreichen.
- 5.4.2.2. Zur Überprüfung der vorstehenden Bedingungen werden wiederholt Proben von TMSE-Alkohol-Gemischen eingespritzt und die Arbeitsbedingungen optimiert.
- 5.4.2.3. Die Parameter für die Peak-Integration sind so zu wählen, daß für die in Betracht kommenden Peaks korrekte Werte erzielt werden.
- 5.4.3. Durchführung der Analyse
- 5.4.3.1. Mit der 10-μl-Mikroliterspritze 1 μl Hexan entnehmen, 0,5 μl Luft und anschließend 0,5—1 μl Probenlösung aufziehen, dabei den Kolben der Spritze so weit einziehen, daß die Nadel leer ist. Die Nadel in die Membran des Injektors einführen, nach 1—2 Sekunden schnell einspritzen, dann nach etwa 5 Sekunden die Nadel langsam herausziehen.
- 5.4.3.2. Das Chromatogramm aufzeichnen, bis alle vorhandenen aliphatischen Alkohole eluiert sind. Die Grundlinie muß stets den vorgeschriebenen Anforderungen (5.4.1.2) genügen.
- 5.4.4. Identifizierung der Peaks

Die einzelnen Peaks werden ahand der Retentionszeiten und durch Vergleich mit dem unter denselben Bedingungen analysierten TSME-Gemisch der aliphatischen Alkohole identifiziert.

Abbildung 1 zeigt ein Chromatogramm der Alkoholfraktion eines nativen Ölivenöls.

- 5.4.5. Quantitative Bestimmung
- 5.4.5.1. Die Peakflächen von 1-Eicosanol und der aliphatischen Alkohole von C₂₂ bis C₂₈ werden mit Hilfe eines Integrators ermittelt.

5.4.5.2. Der Gehalt an den einzelnen aliphatischen Alkoholen in mg/100 g Fett wird nach folgender Formel berechnet:

Alkohol
$$x = \frac{A_x \cdot m_s \cdot 100}{A_s \cdot m}$$

Darin bedeuten:

A_x = Peakfläche des Alkohols x in mm²,

A_s = Peakfläche von 1-Eicosanol in mm²,

m_s = zugesetzte Menge 1-Eicosanol in mg,

m = Menge der für die Bestimmung entnommenen Probe in g.

6. ERGEBNISSE

Der Gehalt an den einzelnen aliphatischen Alkoholen wird in mg/100 g Fett angegeben und zum "Gesamtgehalt an aliphatischen Alkoholen" addiert.

ANLAGE

Bestimmung der linearen Strömungsgeschwindigkeit

In den auf Normalbedingungen eingestellten Gaschromatographen werden 1 bis 3 μ l Methan (oder Propan) eingespritzt und die von dem Gas benötigte Durchlaufzeit durch die Säule vom Zeitpunkt des Einspritzens bis zum Peak-Austritt (t_M) gemessen.

Die lineare Strömungsgeschwindigkeit in cm/s ist durch die Beziehung L/t_M definiert; dabei ist L die Länge der Säule in cm und t_M die gemessene Zeit in Sekunden.

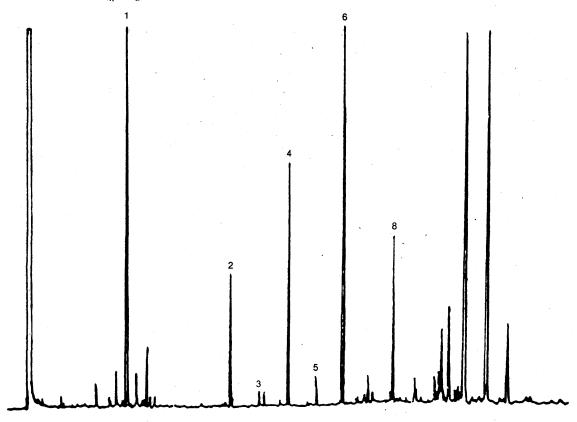


Abbildung 1: Chromatogramm der Alkoholfraktion eines nativen Olivenöls

1 = Eicosanol (int. Stand.), 5 = Pentacosanol,

= Dicosanol, 6 = Hexacosanol,

3 = Tricosanol, 7 = Heptacosanol,

= Tetracosanol, 8 = Octacosanol.

ANHANG V

BESTIMMUNG DER ZUSAMMENSETZUNG UND DES GEHALTS AN STERINEN MIT DER KAPILLAR – GASCHROMATOGRAPHIE

1. UMFANG UND ANWENDUNGSBEREICH

Diese Methode beschreibt das Verfahren zur Bestimmung der Sterinzusammensetzung und des Steringehalts von Fetten.

2. KURZBESCHREIBUNG

Das Fett wird mit α-Cholestanol als innerem Standard versetzt und mit ethanolischer Kaliumhydroxidlösung verseift. Die Sterinfraktion wird aus dem Unverseifbaren dünnschicht-chromatographisch über basische Kieselgelplatten abgetrennt.

Die aus dem Kieselgel isolierten Sterine werden in Trimethylsilylether überführt und mit Hilfe der Kapillar-Gaschromatographie untersucht.

3. GERÄTE UND HILFSMITTEL

- 3.1. Kolben, 250 ml, mit Rückflußkühler und Schliffstopfen,
- 3.2. Scheidetrichter, 500 ml,
- 3.3. Kolben, 250 ml,
- 3.4. komplette Apparatur für die Dünnschichtchromatographie mit Glasplatten 20 × 20 cm,
- 3.5. UV-Lampe, Wellenlänge 366 oder 254 nm,
- 3.6. Mikroliterspritzen, 100 und 500 µl,
- 3.7. Glasfiltertiegel mit Porenfilter G 3 (Porosität 15—40 µm), etwa 2 cm Durchmesser, 5 cm Höhe, mit geeignetem Anschlußstück für die Vakuumfiltration und Schliffmuffe 12/21,
- 3.8. Vakuumflasche, 50 ml, mit Schliffmuffe 12/21, für Glasfiltertiegel (3.7),
- 3.9. 10-ml-Röhrchen mit konischem Boden und dicht schließendem Stopfen,
- 3.10. Gaschromatograph, geeignet für die Verwendung von Kapillarsäulen, mit Splitsystem, bestehend aus:
- 3.10.1. einem thermostatisierbaren Säulenofen, einstellbar auf die gewünschte Temperatur mit einer Genauigkeit von ± 1 °C,
- 3.10.2. einer temperaturregelbaren Verdampfereinrichtung mit Verdampfer aus persilanisiertem Glas,
- 3.10.3. einem Flammenionisations-Detektor mit Verstärker,
- 3.10.4. einem Integrator mit Schreiber, mit Verstärker zu koppeln,
- 3.11. einer Kapillarsäule aus Glas oder fused silica, 20—30 m Länge, 0,25—0,32 mm Innendurchmesser, Innenwand belegt mit SE-52 oder SE-54 oder einer gleichwertigen stationären Phase, Schichtdicke 0,10—0,30 μm,
- 3.12. Mikroliterspritze für die Gaschromatographie, 10 µl, mit gehärteter Nadel.

4. REAGENZIEN

4.1. Kaliumhydroxid, ethanolische Lösung 2 N: 130 g Kaliumhydroxid (Titer mindestens 85 %) in 200 ml destilliertem Wasser unter Kühlen lösen und mit Ethanol auf 1 Liter auffüllen. Die Lösung ist in gut verschlossenen Braunglasflaschen haltbar (Ethanol 95 % V/V),

- 4.2. Ethylether, analysenrein,
- 4.3. wasserfreies Natriumsulfat, analysenrein,
- 4.4. kieselgelbeschichtete Glasplatten ohne Fluoreszenzindikator, Schichtdicke 0,25 mm (gebrauchsfertig im Handel erhältlich),
- 4.5. Kaliumhydroxid, ethanolische Lösung 0,2 N: 13 g Kaliumhydroxid werden in 20 ml destilliertem Wasser gelöst und mit Ethanol auf 1 Liter aufgefüllt,
- 4.6. Benzol für die Chromatographie (siehe 5.2.2),
- 4.7. Aceton für die Chromatographie (siehe 5.2.2),
- 4.8. Hexan für die Chromatographie (siehe 5.2.2),
- 4.9. Ethylether für die Chromatographie (siehe 5.2.2),
- 4.10. Chloroform, analysenrein,
- 4.11. Referenzlösung für die Dünnschichtchromatographie: Cholesterin oder Phytosterole, 5 % ige Lösung in Chloroform,
- 4.12. 2', 7'-Dichlorfluorescein, 0,2%ige ethanolische Lösung, leicht alkalisch durch Zusatz einiger Tropfen alkoholischer 2-N-Kaliumhydroxid-Lösung,
- 4.13. wasserfreies Pyridin für die Chromatographie,
- 4.14. Hexamethyldisilazan,
- 4.15. Trimethylchlorsilan,
- 4.16. Standardlösung von Sterin-Trimethylsilylethern unmittelbar vor Gebrauch ansetzen mit reinen Sterinen oder Sterinmischungen aus Ölen, in denen sie enthalten sind,
- 4.17. α-Cholestanol, 0,2%ige Lösung (m/V) in Chloroform (interner Standard),
- 4.18. Trägergas: Wasserstoff oder Helium, rein, für die Gaschromatographie,
- 4.19. Hilfsgase: Wasserstoff und Luft, rein, für die Gaschromatographie.

VERFAHREN

5.1. Herstellung des Unverseifbaren

5.1.1. Mit einer 500-μl-Mikroliterspritze so viel der 0,2%igen α-Cholestanollösung in Chloroform (4.17) in einen 250-ml-Kolben geben, daß die Menge an Cholestanol etwa 10% des Steringehalts des zur Analyse verwandten aliquoten Teils der Probe entspricht. So werden z. B. für 5 g Olivenöl 500 μl der 0,2%igen α-Cholestanollösung benötigt, 1 500 μl für Samenöle oder Oliventresteröl. Im Stickstoffstrom bis zur Trocknung abdampfen. In den gleichen Kolben genau 5 g der trockenen und filtrierten Probe einwiegen.

Bei tierischen und pflanzlichen Fetten, die größere Mengen an Cholesterin enthalten, kann ein Peak mit der gleichen Retentionszeit wie Cholestanol auftreten. In diesem Fall ist die Sterinfraktion einmal mit und einmal ohne internen Standard zu analysieren.

- 5.1.2. Die Probe bei aufgesetztem Rückflußkühler mit 50 ml 2-N-ethanolischer Kaliumhydroxidlösung versetzen, auf dem Wasserbad erhitzen und unter kräftigem Schütteln und schwachem Sieden verseifen (wobei sich die Lösung klärt). Die Probe weitere 20 Minuten am Sieden halten und dann durch den Rückflußkühler mit 50 ml destilliertem Wasser versetzen, den Rückflußkühler entfernen und den Kolben auf etwa 30 °C abkühlen.
- 5.1.3. Den Kolbeninhalt quantitativ in einen 500-ml-Scheidetrichter überführen, wobei mehrfach mit insgesamt 50 ml destilliertem Wasser nachgespült wird. Die Probe mit etwa 80 ml Ethylether versetzen, 30 Sekunden kräftig schütteln und absetzen lassen (vgl. Hinweis 1).

Die wäßrige Phase in einen anderen Scheidetrichter ablassen und dann noch zweimal nach dem gleichen Verfahren mit 60—70 ml Ethylether extrahieren.

Hinweis 1: Etwaige Emulsionen können mit Hilfe einer Waschflasche durch Zusatz kleiner Mengen Ethyl- oder Methylalkohol zerstört werden.

5.1.4. Die Etherauszüge in einem Scheidetrichter vereinigen und mehrmals mit jeweils 50 ml destilliertem Wasser waschen, bis das Waschwasser neutral reagiert.

Das Waschwasser ablassen, die Etherphase mit wasserfreiem Natriumsulfat trocknen, über wasserfreiem Natriumsulfat in einen zuvor gewogenen 250-ml-Kolben filtrieren. Scheidetrichter und Filter mit kleinen Mengen Ethylether nachspülen.

5.1.5. Den Ether bis auf wenige ml abdestillieren, den Rückstand unter leichtem Vakuum oder im Stickstoffstrom trocknen, ¹/₄ Stunde im Trockenschrank bei 100 °C nachtrocknen, im Exsikkator abkühlen lassen und wiegen.

5.2. Trennung der Sterinfraktion

5.2.1. Herstellung der basischen Platten

Die Kieselgelplatten (4.4) vollständig ca. 10 Sekunden lang in eine 0,2-N-ethanolische Alkalihydroxidlösung (4.5) eintauchen, dann unter einem Abzug 2 Stunden trocknen lassen, anschließend noch 1 Stunde bei 100 °C im Trockenschrank.

Die Platten aus dem Trockenschrank nehmen und in einem Exsikkator über Calciumchlorid bis zum Gebrauch aufbewahren. (Derart behandelte Platten müssen innerhalb von 15 Tagen gebraucht werden.)

- Hinweis 2: Bei Verwendung von alkalischen Kieselgelplatten zur Trennung der Sterinfraktion erübrigt sich die Behandlung des Unverseifbaren mit Aluminiumoxid. Auf diese Weise bleiben sämtliche sauren Verbindungen (Fettsäuren und andere) an der Startlinie. So erhält man eine saubere Trennung der Sterinzone von denen der aliphatischen Alkohole und Terpenalkohole.
- 5.2.2. Die Entwicklerkammer bis zu einer Höhe von etwa 1 cm mit einem Benzol/Aceton-Gemisch 95:5 (V/V) beschicken. Statt dessen kann auch ein Hexan/Ethylether-Gemisch 65:35 (V/V) verwandt werden. Die Kammer mit einem geeigneten Deckel verschließen und mindestens eine halbe Stunde stehen lassen, damit sich ein Gleichgewicht zwischen Flüssigkeit und Dampfphase einstellt. An der Innenwand der Kammer können Filterpapierstreifen befestigt werden, die in das Fließmittel eintauchen. Dadurch kann die Laufzeit um ein Drittel verkürzt und eine gleichmäßige Elution der Komponenten erzielt werden.
 - Hinweis 3: Das Gemisch ist jedesmal frisch anzusetzen, damit die Wiederholbarkeit gewährleistet ist.
- 5.2.3. Von einer 5%igen Lösung des Unverseifbaren (5.1.5) in Chloroform mit einer 100-μl-Spritze 0,3 ml als durchgehenden, gleichmäßigen Strich 2 cm vom unteren Plattenrand entfernt auf die Dünnschichtplatte (5.2.1) auftragen. In der Verlängerung der Startlinie werden am Rande 2—3 μl der Sterin-Standardlösung (4.11) aufgetragen, um die Sterinzone nach der Entwicklung zu identifizieren.
- 5.2.4. Die Platte in die nach 5.2.2 vorbereitete Entwicklerkammer stellen. Die Temperatur der Umgebung sollte 15–20 °C betragen. Die Kammer mit dem Deckel verschließen und die Platte so lange entwickeln, bis die Fließmittelfront bis 1 cm unter den oberen Plattenrand gestiegen ist. Dann die Platte aus der Entwicklerkammer nehmen und das Lösungsmittel in einem warmen Luftstrom abdampfen oder die Platte eine geraume Zeit unter dem Abzug liegen lassen.
- 5.2.5. Die Platte vorsichtig und gleichmäßig mit 2',7'-Dichlorfluoresceinlösung besprühen. Die Lage der Sterinzone mit Hilfe des Flecks der Standardlösung bestimmen und mit einem schwarzen Stift den fluoreszierenden Bereich markieren.
- 5.2.6. Das in der markierten Zone liegende Kieselgel mit einem Metallspatel abkratzen, fein mahlen und in einen Glasfiltertiegel (3.7) überführen. Mit 10 ml warmem Chloroform versetzen, mit Hilfe des Metallspatels gründlich vermischen und unter Vakuum filtrieren. Das Filtrat in der an dem Glasfiltertiegel angeschlossenen Vakuumflasche (3.8) auffangen.

Den Rückstand im Glasfiltertiegel dreimal mit je 10 ml Ethylether waschen und das Filtrat wiederum in der Vakuumflasche auffangen. Das Filtrat bis auf ein Volumen von etwa 4—5 ml eindampfen und den Rest der Lösung in das zuvor gewogene 10-ml-Probenglas (3.9) überführen. Durch vorsichtiges Erhitzen unter einem schwachen Stickstoffstrom bis zur Trocknung eindampfen. Mit einigen Tropfen Aceton versetzen, wieder bis zur Trocknung eindampfen, etwa 10 Minuten im Trockenschrank auf 105 °C erhitzen, anschließend im Exsikkator abkühlen lassen und wiegen.

Der Rückstand in dem Probengläschen besteht aus der Sterinfraktion.

5.3. Herstellung der Trimethylsilylether (TMSE)

- 5.3.1. Dem Probengläschen mit der Sterinfraktion werden je Milligramm Sterin 50 µl Silanisierungsreagenz, bestehend aus einem Gemisch aus Pyridin, Hexamethyldisilazan und Trimethylchlorsilan im Verhältnis 9:3:1 (V/V/V), zugesetzt (Hinweis 4) unter Ausschluß von Feuchtigkeit (Hinweis 5).
 - Hinweis 4: Gebrauchsfertige Lösungen sind im Handel erhältlich; daneben gibt es auch andere Silanisierungsreagenzien, z. B. N,O-bis-Trimethylsilyltrifluoracetamid + 1% Trimethylchlorsilan, das mit gleichen Teilen wasserfreiem Pyridin gemischt werden muß.

5.3.2. Das Probengläschen verschließen und gründlich (nicht zu stark) schütteln, bis sich die Sterine gelöst haben. Die Probe mindestens 15 Minuten bei Raumtemperatur stehen lassen und dann einige Minuten zentrifugieren. Die klare Lösung kann gaschromatographisch untersucht werden.

Hinweis 5: Die Beobachtung einer leichten Opaleszenz ist normal und bedeutet keine Störung. Die Bildung eines weißen Niederschlags oder der Eindruck einer Rosafärbung sind Anzeichen der Anwesenheit von Feuchtigkeit oder der Zersetzung des Reagens. In diesem Fall soll der Test wiederholt werden.

5.4. Gaschromatographische Analyse

- 5.4.1. Vorbereiten, Einfahren der Säule
- 5.4.1.1. Die Säule in den Gaschromatographen einsetzen, wobei das Einlaßteil an den mit dem Trennsystem verbundenen Verdampfer und das Auslaßteil an den Detektor angeschlossen wird.

Überprüfung des Gaschromatographen (Dichtigkeit der Gasleitungen, Betriebsbereitschaft des Detektors, des Trennsystems, des Schreibers usw.).

5.4.1.2. Wird die Säule zum erstenmal verwendet, ist es ratsam, sie einzufahren. Einen schwachen Gasstrom durch die Säule geben, den Gaschromatographen einschalten und allmählich auf eine Temperatur von mindestens 20 °C über der Arbeitstemperatur (Hinweis 6) aufheizen. Diese Temperatur ist mindestens 2 Stunden konstant zu halten, und dann sind die Analysenbedingungen einzustellen (Gasstrom, Split, Zünden der Flamme, Schreiberanschluß, Einstellen der Ofentemperatur, Injektor, Detektor). Dann eine Empfindlichkeit wählen, die mindestens doppelt so groß ist wie bei der Durchführung der Analyse. Die Grundlinie muß linear verlaufen, ohne Peaks oder Drift.

Eine negative Drift ist ein Indiz für einen undichten Anschluß der Säule, eine positive deutet auf ein mangelhaftes Einfahren der Säule hin.

Hinweis 6: Die Einfahrtemperatur muß in jedem Fall 20 °C unter der für die stationäre Phase angegebenen Maximaltemperatur liegen.

5.4.2. Wahl der Arbeitsbedingungen

5.4.2.1. Anhaltspunkte für die Arbeitsbedingungen:

Säulentemperatur: 260 °C ± 5 °C,

Verdampfertemperatur: 280 °C,

Detektortemperatur: 290 °C,

Strömungsgeschwindigkeit: Helium 20—35 cm/s; Wasserstoff 30—50 cm/s,

Splitverhältnis: 1:50-1:100,

Geräteempfindlichkeit: das 4- bis 16fache der Mindestdämpfung,

Detektorempfindlichkeit: 1-2 mV f. s.,

Papiervorschub: 30-60 cm/Std.,

Einspritzvolumen: 0,5-1 µl TMSE-Lösung.

Diese Bedingungen können entsprechend den Charakteristiken der Säule und des Gaschromatographen derart geändert werden, daß die damit aufgezeichneten Chromatogramme folgende Bedingungen erfüllen:

- die Retentionszeit von β -Sitosterin muß 20 \pm 5 Minuten betragen;
- der Campesterin-Peak muß bei Olivenöl (Durchschnittsgehalt 3%) 15 ± 5% des Skalenbereichs und bei Sojaöl (Durchschnittsgehalt 20%) 80 ± 10% des Skalenbereichs betragen;
- alle enthaltenen Sterine müssen getrennt werden; die anderen Peaks müssen ebenfalls völlig aufgelöst sein, d. h. der Peakverlauf muß auf die Grundlinie zurückführen, bevor der nächste Peak beginnt; eine unvollständige Auflösung ist nur unter der Bedingung akzeptabel, daß der RRT-1,02-Peak mit Hilfe der Senkrechten quantitativ zu bestimmen ist.
- 5.4.3. Durchführung der Analyse
- 5.4.3.1. Mit der 10-µl-Mikroliterspritze 1 µl Hexan entnehmen, 0,5 µl Luft und anschließend 0,5—1 µl Probenlösung aufziehen; dabei den Kolben der Spritze so weit einziehen, daß die Nadel leer ist. Die Nadel in die Membran des Injektors einführen, nach 1—2 Sekunden schnell einspritzen, dann nach etwa 5 Sekunden die Nadel langsam herausziehen.
- 5.4.3.2. Das Chromatogramm aufzeichnen, bis alle Sterin-TMS-Ether eluiert sind.Die Grundlinie muß stets den vorgeschriebenen Anforderungen (5.4.1.2) genügen.

5.4.4. Identifizierung der Peaks

Die einzelnen Peaks werden anhand der Retentionszeiten und durch Vergleich mit dem unter denselben Bedingungen analysierten TSME-Gemisch der Sterine bestimmt.

Die Sterine werden in folgender Reihenfolge eluiert: Cholesterin, Brassicasterin, 24-Methylen-Cholesterin, Campesterin, Campesterin, Stigmasterin, Δ 7-Campesterin, Δ 5, 23-Stigmastadienol, Chlerosterin, β -Sitosterin, Sitostanol, Δ 5-Avenasterin, Δ 5, 24-Stigmastadienol, Δ 7-Stigmastenol, Δ 7-Avenasterin.

In Tabelle I sind die Retentionszeiten relativ zu β -Sitosterin für eine SE-52- und SE-54-Säule aufgeführt.

Die Abbildungen 1 und 2 zeigen die typischen Chromatogramme einiger Öle.

- 5.4.5. Quantitative Bestimmung
- 5.4.5.1. Mit Hilfe des Integrators werden die Peak-Flächen von α-Cholestanol und der Sterine berechnet. Dabei sind etwa auftretende Peaks von Substanzen, die in Tabelle I nicht aufgeführt sind, nicht zu berücksichtigen. Der Responsefaktor von x-Cholestanol soll gleich 1,00 gesetzt werden.
- 5.4.5.2. Der Gehalt an den einzelnen Sterinen in mg/100 g Fett wird nach folgender Formel berechnet:

Sterin
$$x = \frac{A_x \cdot m_s \cdot 100}{A_s \cdot m}$$

Darin bedeuten:

A_x = Peakfläche des Sterins x in mm²,

 A_s = Peakfläche von α -Cholestanol in mm²,

 m_s = zugesetzte Menge an α -Cholestanol in mg,

m = Menge der für die Bestimmung entnommenen Probe in g.

- 6. ERGEBNISSE
- 6.1. Der Gehalt an den einzelnen Sterinen wird in mg/100 g Öl angegeben, ihre Summe als "Gesamtsterine".
- 6.2. Der prozentuale Anteil jedes einzelnen Sterins errechnet sich aus dem Quotienten der Peakfläche des entsprechenden Peaks und der Summe der Peakflächen aller Sterine nach der Formel

Steringehalt in % x =
$$\frac{A_x}{\Sigma A}$$
. 100

Darin bedeuten:

A_x = Peakfläche des Sterins x,

ΣA = Summe der Peakfläche aller Sterine.

ANLAGE

Bestimmung der linearen Strömungsgeschwindigkeit

In den auf Normalbedingungen eingestellten Gaschromatographen werden 1 bis 3 µl Methan (oder Propan) eingespritzt und bis zum Peak-Austritt (t_M) gemessen.

Die lineare Strömungsgeschwindigkeit in cm/s ist durch die Beziehung L/t_M definiert; dabei ist L die Länge der Säule in cm und t_M die gemessene Zeit in Sekunden.

Tabelle I Relative Retentionszeit der Sterine

, l	The second second		Relative Re	etentionszei
Peak	•	Identifizierung	SE 54	SE 52
1	Cholesterin	Δ-5-Cholesten-3β-ol	0,67	0,63
2	Cholestanol	5α-Cholestan-3β-ol	0,68	0,64
3	Brassicasterin	[24S]-24-Methyl-Δ-5,22-cholestadien-3β-ol	0,73	0,71
4	24-Methylen-Cholesterin	24-Methylen-Δ-5,24-cholestadien-3β-ol	0,82	0,80
5	Campesterin	[24R]-24-Methyl-Δ-5-cholesten-3β-ol	0,83	0,81
6	Campestanol	[24R]-24-Methyl-cholestan-3β-ol	0,85	0,82
7	Stigmasterin	[24R]-24-Ethyl-Δ-5,22-cholestadien-3β-ol	0,88	0,87
8	Δ-7-Campesterol	[24R]-24-Methyl-Δ-7-cholesten-3β-ol	0,93	0,92
9	Δ-5,23-Stigmastadienol	[24R,S]-24-Ethyl-Δ-5,23-cholestadien-3β-ol	0,95	0,95
10	Chlerosterin	[24S]-24-Ethyl-Δ-5,25-cholestadien-3β-ol	0,96	0,96
11	β-Sitosterin	[24R]-24-Ethyl-Δ-5-cholestan-3β-ol	1,00	1,00
12	Sitostanol	24-Ethylcholestan-3β-ol	1,02	1,02
13	Δ-5-Avenasterin	[24Z]-24-Ethyliden-Δ-5-cholesten-3β-ol	1,03	1,03
14	Δ-5,24-Stigmastadienol	[24S,R]-24-Ethyl-Δ-5,24-cholestadien-3β-ol	1,08	1,08
15	Δ-7-Stigmastenol	[24S,R]-24-Ethyl-Δ-7,24-cholestadien-3β-ol	1,12	1,12
16	Δ-7-Avenasterin	[24Z]-24-Ethyliden-Δ-7-cholesten-3β-ol	1,16	1,16

Abbildung 1

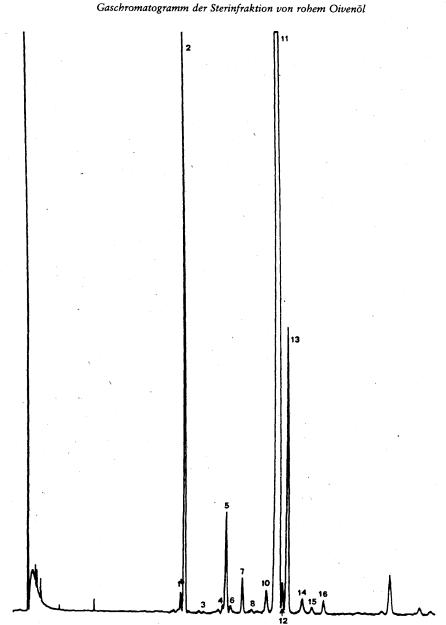
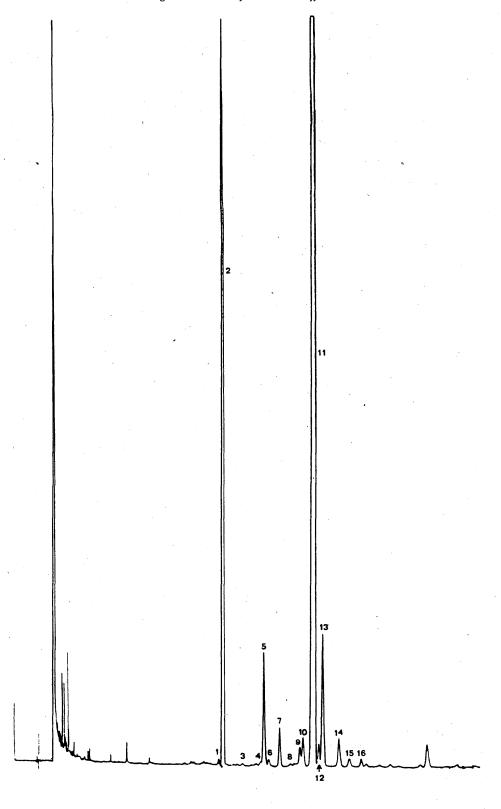



Abbildung 2

Gaschromatogramm der Sterinfraktion von raffiniertem Olivenöl

ANHANG VI

BESTIMMUNG DES ERYTHRODIOLS UND DES UVAOLS

EINLEITUNG

Das (üblicherweise als Summe von Erythrodiol und Uvaol angegebene) Erythrodiol ist ein Bestandteil des Unverseifbaren, das für verschiedene Fette charakteristisch ist. Seine Konzentration ist in extrahierten Olivenölen erheblich höher als in anderen Ölen (Olivenöl aus Pressung, Traubenkernöl), in denen es auch vorkommt. Deshalb kann es zum Nachweis für das Vorhandensein von extrahiertem Olivenöl dienen.

ZWECK UND ANWENDUNGSBEREICH

Die Methode beschreibt ein Verfahren für die Bestimmung des Erythrodiolgehalts in Fetten.

2. PRINZIP DER METHODE

Das Fett wird mit einer ethanolischen Kaliumhydroxidlösung verseift, dann das Unverseifbare mit Ethylether extrahiert und über eine Aluminiumoxidsäule gereinigt.

Die Fraktionierung des Unverseifbaren wird durch Dünnschichtchromatographie auf Kieselgelplatten durchgeführt, anschließend werden die Zonen der Sterinfraktion und der Erythrodiolfraktion isoliert. Die von der Platte isolierten Sterine und das Erythrodiol werden in Trimethylsilylether überführt, dann wird die Mischung gaschromatographisch untersucht. Das Ergebnis wird angegeben als Prozent Erythrodiol der Gesamtmenge von Erythrodiol plus Sterine.

3. GERÄTE

3.1. Die im Anhang V (Bestimmung des Steringehalts) beschriebenen Geräte.

4. REAGENZIEN

- 4.1. Die im Anhang V (Bestimmung des Steringehalts) vorgeschriebenen Reagenzien.
- 4.2. Referenzlösung von 0,5 % Erythrodiol in Chloroform.

5. VERFAHREN

5.1. Herstellung des Unverseifbaren

Es wird gemäß 5.1.2 des in Anhang V beschriebenen Verfahrens vorgegangen.

- 5.2. Abtrennung des Erythrodiols und der Sterine
- 5.2.1. Vergleiche 5.2.1 in Anhang V.
- 5.2.2. Vergleiche 5.2.2 in Anhang V.
- 5.2.3. Eine 5%ige Lösung des Unverseifbaren in Chloroform herstellen. Mit einer 0,1-ml-Mikroliterspritze 0,3 ml dieser Lösung auf eine Dünnschichtplatte 1,5 cm vom unteren Plattenrand entfernt in einem möglichst dünnen und gleichmäßigen Strich auftragen. An einem Ende der Platte werden als Referenzsubstanzen einige Mikroliter der Lösungen von Cholesterin und Erythrodiol aufgetragen.
- 5.2.4. Die Platte in die nach 5.2.2 vorbereitete Entwicklerkammer geben. Die Raumtemperatur soll etwa 20 °C betragen. Die Kammer sofort mit dem Deckel verschließen und so lange entwickeln, bis die Lösungsmittelfront 1 cm unter dem oberen Plattenrand angekommen ist. Die Platte aus der Entwicklerkammer nehmen und das Lösungsmittel in einem warmen Luftstrom abdampfen.
- 5.2.5. Die Platte gleichmäßig mit der alkoholischen 2', 7'-Dichlorfluoresceinlösung besprühen. Unter UV-Licht den Verlauf der Sterin- und Erythrodiolzone an Hand der Referenzsubstanzen identifizieren und etwas außerhalb der fluoreszierenden Zonen markieren.

- 5.2.6. Die markierten Kieselgelzonen mit einem Metallspatel abkratzen. Das von der Platte isolierte Material in ein 50-ml-Becherglas geben, 15 ml warmes Chloroform zugeben, gut schütteln und in einen Glasfiltertiegel füllen. Dreimal mit je 10 ml warmem Chloroform auswaschen und die Filtrate in einem 100-ml-Rundkolben sammeln. Bis auf ein Volumen von 4—5 ml eindampfen, in ein vorher gewogenes, konisches 10-ml-Zentrifugenröhrchen geben, im warmen Stickstoffstrom trocknen und anschließend wiegen.
- 5.3. Herstellung der Trimethylsilylether

Nach dem in Anhang V unter 5.3 beschriebenen Verfahren vorgehen.

5.4. Gaschromatographische Analyse

Nach der Beschreibung unter 5.4 des vorgenannten Verfahrens vorgehen.

Die Bedingungen der gaschromatographischen Analyse müssen so gewählt werden, daß nicht nur die TMS-Ether der Sterine, sondern auch die TMS-Ether von Erythrodiol und Uvaol getrennt werden.

Nach dem Einspritzen das Schreiberpapier ablaufen lassen, bis alle Sterine, Erythrodiol und Uvaol eluiert sind. Identifizieren der Peaks (Erythrodiol und Uvaol haben im Vergleich zu β-Sitosterin relative Retentionszeiten von etwa 1,45 und 1,55) und Berechnung der Flächenprozente, wie für Sterine beschrieben.

6. ABFASSUNG DER ERGEBNISSE

% Erythrodiol =
$$\frac{A_1 + A_2}{A_1 + A_2 + \sum A_{Sterine}} \times 100$$

Hierin bedeuten:

A₁ = Fläche des Erythrodiolpeaks in mm²,

A₂ = Fläche des Uvaolpeaks in mm²,

 Σ A_{Sterine} = Summe der vorhandenen Sterinpeaks in mm².

Das Ergebnis wird mit einer Dezimale nach dem Komma angegeben.

ANHANG VII

BESTIMMUNG VON FETTSÄUREN IN 2-STELLUNG DER TRIGLYCERIDE

ZWECK

Diese Methode beschreibt ein Verfahren zur Bestimmung der Zusammensetzung des Teils der Fettsäuren eines Öles oder Fettes, die in 2-Stellung (β oder innere Stellung) des Glycerins verestert sind.

2. ANWENDUNGSBEREICH

Diese Methode gilt für Öle und Fette mit einem Schmelzpunkt unter 45 °C, bedingt durch die Besonderheiten der Wirkungsweise der Pankreaslipase.

Sie ist nicht uneingeschränkt anwendbar auf Öle und Fette mit höheren Anteilen an Fettsäuren mit zwölf oder weniger Kohlenstoffatomen (Kokos- und Palmkernöl, Butterfett), hoch ungesättigten Fettsäuren (mit mehr als vier Doppelbindungen), die zwanzig oder mehr Kohlenstoffatome enthalten (Fisch- und Seetieröle), oder Fettsäuren mit sauerstoffhaltigen Gruppen außer der Säuregruppe.

3. PRINZIP

Wenn nötig, Neutralisierung von sauren Ölen und Fetten in einem Lösungsmittel. Reinigung über eine Aluminiumoxidsäule. Teilhydrolyse der Triglyceride durch Pankreaslipase in einer vorgegebenen Zeit. Abtrennung der gebildeten Monoglyceride durch Dünnschichtchromatographie und Umesterung dieser Monoglyceride mit Methanol. Die gewonnenen Methylester werden gaschromatographisch analysiert.

4. GERÄTE

- 4.1. 100-ml-Rundkolben.
- 4.2. 25-ml-Rundkolben mit Schliff.
- 4.3. 1 m langes Steigrohr mit Schliffansatz für den Kolben 4.2.
- 4.4. 250-ml-Kolben.
- 4.5. 50-ml-Becherglas.
- 4.6. 500-ml-Scheidetrichter.
- 4.7. Glassäule für die Säulenchromatographie, 13 mm Innendurchmesser, 400 mm Länge, mit Hahn und gläsernem Frittenboden.
- 4.8. 10-ml-Zentrifugenglas, mit Schliffstopfen.
- 4.9. 5-ml-Bürette, Graduierung 0,05 ml.
- 4.10. 1-ml-Injektionsspritze, mit dünner Kanüle.
- 4.11. Mikroliterspritze, zur Abgabe von Tropfen von jeweils 3-4 μl.
- 4.12. Beschichtungsgerät für Dünnschichtplatten.
- 4.13. Glasplatten für Dünnschichtchromatographie, 20 × 20 cm.
- 4.14. Entwicklerkammer für die Dünnschichtchromatographie, mit Schliffrand, für 20 × 20 cm Platten.
- 4.15. Sprüher für die Dünnschichtchromatographie.
- 4.16. Trockenschrank, einstellbar auf 103 ± 2 °C.
- 4.17. Thermostat, regulierbar zwischen 30 und 45 °C \pm 0,5 °C.
- 4.18. Rotationsverdampfer.
- 4.19. Elektrisches Schüttel- und Vibriergerät zum kräftigen Schütteln des Zentrifugenglases.
- '4.20. Ultraviolettlampe zur Betrachtung der Dünnschichtplatten.

Und für die Kontrolle der Lipasetätigkeit:

- 4.21. Ein pH-Meßgerät.
- 4.22. Propellerrührer.
- 4.23. 5-ml-Bürette.
- 4.24. Stoppuhr.

Und für die eventuelle Zubereitung der Lipase:

4.25. Laborrührgerät zum Zerkleinern und Mischen heterogener Materialien.

- 5. REAGENZIEN
- 5.1. n-Hexan oder, falls nicht verfügbar, Petrolether (Kp. 30-50 °C), für die Chromatographie.
- 5.2. 2-Propanol oder Ethanol 95 % ig (V/V), analytisch rein.
- 5.3. 2-Propanol oder Ethanol, 1:1 wäßrige Lösung.
- 5.4. Diethylether, peroxidfrei.
- 5.5. Aceton.
- 5.6. Ameisensäure, mindestens 98 %ig (m/m).
- 5.7. Fließmittel: Mischung aus n-Hexan (5.1), Diethylether (5.4) und Ameisensäure (5.6) im Verhältnis von 70:30:1 (V/V/V).
- 5.8. Aktiviertes Aluminiumoxid für die Chromatographie, neutral, Aktivitätsstufe Brockmann 1.
- 5.9. Kieselgel, mit Bindemittel für die Dünnschichtchromatographie.
- 5.10. Pancreaslipase mit ausreichender Aktivität (Anmerkungen 1 und 2).
- 5.11. Natriumhydroxid, 120 g/l wäßrige Lösung.
- 5.12. Salzsäure, 6 N.
- 5.13. Kalziumchlorid (CaCl₂), 220 g/l wäßrige Lösung.
- 5.14. Natriumcholat (Enzymqualität), 1 g/l wäßrige Lösung.
- 5.15. Pufferlösung: 1 M wäßrige Lösung von tris-Hydroxymethylaminomethan durch Zusatz von Salzsäure (5.12) auf pH 8 gebracht (durch Potentiometer überprüfen).
- 5.16. Phenolphthalein, Lösung von 10 g/l in 95 %igem (V/V) Ethanol.
- 5.17. 2',7' -Dichlorfluorescein, Lösung von 2 g/l in 95 %igem (V/V) Ethanol, schwach alkalisch durch Zusatz eines Tropfens 1-N-Natriumhydroxidlösung pro 100 ml.

Und für die Kontrolle der Lipasetätigkeit:

- 5.18. Neutralisiertes Öl.
- 5.19. Natriumhydroxid, 0,1 N wäßrigre Lösung.
- 5.20. Natriumcholat (Enzymqualität), wäßrige Lösung von 200 g/l.
- 5.21. Gummiarabikum, wäßrige Lösung von 100 g/l.

6. VORBEREITUNG DER PROBE

Liegt der Gehalt an freien Fettsäuren nach einer Bestimmung gemäß Anhang II unter 3%, so ist direkt über Aluminiumoxid, wie unter 6.2 beschrieben, zu reinigen. Weist die Probe einen Gehalt an freien Fettsäuren von über 3% gemäß Anhang II auf, so ist sie in Gegenwart eines Lösungsmittels gemäß 6.1 mit Alkali zu neutralisieren und dann über Aluminiumoxid gemäß 6.2 zu geben.

6.1. Neutralisierung durch Alkali in Gegenwart eines Lösungsmittels

Etwa 10 g rohes Öl in einen Scheidetrichter (4.6) geben und 100 ml Hexan (5.1), 50 ml 2-Propanol (5.2), einige Tropfen Phenolphthaleinlösung (5.16) und so viel Natriumhydroxidlösung (5.11) hinzufügen, wie dem Gehalt des Öls an freien Fettsäuren zuzüglich 0,3 % Überschuß entspricht. Eine Minute lang kräftig schütteln, 50 ml destilliertes Wasser zugeben, erneut schütteln und absetzen lassen.

Nach dem Absetzen die untere, die Seifen enthaltende Schicht sowie etwaige Zwischenschichten (Schleim, unlösliche Stoffe) entfernen. Die Hexanlösung des neutralisierten Öls mehrmals mit

25—30 ml der 2-Propanollösung (5.3) waschen, bis die Rosafärbung des Phenolphthaleins verschwindet.

Den größten Teil des Hexans unter Vakuum im Rotationsverdampfer (4.18) abdestillieren, das Öl bei 30—40 °C unter Vakuum in einem Stickstoffstrom trocknen, bis das Hexan vollständig entfernt ist.

6.2. Reinigung über Aluminiumoxid

Eine Suspension von 15 g aktiviertem Aluminiumoxid (5.8) in 50 ml Hexan (5.1) herstellen und unter Rühren in die Chromatographiesäule (4.7) gießen. Das Aluminiumoxid gleichmäßig absetzen lassen und warten, bis das Lösungsmittel auf 1—2 mm über dem Absorptionsmittel abgelaufen ist. Auf die Säule vorsichtig eine Lösung von 5 g Öl in 25 ml Hexan (5.1) gießen; die gesamte aus der Säule ablaufende Flüssigkeit in einem Rundkolben (4.1) sammeln.

7. HERSTELLUNG DER DÜNNSCHICHTPLATTEN

Die Glasplatten (4.13) sorgfältig mit Ethanol, Petrolether und Aceton reinigen, um jeden Fettrest zu beseitigen. In einen Erlenmeyerkolben (4.4) 30 g Kieselgel (5.9) geben, 60 ml destilliertes Wasser hinzufügen, verschließen und eine Minute kräftig schüttteln. Die Suspension sofort in das Beschichtungsgerät (4.12) geben und eine 0,25 mm dicke Schicht auf die Platten auftragen. Die Platten 15 Minuten an der Luft und eine Stunde im Trockenschrank (4.16) bei 103 \pm 2 °C trocknen. Die Platten vor Verwendung in einem Exsikkator auf Raumtemperatur abkühlen.

Fertigplatten sind im Handel erhältlich.

8. VERFAHREN

8.1. Hydrolyse durch Pancreaslipase

In das Zentrifugenglas (4.8) etwa 0,1 g der vorbereiteten Probe einwiegen; handelt es sich um ein festes Fett, muß es in 0,2 ml Hexan (5.1), evtl. unter schwachem Erwärmen, gelöst werden.

20 mg Lipase (5.10) und 2 ml der Pufferlösung (5.15) hinzufügen. Sorgfältig und vorsichtig schütteln und dann 0,5 ml der Natriumcholatlösung (5.14) und 0,2 ml der Kalziumchloridlösung (5.13) hinzufügen. Das Glas mit dem Schliffstopfen verschließen, vorsichtig schütteln (Befeuchten des Stopfens vermeiden), das Glas sofort bei 40 \pm 0,5 °C in den Thermostaten (4.17) stellen und genau eine Minute mit der Hand schütteln.

Das Glas aus dem Thermostaten nehmen und mit Hilfe des Vibriergeräts (4.19) genau 2 Minuten lang kräftig schütteln.

Sofort in fließendem Wasser abkühlen; 1 ml Salzsäure (5.12) und 1 ml Diethylether (5.4) hinzufügen. Verschließen und kräftig mit dem elektrischen Schüttelgerät schütteln. Stehen lassen und die organische Phase mit Hilfe der Spritze (4.10), gegebenenfalls nach Zentrifugieren, abnehmen.

8.2. Abtrennung der Monoglyceride durch Dünnschichtchromatographie

Den Extrakt mit der Mikroliterspritze (4.11) auf die Dünnschichtplatte auftragen, und zwar 1,5 cm vom unteren Rand entfernt, als dünnen, einheitlichen Strich. Die Platte in die gut gesättigte Entwicklerkammer (4.14) stellen und mit dem Fließmittel (5.7) bei etwa 20 °C bis 1 cm vom oberen Plattenrand entfernt entwickeln.

Die Platte an der Luft bei der gleichen Temperatur wie in der Entwicklerkammer trocknen und mit 2',7' -Dichlorfluoresceinlösung (5.17) besprühen. Die Zone der Monoglyceride (Rf etwa 0,035) unter UV-Licht (4.20) markieren.

8.3. Analyse der Monoglyceride durch Gaschromatographie

Die nach 8.2 erhaltene Kieselgelzone mit einem Spatel abkratzen (vermeiden, daß auch die auf der Startlinie verbleibenden Bestandteile mit erfaßt werden) und in das Methylierungskölbchen (4.2) überführen.

Das gesammelte Kieselgel, so wie es vorliegt, nach dem Verfahren gemäß Anhang XB behandeln, die Monoglyceride in Methylester überführen, dann die Ester gaschromatographisch nach dem Verfahren gemäß Anhang XA untersuchen.

9. FORMULIERUNG DER ERGEBNISSE

Die Zusammensetzung der Fettsäuren in 2-Stellung auf eine Dezimalstelle genau angeben (Anmerkung 3).

10. ANMERKUNGEN

Anmerkung 1: Prüfung der Lipasetätigkeit

Aus einem Gemisch von 165 ml Gummiarabikumlösung (5.21), 15 g gemahlenem Eis und 20 ml neutralisiertem Öl (5.18) mit einem geeigneten Rührgerät eine Ölemulsion herstellen.

10 ml dieser Emulsion in ein Becherglas (4.5) geben, anschließend 0,3 ml Natriumcholatlösung (5.20) und 20 ml destilliertes Wasser hinzufügen.

Das Becherglas bei 37 \pm 0,5 °C (Anmerkung 4) in einen Thermostaten stellen; die Elektroden eines pH-Meters (4.21) und einen Spiralrührer (4.22) einsetzen.

Mit Hilfe einer Bürette (4.23) tropfenweise Natriumhydroxidlösung (5.19) hinzufügen bis zu einem pH-Wert von 8,5.

Eine ausreichende Menge der wäßrigen Lipasesuspension (siehe nachstehend) hinzufügen. Sobald das pH-Meter 8,3 anzeigt, die Stoppuhr anstellen (4.24) und Natriumhydroxidlösung (5.19) so zutropfen lassen, daß der pH-Wert bei 8,3 gehalten wird. Das Volumen der pro Minute verbrauchten Alkalilösung notieren.

Die Werte in ein Koordinatensystem eintragen, und zwar die Zeitablesungen als Abszisse und die Anzahl-ml Alkalilösung zur Konstanthaltung des pH-Werts als Ordinate. Dabei muß sich eine Gerade ergeben.

Die vorstehend erwähnte Lipasesuspension ist eine Suspension von eins zu Tausend in Wasser. Für jeden Versuch soviel der Suspension verwenden, daß in 4 bis 5 Minuten etwa 1 rd Alkalilösung verbraucht wird. Normalerweise werden etwa 1—5 mg Lipasepulver gebraucht. Die Lipaseeinheit wird als die Menge Enzym definiert, die 10 Mikroäquivalente Säure pro Minute freisetzt. Damit ergibt sich die Aktivität A des verwendeten Pulvers, ausgedrückt als Lipaseeinheiten in mg, anhand folgender Formel:

$$A = \frac{V \times 10}{m}$$

Dabei entspricht V der Anzahl der pro Minute verbrauchten ml Natriumhydroxidlösung (5.19), berechnet aus der graphischen Darstellung, m ist das Gewicht der Lipaseprobe in mg.

Anmerkung 2: Herstellung der Lipase

Lipasen mit ausreichender Lipasetätigkeit sind im Handel erhältlich. Sie können aber auch im Labor wie folgt hergestellt werden: 5 kg frisches Schweinepankreas auf 0 °C abkühlen; das umhüllende feste Fett und die anhängenden Gewebe entfernen und im Mixer zerkleinern, bis ein flüssiger Brei ensteht. Diesen Brei mit dem Rührgerät (4.25) 4—6 Stunden mit 2,5 l wasserfreiem Aceton rühren, anschließend zentrifugieren. Den Rückstand noch dreimal mit dem gleichen Volumen Aceton, dann zweimal mit einer Mischung von Aceton und Diethylether 1:1 (V/V) und zweimal mit Diethylether extrahieren. Den Rückstand im Vakuum 48 Stunden lang trocknen, bis ein stabiles Pulver entsteht, das im Kühlschrank aufbewahrt werden sollte.

Anmerkung 3: In jedem Fall ist es ratsam, die Zusammensetzung der Gesamtfettsäuren der gleichen Probe zu bestimmen, da ein Vergleich mit den Fettsäuren in 2-Stellung bei der Interpretation der Werte von Nutzen ist.

Anmerkung 4: Die Hydrolysentemperatur wird auf 37 °C eingestellt, wenn ein flüssiges Öl verwendet wird. Sie wird jedoch für die Untersuchungsproben auf 40 °C festgelegt, um auch die Untersuchung von Fetten mit Schmelzpunkten bis zu 45 °C zu ermöglichen.

ANHANG VIII

BESTIMMUNG DES TRILINOLEINGEHALTS

1. ZWECK

Die vorliegende Norm beschreibt ein Verfahren zur Trennung und quantitativen Bestimmung der Zusammensetzung von Triglyceriden in Abhängigkeit von Molekulargewicht und Grad der Ungesättigtheit, ausgedrückt in "äquivalenten Kohlenstoffzahlen" (siehe Anmerkung 1).

2. ANWENDUNGSBEREICH

Diese Norm gilt für alle pflanzlichen Öle, die Triglyceride langkettiger Fettsäuren enthalten. Das Verfahren eignet sich insbesondere zum Nachweis von kleinen Mengen linolsäurereicher halbtrocknender Öle in den Ölen, die überwiegend Ölsäure als ungesättigte Fettsäure enthalten, wie z. B. Olivenöl.

3. PRINZIP

Trennung der Triglyceride durch Umkehrphasenchromatographie in Abhängigkeit von ihren äquivalenten Kohlenstoffzahlen und Auswertung der Chromatogramme.

4. GERÄTE

- 4.1. Flüssigchromatograph, der so ausgestattet ist, daß die Temperatur der Säule über einen Thermostaten kontrolliert werden kann.
- 4.2. Einspritzsystem mit einer 10-µl-Probenschleife.
- 4.3. Detektor: Differentialrefraktometer. Im Bereich der höchsten Empfindlichkeit sollten wenigstens 10⁻⁴ Einheiten des Brechungsindexes erreicht werden.
- 4.4. Säule: Säule aus rostfreiem Stahl von 250 mm Länge und 4,5 mm Durchmesser, gefüllt mit Kieselgelpartikeln, die mit Oktadecylsilan belegt sind (Durchmesser 5 µm). Die durchschnittliche Kohlenstoffbelegung sollte bei etwa 22–23 % liegen (siehe Anmerkung 2).
- 4.5. Schreiber und/oder Integrator.

5. REAGENZIEN

Die Reagenzien müssen analytisch rein sein. Die Fließmittel sollten entgast sein. Sie können mehrere Male wiederverwendet werden, ohne daß dadurch die Trennleistungen beeinflußt werden.

- 5.1. Chloroform.
- 5.2. Aceton.
- 5.3. Acetonitril.
- 5.4. Fließmittel: Aceton/Acetonitril. Das Mischungsverhältnis ist so einzustellen, daß damit die gewünschte Trennung erzielt wird. Man geht zunächst von einem Mischungsverhältnis von 1:1 aus.
- 5.5. Lösungsmittel: Aceton oder eine Mischung von Aceton/Chloroform im Verhältnis 1:1.
- 5.6. Triglyceride als Referenzsubstanzen. Entweder mit Hilfe der im Handel verfügbaren Triglyceride (Tripalmitin, Triolein usw.) ein Diagramm aus den Retentionszeiten und den äquivalenten Kohlenstoffzahlen aufzeichnen oder ein Referenzchromatogramm des Sojaöls verwenden (siehe Anmerkungen 3 und 4 sowie Abbildungen 1 und 2).

6. VORBEREITUNG DER PROBEN

Von der zu analysierenden Probe wird eine 5 %ige Lösung hergestellt, indem genau $0.5~\rm g \pm 0.001~\rm g$ der Probe in einen 10-ml-Meßkolben eingewogen und mit dem Lösungsmittel (5.5) auf 10 ml aufgefüllt werden.

7. VERFAHREN

7.1. Das HPLC-Gerät in Betrieb setzen. Das Fließmittel (5.4) wird mit einer Strömungsgeschwindigkeit von 1,5 ml/min durch die Säule gepumpt, um das gesamte System zu reinigen. Es wird so lange gewartet, bis eine stabile Grundlinie erreicht ist. Anschließend werden 10 µl der gemäß Ziffer 6 hergestellten Probe eingespritzt.

8. BERECHNUNG UND ABFASSUNG DER ERGEBNISSE

Es wird die Methode der inneren Standardisierung angewandt, d. h. man geht davon aus, daß die Summe der Peakflächen, die den verschiedenen Triglyceriden entsprechen, 100 % darstellen. Der relative prozentuale Anteil eines jeden Triglycerids wird berechnet nach der Formel

% Triglycerid =
$$\frac{\text{Peakfläche}}{\text{Summe der Peakflächen}} \times 100$$

Das Ergebnis ist auf eine Stelle nach dem Komma anzugeben.

Anmerkung 1: Die Reihenfolge der Elution kann durch die Berechnung der "äquivalenten Kohlenstoffzahlen" (NCE) ermittelt werden. Diese sind wie folgt definiert:

NCE = NC - 2n.

Dabei ist NC die Zahl der Kohlenstoffatome und n die Zahl der Doppelbindungen.

Wenn n_0 , n_1 und n_{1n} die Zahlen der Doppelbindungen sind, die von der Öl- bzw. der Linol- und Linolensäure stammen, so kann die äquivalente Kohlenstoffzahl berechnet werden nach der Formel

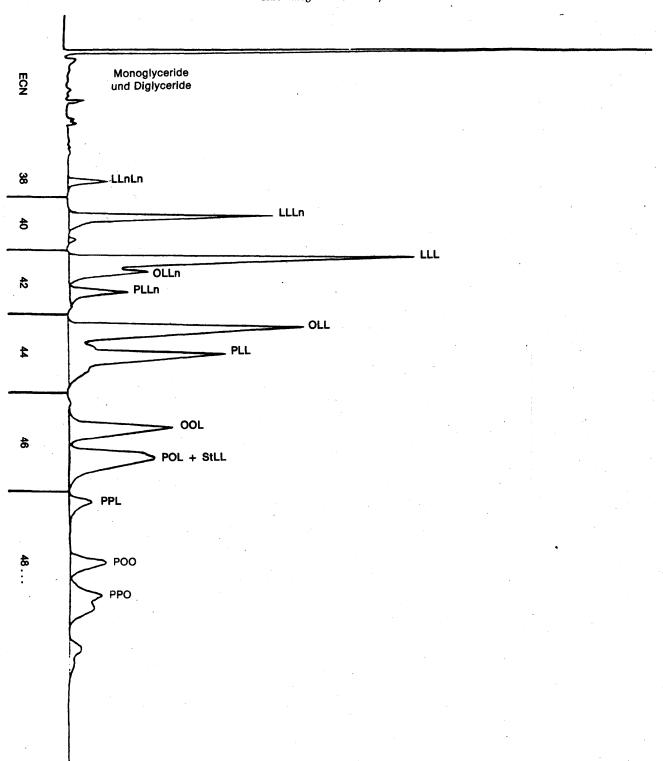
 $NCE = NC - d_0 n_0 - d_1 n_1 - d_{1n} n_{1n}.$

Die Koeffizienten d_0 , d_1 und d_{1n} können mit Hilfe der Triglyceride, die als Referenzsubstanzen benutzt wurden, berechnet werden. Unter den in dieser Methode beschriebenen Bedingungen gilt etwa folgende Beziehung

NCE = NC - $2,60 \text{ n}_0$ - $2,35 \text{ n}_1$ - $2,17 \text{ n}_{1n}$.

Anmerkung 2: Beispiele: Lichrosorb RP 18 (Merck) Art 50333,

Lichrospher 100 CH-18 (Merck) Art 50377 oder ähnliches Füllmaterial.


Anmerkung 3: Man kann ebenfalls mit mehreren Triglyceriden als Referenzsubstanzen und mit Hilfe der korrigierten Retentionszeit TR' = TR - TR_{Lösungsmittel} die Selektivität in bezug auf Triolein wie folgt berechnen:

$$\alpha = \frac{TR'}{TR'_{Olein}}$$

Die graphische Darstellung von log $\alpha = f$ (Zahl der Doppelbindungen) ermöglicht es, die Retention von allen Triglyceriden zu bestimmen, die die Fettsäuren enthalten, die in den als Referenzsubstanzen verwendeten Triglyceriden vorkommen (siehe Abbildung 2).

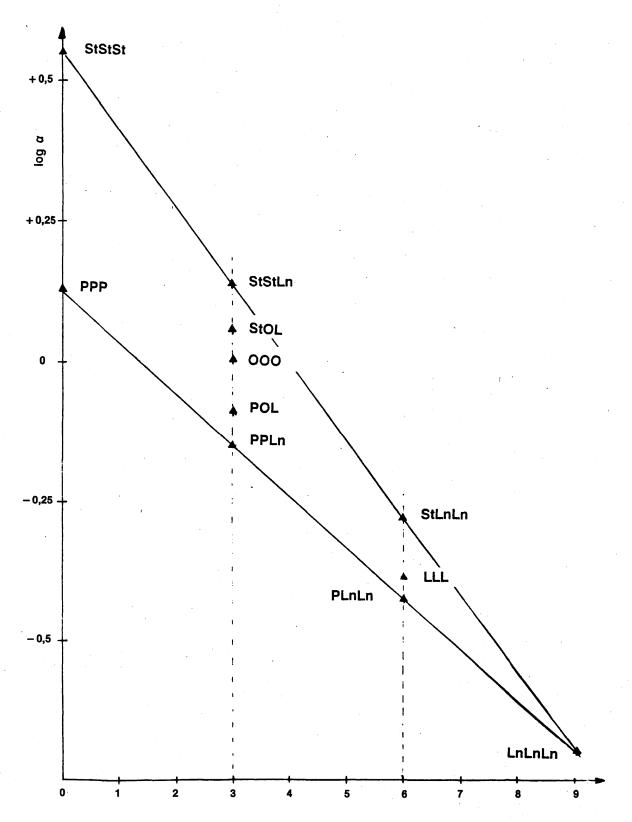

Anmerkung 4: Die Trennfähigkeit der Säule muß eine klare Trennung des Trilinolein-Peaks (LLL) auch von den Peaks der Triglyceride ermöglichen, die eine nur wenig unterschiedliche Retentionszeit besitzen.

Abbildung 1
Chromatogramm eines Sojaöls

Anmerkung: P = Palmitinsäure; St = Stearinsäure; O = Ölsäure; L = Linolsäure; Ln = Linolensäure.

 $Abbildung \ 2$ Graphische Darstellung von log α als Funktion von f (Zahl der Doppelbindungen)

Anmerkung: La = Laurinsäure; My = Myristinsäure; P = Palmitinsäure; St = Stearinsäure; O = Ölsäure; L = Linolessäure; L = Linolessäure.

ANHANG IX

UV-SPEKTROPHOTOMETRISCHE ANALYSE

EINLEITUNG

Die spektrophotometrische Untersuchung im Ultraviolettlicht kann Angaben über die Qualität eines Fettes, seine Haltbarkeit und die infolge technologischer Verfahren eingetretenen Veränderungen erbringen.

Die Absorption bei den in dem Verfahren vorgesehenen Wellenlängen ist bedingt durch das Vorkommen konjugierter Dien- und Triensysteme. Die Absorption wird als spezifische Extinktion $E_{1cm}\,1\,\%$ angegeben (Extinktion einer $1\,\%$ igen Lösung des Fettes in dem vorgeschriebenen Lösungsmittel bei einer Schichtdicke von $1\,$ cm). Sie wird üblicherweise als K bezeichnet (auch Extinktionskoeffizient genannt).

ANWENDUNGSBEREICH

Das Verfahren beschreibt die Durchführung der spektrophotometrischen Untersuchung von Fetten im Ultraviolettlicht.

2. PRINZIP

Das zu untersuchende Fett wird in dem vorgeschriebenen Lösungsmittel gelöst, anschließend wird die Extinktion der Lösung bei der vorgeschriebenen Wellenlänge im Vergleich zum reinen Lösungsmittel bestimmt. Die spezifischen Extinktionen werden mit Hilfe der abgelesenen spektrophotometrischen Werte errechnet.

3. GERÄTE

- 3.1. Spektrophotometer, geeignet zum Messen der Extinktionen im UV-Licht zwischen 220 und 360 nm und mit der Möglichkeit, einzelne nanometrische Einheiten ablesen zu können.
- 3.2. Rechteckige Quarzküvetten mit Deckel und einer optischen Länge von 1 cm. Die Extinktionen der mit Wasser oder einem geeigneten Lösungsmittel gefüllten Küvetten dürfen nicht mehr als 0,01 Einheiten voneinander abweichen.
- 3.3. 25-ml-Meßkolben.
- 3.4. Chromatographische Säule von 450 mm Länge und 35 mm Durchmesser, ausgestattet mit einem Abflußrohr von etwa 10 mm Durchmesser.

4. REAGENZIEN

- 4.1. Isooktan (2,2,4-Trimethylpentan), spektrophotometrisch rein: es muß im Vergleich zu destilliertem Wasser eine Durchlässigkeit von mindestens 60 % bei 220 nm und mindestens 95 % bei 250 nm haben; oder
 - Cyclohexan, spektrophotometrisch rein: es muß im Vergleich zu destilliertem Wasser eine Durchlässigkeit von mindestens 40 % bei 220 nm und mindestens 95 % bei 250 nm haben;
 - andere geeignete Lösungsmittel, in denen Fette sich vollständig lösen lassen (Ethylalkohol für Rizinusöl).
- 4.2. Basisches Aluminiumoxid zur Säulenchromatographie, das gemäß Anlage 1 vorbereitet und geprüft wurde.
- 4.3. n-Hexan, zur Chromatographie.

5. VERFAHREN

5.1. Die zu untersuchende Probe muß absolut homogen und frei von suspendierten Verunreinigungen sein. Die bei Raumtemperatur flüssigen Öle werden bei einer Temperatur von etwa 30 °C über Papier filtriert. Die festen Fette werden homogenisiert und bei einer Temperatur von höchstens 10 °C über ihrem Schmelzpunkt filtriert.

- 5.2. Etwa 0,25 g der so vorbereiteten Probe in einen 25-ml-Meßkolben einwiegen, mit dem vorgeschriebenen Lösungsmittel auffüllen und homogenisieren. Die so hergestellte Lösung muß absolut klar sein. Wenn die Lösung trüb ist oder Verunreinigungen enthält, muß schnell über Papier filtriert werden.
- 5.3. Mit der so hergestellten Lösung wird eine Küvette gefüllt und die Extinktion bei der entsprechenden Wellenlänge zwischen 232 und 276 nm gemessen, wobei das Lösungsmittel als Referenzlösung verwendet wird.

Die abgelesenen Extinktionen müssen im Bereich von 0,1 bis 0,8 liegen; andernfalls müssen die Messungen unter Verwendung von entsprechend stärker konzentrierten oder verdünnten Lösungen wiederholt werden.

5.4. Wird eine Bestimmung der spezifischen Extinktion nach Behandlung mit Aluminiumoxid verlangt, so ist wie folgt zu verfahren: 30 g basisches Aluminiumoxid werden in einer Hexansuspension in die Säule gegeben. Nach dem Absetzen des Adsorbens wird überschüssiges Hexan bis auf 1 cm oberhalb der Aluminiumoxidfüllung entfernt.

10 g Fett, das wie unter 5.1 beschrieben homogenisiert und filtriert wurde, wird in 100 ml Hexan gelöst und die Lösung auf die Säule gegeben. Das Eluat wird gesammelt und das Lösungsmittel im Vakuum bei Temperaturen unter 25 °C entfernt.

Mit dem so erhaltenen Fett wird sofort weiter verfahren wie unter 5.2 beschrieben.

6. ABFASSUNG DER ERGEBNISSE

6.1. Angegeben werden die bei den verschiedenen Wellenlängen bestimmten spezifischen Extinktionen (Extinktionskoeffizienten), die wie folgt zu berechnen sind:

$$K_{\lambda} = \frac{E_{\lambda}}{c \cdot s}$$

Dabei bedeuten:

 K_{λ} = die spezifische Extinktion (Extinktionskoeffizient) bei der Wellenlänge λ ,

E_λ = die bei der Wellenlänge λ gemessene Extinktion,

c = die Konzentration der Lösung in g/100 ml,

s = die Länge der Küvette in cm.

Die Ergebnisse werden mit zwei Dezimalstellen angegeben.

6.2. Die spektrophotometrische Untersuchung von Olivenöl nach dem amtlichen Verfahren der EWG-Verordnungen sieht die Bestimmung der spezifischen Extinktion in einer Isooktanlösung bei den Wellenlängen 232 und 270 nm sowie die Bestimmung von Δ K gemäß folgender Formel vor:

$$\Delta K = K_{m} - \frac{K_{m-4} + K_{m+4}}{2}$$

Dabei ist $K_{\rm m}$ die spezifische Extinktion bei der Wellenlänge m, bei der im Bereich von 270 nm das Maximum der Absorption liegt.

ANLAGE I

Vorbereitung des Aluminiumoxids und Prüfung seiner Aktivität

A.1.1. Vorbereitung des Aluminiumoxids

Das zuvor im Trockenschrank bei 380—400 °C 3 Stunden lang getrocknete Aluminiumoxid in ein gut verschließbares Gefäß geben, je 100 g Aluminiumoxid 5 ml destilliertes Wasser zugeben, das Gefäß rasch verschließen, mehrfach schütteln und vor der Verwendung mindestens 12 Stunden stehen lassen.

A.1.2. Überprüfung der Aktivität des Aluminiumoxids

Eine chromatographische Säule mit 30 g Aluminiumoxid füllen und weiter wie unter 5.4 beschrieben verfahren. Über die Säule gibt man eine Mischung bestehend aus

- 95% nativem Olivenöl mit einer spezifischen Extinktion bei 268 nm von weniger als 0,18 und
- 5 % Erdnußöl, das bei der Raffination mit Bleicherde behandelt wurde und eine spezifische Extinktion bei 268 nm von mindestens 4 aufweist.

Weist die Mischung nach dem Passieren der Säule eine spezifische Extinktion bei 268 nm von mehr als 0,11 auf, so ist das Aluminiumoxid geeignet, anderenfalls ist der Wasserzusatz zu erhöhen.

ANLAGE II

Eichung des Spektrophotometers

- A.2. Das Gerät muß regelmäßig (mindestens alle 6 Monate) im Hinblick auf die Einstellung der Wellenlänge und die Genauigkeit der Anzeige überprüft werden.
- A.2.1. Die Überprüfung der Einstellung der Wellenlänge kann mit Hilfe einer Quecksilberdampflampe oder geeigneter Filter erfolgen.
- A.2.2. Zur Überprüfung der photoelektrischen Zelle und des Photomultipliers wird wie folgt verfahren: 0,2 g reines Kaliumchromat für die Spektrophotometrie einwiegen und in einer 0,05-N-Kaliumhydroxidlösung lösen, dann in einen Meßkolben geben und auf 1 000 ml auffüllen. Anschließend genau 25 ml der so hergestellten Lösung in einen 500-ml-Meßkolben überführen und mit der gleichen Kaliumhydroxidlösung auffüllen. Die Extinktion der so hergestellten Lösung bei 275 nm messen und dabei die Kaliumhydroxidlösung als Referenzlösung verwenden. Die mit einer 1-cm-Küvette gemessene Extinktion muß 0,2 ± 0,005 betragen.

ANHANG XA

GASCHROMATOGRAPHISCHE ANALYSE DER FETTSÄUREMETHYLESTER

1. ANWENDUNGSBEREICH

Diese Norm enthält allgemeine Anweisungen zur Anwendung der Gaschromatographie mit gepackten Säulen oder mit Kapillarsäulen zur Bestimmung der qualitativen und quantitativen Zusammensetzung einer Mischung von Fettsäuremethylestern, die nach dem in Anhang XB beschriebenen Verfahren hergestellt wurden.

Das Verfahren eignet sich nicht für polymerisierte Fettsäuren.

2. REAGENZIEN.

2.1. Trägergas

Inertgas (Stickstoff, Helium, Argon, Wasserstoff usw.), vollständig getrocknet und mit einem Sauerstoffgehalt unter 10 mg/kg.

Anmerkung 1: Der ausschließlich in Kapillarsäulen als Trägergas verwendete Wasserstoff kann die Analysengeschwindigkeit verdoppeln, ist aber gefährlich. Sicherheitsvorrichtungen sind verfügbar.

2.2. Hilfsgase

- 2.2.1. Wasserstoff (Reinheit über 99,9%), frei von organischen Verunreinigungen.
- 2.2.2. Luft oder Sauerstoff, frei von organischen Verunreinigungen.

2.3. Referenzstandard

Eine Mischung aus reinen Fettsäuremethylestern oder die Methylester eines Fetts mit bekannter Zusammensetzung, die möglichst der Zusammensetzung des zu analysierenden Fetts ähnlich sind.

Eine Oxidation der mehrfach ungesättigten Fettsäuren muß vermieden werden.

GERÄTE

Die vorliegenden Instruktionen gelten für die übliche Ausrüstung für die Gaschromatographie mit gepackter Säule oder Kapillarsäule und Flammenionisationsdetektor. Jedes Gerät, das die in 4.1.2 beschriebene Leistung und Trennung erbringt, ist geeignet.

3.1. Gaschromatograph

Der Gaschromatograph muß über folgende Bestandteile verfügen:

3.1.1. Einspritzsystem

Verwendet wird ein Einspritzsystem entweder in Verbindung

- a) mit gepackten S\u00e4ulen und m\u00f6glichst geringem Totvolumen (es mu\u00df in diesem Fall auf Temperaturen erhitzt werden k\u00f6nnen, die um 20-50 \u00df C \u00fcber der S\u00e4ulentemperatur liegen) oder
- b) mit Kapillarsäulen. In diesem Fall muß das Einspritzsystem speziell für diese Säulen vorgesehen sein. Es kann das Split-System oder das System der splitlosen "On Column"-Injektion sein.

Anmerkung 2: Sind Fettsäuren mit weniger als 16 Kohlenstoffatomen nicht vorhanden, so kann ein Injektor mit beweglicher Nadel verwendet werden.

3.1.2. Ofen

Der Ofen sollte so ausgelegt sein, daß die Säule auf mindestens 260 °C aufgeheizt und die Temperatur bei gepackten Säulen auf 1 °C und bei Kapillarsäulen auf 0,1 °C genau konstant gehalten werden kann. Letztere Bedingung ist vor allem dann wichtig, wenn eine "Fused Silica"-Säule verwendet wird.

In jedem Fall, besonders aber bei Fettsäuren mit weniger als 16 Kohlenstoffatomen, wird eine Heizung mit Temperaturprogramm empfohlen.

3.1.3. Gepackte Säule

3.1.3.1. Säule aus einem Material, das unempfindlich ist gegenüber den zu analysierenden Substanzen (z. B. Glas oder rostfreier Stahl).

Größe der Säule:

- a) Länge: 1—3 m. Eine relativ kurze Säule sollte verwendet werden, wenn langkettige Fettsäuren (über C₂₀) vorkommen. Bei der Analyse von Säuren mit 4 oder 6 Kohlenstoffatomen wird eine 2 m lange Säule empfohlen;
- b) Innendurchmesser: 2-4 mm.
- Anmerkung 3: Sind mehrfach ungesättigte Bestandteile mit mehr als drei Doppelbindungen vorhanden, so können sie in einer Säule aus rostfreiem Stahl zersetzt werden.

Anmerkung 4: Es kann ein System mit zwei gepackten Säulen verwendet werden.

- 3.1.3.2. Füllung, bestehend aus folgenden Bestandteilen:
 - a) Trägermaterial: Mit Säure gewaschenes und silanisiertes Kieselgur oder sonstiges geeignetes neutrales Trägermaterial mit einem engen Korngrößenbereich (Schwankungsbereich 25 μm innerhalb der Grenzwerte von 125 bis 200 μm), wobei die durchschnittliche Korngröße auf den Innendurchmesser der Säule abgestimmt wird.
 - b) Stationäre Phase: Polare Flüssigkeit vom Typ Polyester (z. B. Diehtylenglykolpolysuccinat, Butandiolpolysuccinat, Ethylenglykolpolyadipat usw.), Cyanosilicone oder sonstige Flüssigkeiten, die die erforderliche chromatographische Trennung ermöglichen (siehe Ziffer 4). Die stationäre Phase sollte 5—20 % (m/m) der Füllung ausmachen. Für bestimmte Trennungen kann eine nichtpolare stationäre Phase verwendet werden.

3.1.3.3. - Vorbereitung der Säule

Nachdem die Säule vom Detektor getrennt worden ist, den Ofen allmählich auf 185 °C aufheizen und einen Inertgasstrom von 20—60 ml/min mindestens 16 Stunden bei 185 °C sowie weitere 2 Stunden bei 195 °C durch die frisch hergestellte Säule leiten.

3.1.4. Kapillarsäule

- 3.1.4.1. Kapillare aus einem Material, das nicht mit den zu analysierenden Stoffen reagiert (üblicherweise Glas oder "Fused Silica"). Der Innendurchmesser sollte zwischen 0,2 und 0,8 mm liegen. Die Innenflächen müssen vor dem Auftragen der stationären Phase einer geeigneten Behandlung unterzogen werden (beispielsweise Oberflächenvorbereitung, Desaktivierung). In den meisten Fällen ist eine Länge von 25 m ausreichend.
- 3.1.4.2. Die stationäre Phase ist üblicherweise vom Typ Polyglykol (Polyethylenglykol 20 000), Polyester (Butandiolpolysuccinat) oder polarem Polysiloxan (Cyanosilicon). Vernetzte (cross linked) Säulen sind geeignet.

Anmerkung 5: Bei Verwendung von polaren Polysiloxanen können bei der Identifizierung und Trennung von Linolensäure und C_{20} -Säuren Schwierigkeiten auftreten.

Die Beschichtung sollte dünn, beispielsweise nur 0,1 bis 0,2 μm, sein.

3.1.4.3. Einbau und Vorbereitung der Säule

Beim Einbau der Kapillarsäule müssen die üblichen Vorsichtsmaßnahmen, wie Anordnung der Säule im Ofen (Träger), Auswahl und Zusammenbau der Verbindungsstücke (Abdichtung), Ausrichten der Säulenenden in dem Einspritzsystem und im Detektor (Verringerung von Totvolumen), getroffen werden. Die Säule wird mit dem Trägergasstrom gespült (z. B. bei einer Säulenlänge von 25 m und einem Innendurchmesser von 0,3 mm mit 0,3 bar (30 kPa)).

Zur Vorbereitung der Säule wird das Temperaturprogramm des Ofens auf 3 °C/min eingestellt und die Säule, ausgehend von der Raumtemperatur, auf eine Temperatur von 10 °C unter der Zersetzungsgrenze der stationären Phase erhitzt. Diese Ofentemperatur wird 1 Stunde beibehalten, bis die Grundlinie stabilisiert ist. Dann auf 180 °C zurückschalten und unter isothermen Bedingungen weiterarbeiten.

Anmerkung 6: Entsprechend vorbehandelte Fertigsäulen können im Handel bezogen werden.

3.1.5. Der Detektor sollte auf eine höhere Temperatur als die Säulentemperatur erhitzt werden können.

3.2. Spritze

Die Spritze sollte eine maximale Kapazität von 10 µl und eine Graduierung in 0,1 µl haben.

3.3. Schreiber

Wird die von dem Schreiber aufgezeichnete Kurve zur Berechnung der Zusammensetzung der analysierten Mischung verwendet, so wird ein mit dem verwendeten Gerät kompatibler Schreiber von hoher Präzision benötigt. Der Schreiber sollte folgende Merkmale aufweisen:

 a) Ansprechgeschwindigkeit unter 1,5 s, vorzugsweise 1 s (die Ansprechgeschwindigkeit ist die Zeit, die der Schreiber benötigt, um nach plötzlicher Auslösung eines Signals (100%) von 0% auf 90% auszuschlagen);

- b) Papierbreite mindestens 20 cm;
- c) Vorschubgeschwindigkeit einstellbar zwischen 0,4 und 2,5 cm/min.

3.4. Integrator oder Rechner (fakultativ)

Eine schnelle und genaue Berechnung ist mit Hilfe eines elektronischen Integrators oder Rechners möglich, der eine lineare Reaktion bei angemessener Empfindlichkeit liefern soll. Dabei muß die Korrektur bei Abweichungen von der Grundlinie zufriedenstellend sein.

4. VERFAHREN

Die in 4.1 bis 4.3 beschriebenen Verfahren beziehen sich auf den Gebrauch eines Flammenionisationsdetektors.

Alternativ kann auch ein Gaschromatograph mit einem Katharometer-Detektor (der auf dem Prinzip der Änderungen der Wärmeleitfähigkeit beruht) verwendet werden. In diesem Fall müssen die Betriebsbedingungen entsprechend Ziffer 6 geändert werden.

4.1. Versuchsbedingungen

4.1.1. Ermittlung der optimalen Betriebsbedingungen

4.1.1.1. Gepackte Säule

Bei der Ermittlung der Versuchsbedingungen müssen folgende Variablen berücksichtigt werden:

- a) Länge und Durchmesser der Säule;
- b) Art und Menge der stationären Phase;
- c) Säulentemperatur;
- d) Trägergasstrom;
- e) erforderliche Trennleistung;
- f) Größe der zu untersuchenden Probe, die so ausgewählt sein muß, daß Detektor und Elektrometer eine lineare Anzeige ergeben;
- g) Analysendauer.

Im allgemeinen führen die in den Tabellen 1 und 2 genannten Werte zu dem gewünschten Ergebnis, d. h. mindestens 2 000 theoretische Böden pro Meter Säulenlänge für Methylstearat und dessen Elution innerhalb von 15 Minuten.

Sofern die Geräte es erlauben, sollte das Einspritzsystem etwa 200 °C und der Detektor mindestens genauso heiß wie die Säule sein.

Im allgemeinen liegt das Verhältnis der Strömungsgeschwindigkeit des Wasserstoffs für den Flammenionisationsdetektor und der des Trägergases zwischen 1:2 und 1:1 je nach Säulendurchmesser. Der Sauerstoffstrom beträgt etwa das 5- bis 10-fache des Wasserstoffstroms.

Tabelle 1

Innendurchmesser der Säule in mm	Trägergasstrom in ml/min
2	15 bis 25
3	20 bis 40
4	40 bis 60

Tabelle 2

Konzentration der stationären Phase in % (m/m)	Säulentemperatur in °C
5	175
10	180
15	185
20	185

4.1.1.2. Kapillarsäule

Die Eigenschaften der Kapillarsäule, nämlich Leistungsfähigkeit und Durchlässigkeit, bedingen, daß die Trennung der Bestandteile und die Analysendauer weitgehend von der Strömungsgeschwindigkeit des Trägergases in der Säule abhängen. Daher ist eine Optimierung der Betriebsbedingungen durch Einwirkung auf deren Parameter (einfacher ausgedrückt: auf den Druckverlust der Säule) notwendig, je nachdem, ob eine bessere Trennung oder eine schnellere Analyse gewünscht wird.

4.1.2. Bestimmung der Zahl der theoretischen Böden (Leistungsfähigkeit) und der Auflösung (siehe Abbildung 1)

Die Analyse wird mit einer Mischung aus etwa gleichen Teilen Methylstearat und Methyloleat (beispielsweise Methylestern der Kakaobutter) durchgeführt.

Die Säulentemperatur und der Trägergasstrom sind so zu wählen, daß das Maximum des Methylstearat-Peaks etwa 15 Minuten nach dem Lösungsmittelpeak aufgezeichnet wird. Dabei muß eine ausreichende Menge Methylstearmischung verwendet werden, damit der Methylstearat-Peak etwa Dreiviertel des vollen Skalenanschlags erreicht.

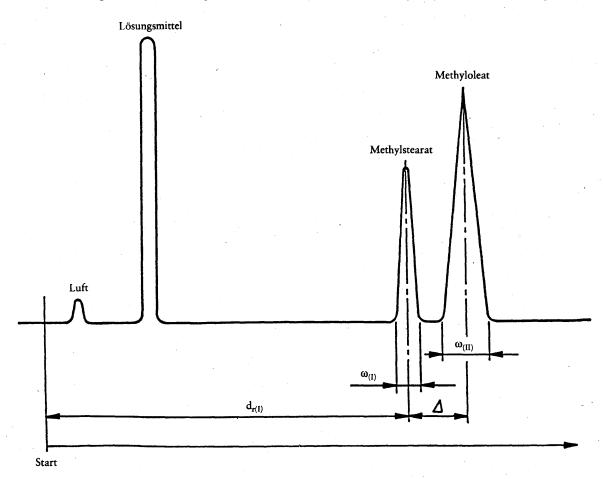
Die Zahl der theoretischen Böden n wird nach folgender Formel berechnet:

$$n = 16 \left[\frac{d_{r(I)}}{\omega_{(I)}} \right]^2$$

Die Auflösung R wird berechnet nach der Formel:

$$R = \frac{2\Delta}{\omega_{(I)} + \omega_{(II)}}$$

Dabei sind:


d_{r(I)} = die Retention in Millimetern, vom Start des Chromatogramms bis zum Maximum des Methylstearat-Peaks;

 $\omega_{(I)} + \omega_{(II)} =$ die Breite des Methylstearat- bzw. Methyloleat-Peaks in Millimeters, gemessen zwischen den Schnittpunkten der Wendetangenten mit der Grundlinie;

 die Entfernung zwischen den Maxima des Methylstearat- und des Methyloleat-Peaks in Millimetern.

Abbildung 1

Chromatogramm zur Bestimmung der Zahl der theoretischen Böden (Leistungsfähigkeit) und der Auflösung

Die Betriebsbedingungen sind so zu wählen, daß sich für Methylstearat wenigstens 2 000 theoretische Böden pro Meter Säule ergeben und eine Auflösung von wenigstens 1,25 erreicht wird.

4.2. Zu untersuchende Probe

Mit Hilfe der Spritze (3.2) werden 0.1 bis 2 μ l der nach Anhang XB hergestellten Methylester auf die Säule gespritzt. Sind die Ester nicht gelöst, so sind 100 mg/ml in chromatographisch reinem Heptan zu lösen und davon etwa 0.1 bis 1 μ l einzuspritzen.

Müssen Bestandteile bestimmt werden, die lediglich in Spuren vorkommen, so kann die Probengröße gesteigert werden (bis zum Zehnfachen).

4.3. Analyse

Im allgemeinen soll unter den in 4.1.1 beschriebenen Bedingungen gearbeitet werden. Es kann jedoch mit einer niedrigeren Säulentemperatur gearbeitet werden, wenn eine Bestimmung von Fettsäuren mit weniger als 12 Kohlenstoffatomen erforderlich ist. Bei der Bestimmung von Fettsäuren mit mehr als 20 Kohlenstoffatomen kann die Temperatur erhöht werden. In beiden Fällen kann auch mit Temperaturprogramm gearbeitet werden. Beispiel: Enthält die Probe Fettsäuremethylester mit weniger als 12 Kohlenstoffatomen, so wird die Probe bei 100 °C (oder bei 50—60 °C falls Buttersäure vorkommt) eingespritzt und die Temperatur sofort mit einer Anstiegsrate von 4—8 °C/min bis zum Optimum erhöht. In manchen Fällen können die beiden Verfahren kombiniert werden.

Nach dem programmierten Aufheizen wird die Elution bei gleichbleibender Temperatur fortgesetzt, bis alle Bestandteile eluiert sind. Verfügt das Gerät über keine programmierbare Heizung, so ist bei zwei festliegenden Temperaturen zwischen 100 °C und 195 °C zu arbeiten. Gegebenenfalls ist es ratsam, die Analyse mit zwei Phasen von unterschiedlicher Polarität durchzuführen, um die Abwesenheit von verdeckten Peaks beispielsweise bei gleichzeitigem Vorkommen von $C_{18:3}$ und $C_{20:0}$ oder $C_{18:3}$ und $C_{18:2}$ konjugiert, sicherzustellen.

4.4. Herstellung von Referenzchromatogrammen und Referenzkurven

Die Referenz-Standardmischung (2.3) wird unter den gleichen Arbeitsbedingungen wie die Probe analysiert und die Retentionszeiten oder die Retention der vorkommenden Fettsäuren bestimmt. Für jeden Grad der Ungesättigtheit wird auf halblogarithmischem Papier eine graphische Darstellung angefertigt, die den Logarithmus der Retentionszeit oder der Retention als Funktion der Zahl der Kohlenstoffatome zeigt. Unter isothermen Bedingungen müßten die graphischen Darstellungen der geradzahligen Säuren mit dem gleichen Grad der Ungesättigtheit gerade Linien ergeben. Die Geraden sollten annähernd parallel verlaufen.

Es müssen Bedingungen vermieden werden, unter denen verdeckte Peaks auftreten, d. h. Bedingungen, unter denen die Auflösung zu gering ist, um zwei Bestandteile zu trennen.

DARSTELLUNG DER ERGEBNISSE

5.1. Qualitative Analyse

Die Methylester-Peaks der Probe werden aus der nach 4.4 erstellten graphischen Darstellung identifiziert, wenn nötig durch Interpolation.

5.2. Quantitative Analyse

5.2.1. Bestimmung der Zusammensetzung

Abgesehen von Ausnahmefällen wird die Methode der inneren Normalisierung angewandt, d. h. man geht davon aus, daß alle Bestandteile der Probe auf dem Chromatogramm erscheinen, so daß die Gesamtheit der Peakflächen 100 % der Bestandteile darstellt (vollständige Elution).

Enthält das Gerät einen Integrator, so sind dessen Daten zu verwenden. Andernfalls muß die Fläche unter jedem Peak durch Multiplikation der Peakhöhe mit der Breite auf halber Höhe bestimmt werden. Gegebenenfalls sind auch die verschiedenen während der Aufzeichnung verwendeten Abschwächungen zu berücksichtigen.

5.2.2. Berechnung

5.2.2.1. Allgemeiner Fall

Der Gehalt eines Bestandteils i (ausgedrückt in Massenprozent Methylester) wird durch Bestimmung des prozentualen Anteils der jeweiligen Peakfläche im Verhältnis zur Summe aller Peakflächen berechnet. Dazu wird folgende Formel verwendet:

$$\frac{A_i}{\Sigma A} \times 100$$

Hierbei sind:

Ai = die Peakfläche, die dem Bestandteil i entspricht,

ΣA = die Summe aller Peakflächen.

Das Ergebnis ist auf eine Stelle nach dem Komma anzugeben.

Anmerkung 7: In diesem allgemeinen Fall wird davon ausgegangen, daß das auf relative Flächen bezogene Berechnungsergebnis den jeweiligen Massenprozenten entspricht. Für die Fälle, in denen diese Annahme nicht zulässig ist, siehe 5.2.2.2.

5.2.2.2. Anwendung von Korrekturfaktoren

In bestimmten Fällen, beispielsweise in Gegenwart von Fettsäuren mit weniger als 8 Kohlenstoffatomen oder von Fettsäuren mit sekundären Gruppen, bei Verwendung eines Wärmeleitfähigkeits-Detektors oder wenn eine besonders hohe Genauigkeit erforderlich ist, sollten Korrekturfaktoren angewandt werden, um die prozentualen Peakflächen in Massenprozente der Bestandteile umzurechnen. Die Korrekturfaktoren werden mit Hilfe eines Chromatogramms bestimmt, das durch Analyse einer Referenzmischung von Methylestern bekannter Zusammensetzung unter den gleichen Bedingungen wie bei der Analyse der Probe erstellt wurde.

Für diese Referenzmischung ergibt sich der prozentuale Massenanteil des Bestandteiles i aus der Formel:

$$\frac{m_i}{\Sigma m} \times 100$$

Hierin sind:

mi = die Masse des Bestandteils in der Referenzmischung,

Σm = die Gesamtheit aller Massen der verschiedenen Bestandteile der Referenzmischung.

Aus dem Chromatogramm der Referenzmischung (4.4) wird der prozentuale Anteil (Fläche/Fläche) des Bestandteils i wie folgt berechnet:

$$\frac{A_i}{\Sigma A} \times 100$$

Hierin sind:

Ai = die Peakfläche des Bestandteiles i,

ΣA = die Summe aller Peakflächen.

Der Korrekturfaktor ergibt sich aus der Formel

$$K_i = \frac{m_i \times \Sigma A}{A_i \times \Sigma m}$$

Im allgemeinen werden die Korrekturfaktoren auf KC16 bezogen, so daß die relativen Faktoren nach folgender Formel berechnet werden:

$$K'_i = \frac{K_i}{K_{C16}}$$

Der Gehalt der Probe an jedem Bestandteil i, ausgedrückt in Massenprozent Methylester, ist:

$$\frac{\mathrm{K'}_{\mathrm{i}} \times \mathrm{A}_{\mathrm{i}}}{\mathrm{\Sigma} \left(\mathrm{K'}_{\mathrm{i}} \times \mathrm{A}_{\mathrm{i}}\right)} \times 100$$

Die Ergebnisse sind auf eine Stelle nach dem Komma anzugeben.

5.2.2.3. Verwendung eines inneren Standards

In bestimmten Fällen ist es erforderlich, einen inneren Standard zu verwenden (beispielsweise, wenn nicht alle Fettsäuren quantitativ bestimmt werden sollen, wie beim Vorkommen von Säuren mit 4 und 6 Kohlenstoffatomen neben Säuren mit 16 oder 18 Kohlenstoffatomen, oder wenn die absolute Menge an Fettsäuren in der Probe bestimmt werden soll). Dazu werden häufig Fettsäuren mit 5, 15 oder 17 Kohlenstoffatomen verwendet.

Auch für den inneren Standard sollte der Korrekturfaktor bestimmt werden (sofern einer verwendet wird).

Der Anteil des Bestandteils i in Massenprozent, ausgedrückt als Methylester, ergibt sich dann aus der Formel

$$\frac{m_s \times K'_i \times A_i}{m \times K'_s \times A_s} \times 100$$

Hierin ist:

A_i = die Peakfläche des Bestandteils i,

As = die Peakfläche des inneren Standards,

K'i = der Korrekturfaktor für den Bestandteil i (bezogen auf KC16),

K's = der Korrekturfaktor für den inneren Standard (bezogen auf KC16),

m = die Masse der zu untersuchenden Probe in Milligramm,

 m_s = die Masse des inneren Standards in Milligramm.

Das Ergebnis ist auf eine Stelle nach dem Komma anzugeben.

6. SONDERFALL — VERWENDUNG EINES KATHAROMETER-DETEKTORS (BASIERT AUF DEM PRINZIP DER ÄNDERUNG DER WÄRMELEITFÄLIIGKEIT)

Zur Bestimmung der qualitativen und quantitativen Zusammensetzung eines Gemisches von Fettsäuremethylestern kann auch ein Gaschromatograph mit einem Detektor verwendet werden, der auf der Grundlage von Änderungen der Wärmeleitfähigkeit (Katharometer) arbeitet. In diesem Fall müssen die in den Ziffern 3 und 4 beschriebenen Arbeitsbedingungen gemäß der Tabelle 3 geändert werden.

Für die quantitative Analyse sind die in 5.2.2.2 beschriebenen Korrekturfaktoren anzuwenden.

Tabelle 3

Variable	Daten/Arbeitsbedingungen		
Säule	Länge: 2—4 m Innendurchmesser: 4 mm		
Trägermaterial	Korngröße zwischen 160 und 200 µm		
Konzentration der stationären Phase	15 % (m/m) bis 25 % (m/m)		
Trägergas	Helium oder, wenn nicht vorhanden, Wasser- stoff, mit möglichst geringem Sauerstoffgehalt		
Hilfsgase	Keine		
Temperatur des Einspritzsystems	40-60 °C höher als die der Säule		
Säulentemperatur	180—200 °C		
Strömungsgeschwindigkeit des Trägergases	Im allgemeinen zwischen 60 und 80 ml/min		
Menge der eingespritzten Probe	Im allgemeinen zwischen 0,5 und 2 µl		

7. UNTERSUCHUNGSBERICHT

Im Untersuchungsbericht müssen das zur Herstellung der Methylester angewandte Verfahren, das gaschromatograpische Verfahren und die Ergebnisse genau angegeben werden. Darüber hinaus sind alle Arbeitsbedingungen zu nennen, die einen Einfluß auf die Ergebnisse gehabt haben können, auch wenn sie nicht in dieser Internationalen Norm aufgeführt wurden oder als fakultativ gelten.

Der Untersuchungsbericht muß alle zur vollständigen Identifizierung der Probe notwendigen Informationen enthalten.

ANHANG XB

VORBEREITUNG DER FETTSÄUREMETHYLESTER GEMÄSS ANHANG VI ABSCHNITTE I UND II DER VERORDNUNG (EWG) Nr. 72/77 ODER GEMÄSS DEM NACHSTEHEND BESCHRIEBENEN VERFAHREN

EINLEITUNG

Die Wahl der Methode ist abhängig von der Zusammensetzung der Fettsäuren, vom Gehalt an freien Fettsäuren des zu untersuchenden Fettes und von der auszuführenden gaschromatographischen Analyse.

In Frage kommen

- für Fette mit Fettsäuren unter C12 nur Verfahren in geschlossenen Ampullen oder mit Dimethylsulfat,
- für Fette mit einem Gehalt an freien Fettsäuren von über 3 % nur Verfahren mit Methanol-Salzsäure oder Dimethylsulfat,
- für gaschromatographische Bestimmungen von trans-Isomeren nur Verfahren mit Natriummethylat oder Dimethylsulfat,
- das Verfahren mit Methanol-Hexan-Schwefelsäure muß angewandt werden für die Herstellung von Methylestern aus kleinen Fettmengen nach deren dünnschichtchromatographischer Abtrennung.

Das Unverseifbare kann vernachlässigt werden, wenn es einen Gehalt von 3 % nicht überschreitet; anderenfalls müssen die Methylester aus den Fettsäuren hergestellt werden.

METHODEN

Im folgenden werden 5 Methoden für die Herstellung der Methylester aus Fetten beschrieben:

- a) mit Natriummethylat,
- b) mit Natriummethylat in einer verschlossenen Ampulle,
- c) mit Methanol-Salzsäure in einer verschlossenen Ampulle,
- d) mit Dimethylsulfat,
- e) mit Methanol-Hexan-Schwefelsäure.

Methode A

2. PRINZIP DER METHODE

Das zu untersuchende Fett wird unter Rückfluß mit Methanol und Natriummethylat erhitzt. Die gewonnenen Methylester werden mit Ethylether extrahiert.

3. GERÄTE

- 3.1. 100-ml-Kolben mit Rückflußkühler, oben mit einem Calciumchloridrohr verschlossen, mit Schliffanschlüssen.
- 3.2. 50-ml-Meßzylinder.
- 3.3. 5-ml-Meßpipette, mit 0,1-ml-Graduierung.
- 3.4. 250-ml-Scheidetrichter.
- 3.5. 200-ml-Kolben.
- 4. REAGENZIEN
- 4.1. Wasserfreies Methanol.

- 4.2. Natriummethylat, etwa 1%ige Lösung in Methanol; Herstellung durch Auflösen von 0,34 g metallischem Natrium in 100 ml wasserfreiem Methanol.
- 4.3. Ethylether.
- 4.4. Natriumchlorid, 10% ige Lösung.
- 4.5. Petrolether, Kp 40° 60 °C.

5. VERFAHREN

- 5.1. In den 100-ml-Kolben 2 g des über Natriumsulfat getrockneten und filtrierten Fettes einwiegen; 35 ml Methanol hinzufügen, den Kühler aufsetzen und unter Rückfluß einige Minuten kochen lassen.
- 5.2. Das Erwärmen unterbrechen, die Kühlung abstellen und schnell 3,5 ml Natriummethylatlösung zugeben. Die Kühlung wieder anstellen und unter Rückfluß mindestens 3 Stunden sieden lassen. Die Methylierung ist beendet, wenn das gesamte Fett in Lösung gegangen ist und das Reaktionsgemisch bei Raumtemperatur klar bleibt.
- 5.3. Abkühlen lassen und das Reaktionsgemisch in einen 250-ml-Scheidetrichter überführen, 30 40 ml Ethylether, 100 ml Wasser und 5 6 ml 10%ige Natriumchloridlösung zugeben. Schütteln und die Schichten absetzen lassen. Die wäßrige Phase in einen zweiten Scheidetrichter ablassen und erneut mit 25 ml Ethylether extrahieren. Die vereinigten Etherfraktionen mit 50 ml Petrolether Kp 40 60°C versetzen dadurch erfolgt eine Abtrennung von Wasser, das dann entfernt wird. Die Etherphase dreimal mit je 10 15 ml Wasser waschen, über Natriumsulfat trocknen, durch ein Filter in einen 200-ml-Kolben filtrieren.

Das Lösungsmittel auf dem Wasserbad abdestillieren und den Rückstand in einem Strom von reinem Stickstoff trocknen.

Methode B

PRINZIP DER METHODE

Das zu untersuchende Fett wird mit einer methanolischen Natriummethylatlösung in einer verschlossenen Ampulle bei 85—90 °C umgesetzt.

- GERÄTE
- 3.1. Dickwandige Glasampulle, ca. 5 ml Inhalt (Länge 40-45 mm, Durchmesser 14-16 mm).
- 3.2. 1-ml-Meßpipette, mit 0,1-ml-Graduierung.
- 4. REAGENZIEN
- 4.1. Natriummethylat, 1,5%ige Lösung in Methanol, hergestellt durch Auflösen von 0,50 g metallischem Natrium in 100 ml wasserfreiem Methanol.
- VERFAHREN
- 5.1. In die Ampulle 2 g des über Natriumsulfat getrockneten und filtrierten Fettes einwiegen, 0,3 g (ca. 0,4 ml) Natriummethylatlösung hinzufügen und die Ampulle über der Flamme zuschmelzen.
- 5.2. Die Ampulle zwei Stunden in ein Wasserbad von 85—90 °C stellen und von Zeit zu Zeit schütteln. Das Ende der Veresterung in der Ampulle zeigt sich darin, daß der Inhalt nach Absetzen des Glycerins und des Rückstands der Reagenzien klar wird.
- 5.3. Auf Raumtemperatur abkühlen. Die Ampulle erst öffnen, wenn die Methylester gebraucht werden. Sie brauchen für die Verwendung im Gaschromatographen nicht weiter behandelt zu werden.

Methode C

2. PRINZIP DER METHODE

Das zu untersuchende Fett wird mit Methanol-Salzsäure in einer verschlossenen Ampulle bei 100 °C umgesetzt.

- GERÄTE
- 3.1. Dickwandige Glasampulle, ca. 5 ml Inhalt (Länge 40-45 mm, Durchmesser 14-16 mm).
- 3.2. Geeichte Pipetten von 1 und 2 ml.
- 4. REAGENZIEN
- 4.1. 2%ige methanolische Salzsäure. Herstellung mit gasförmiger Salzsäure und wasserfreiem Methanol (Anmerkung 1, Methode E).
- 4.2. Hexan für die Gaschromatographie.
- VERFAHREN
- 5.1. In die Ampulle 2 g des über Natriumsulfat getrockneten und filtrierten Fettes einwiegen, 2 ml der methanolischen Salzsäurelösung hinzufügen und die Ampulle über der Flamme zuschmelzen.
- 5.2. Die Ampulle 40 Minuten in ein Wasserbad von 100 °C stellen.
- 5.3. Unter fließendem Wasser abkühlen, öffnen, 2 ml destilliertes Wasser und 1 ml Hexan hinzufügen. Zentrifugieren und die Hexanphase abnehmen, sie ist fertig zum Gebrauch.

Methode D

2. PRINZIP DER METHODE

Das zu untersuchende Fett wird mit methanolischer Kaliumhydroxidlösung verseift, dann mit Dimethylsulfat behandelt. Nach Zusatz von Salzsäure erfolgt eine Abtrennung der Methylester. Durch anschließende Behandlung mit Aluminiumoxid erhält man sehr reine Methylester.

- GERÄTE
- 3.1. Reaktionsgefäß aus dickwandigem Glas, etwa 20 ml Inhalt, mit Schliffstopfen 10/19 und Sicherheitshaken.
- 3.2. Rückflußkühler mit Schliff 10/19.
- 3.3. Glasfiltertiegel G 2, 20 mm Durchmesser.
- 3.4. Glasröhrchen, etwa 10 ml Inhalt, mit konischem Boden.
- 3.5. 1- und 5-ml-Spritzen.
- 4. REAGENZIEN
- 4.1. Kaliumhydroxid, 10%ige Lösung in Methanol für die Gaschromatographie.
- 4.2. Indikator aus Bromkresolgrün: 0,05%ige Lösung in Methanol.
- 4.3. Dimethylsulfat (d = 1,335 bei 15 °C).
- 4.4. Konzentrierte Salzsäure, d = 1,19, Verdünnung 1:1 mit Methanol für die Gaschromatographie.
- 4.5. Aluminiumoxid, standardisiert nach Brockmann, für die Adsorptionschromatographie.
- 5. VERFAHREN
- 5.1. In das 20 ml fassende Reaktionsgefäß etwa 2 g (ungefähr 2,2 ml) des über Natriumsulfat getrockneten und filtrierten Fettes einfüllen, 5 ml Kaliumhydroxidlösung und einige Siedesteinchen zugeben. Den Rückflußkühler aufsetzen und auf kleiner Flamme 5 Minuten unter Schütteln erhitzen. Die Verseifung ist vollständig, wenn die Lösung klar aussieht. Unter fließendem Wasser abkühlen und den Rückflußkühler entfernen.

- 5.2. Zwei Tropfen Indikatorlösung zugeben, dann langsam mit einer Spritze 1 ml Dimethylsulfat. Das Reaktionsgefäß fest verschließen und 2—3 Minuten schütteln, während das untere Ende in ein siedendes Wasserbad getaucht wird. Die Reaktion ist beendet, wenn der Indikator von blau nach gelb umschlägt. Unter fließendem Wasser abkühlen, öffnen und 5 ml methanolische Salzsäure zugeben.
- 5.3. Einige Sekunden schütteln, das Gefäß schräg halten und durch leichtes Klopfen das Absetzen der Methylester in Form einer öligen Masse beschleunigen (Anmerkung A). Die Methylester mit Hilfe einer Spritze, die bis auf den Boden des Gefäßes reicht, aufnehmen, so viel Aluminiumoxid zugeben, wie etwa 1/4 des Volumens der Methylester entspricht, schütteln und durch ein Papierfilter filtrieren.

Anmerkung A: Sofern keine sofortige Abtrennung der Methylester erfolgt, 5 ml Wasser in das Gefäß geben und schürreln.

Methode E

2. PRINZIP DER METHODE

Das zu untersuchende Fett wird unter Rückfluß mit einer Mischung aus Methanol, Hexan und Schwefelsäure erhitzt. Die dabei entstehenden Methylester werden mit Petrolether extrahiert.

- GERÄTE
- 3.1. Reaktionsgefäß von etwa 20 ml Inhalt, mit Steigrohr von etwa 1 m Länge und Schliffverschluß.
- 3.2. 5-ml-Pipette, graduiert.
- 3.3. 50-ml-Scheidetrichter.
- 3.4. 10- und 25-ml-Meßzylinder.
- 3.5. Versuchsgefäß, 15 ml Inhalt, mit konischem Boden.
- 4. REAGENZIEN
- 4.1. Methylierungsreagenz: wasserfreies Methanol, Hexan und Schwefelsäure (d = 1,84) im Verhältnis 75:25:1 (V/V/V) gemischt.
- 4.2. Petrolether, Kp. 40-60 °C.
- 4.3. Wasserfreies Natriumsulfat.
- 5. VERFAHREN
- 5.1. In das 20-ml-Reaktionsgefäß das von einer Dünnschichtplatte gewonnene Material einfüllen und 5 ml Methylierungsreagenz zufügen.
- 5.2. Den Rückflußkühler anschließen und im siedenden Wasserbad 30 Minuten erhitzen (Anmerkung 2).
- 5.3. Die Mischung quantitativ mit Hilfe von 10 ml destilliertem Wasser und 10 ml Petrolether in einen 50-ml-Scheidetrichter überführen. Kräftig schütteln, die Phasen absetzen lassen, die wäßrige Schicht ablaufen lassen und die Petroletherschicht zweimal mit je 20 ml destilliertem Wasser waschen. In den Scheidetrichter eine kleine Menge wasserfreies Natriumsulfat geben, schütteln, einige Minuten stehen lassen und abfiltrieren. Das Filtrat in das 15-ml-Gefäß mit konischem Boden füllen.

Das Lösungsmittel im Wasserbad unter Einleiten von Stickstoff abdampfen.

- Anmerkung 1: Kleinere Mengen gasförmiger Salzsäure können im Labor leicht hergestellt werden, indem man in eine käufliche Salzsäure (p = 1,18) konzentrierte Schwefelsäure (p = 1,84) eintropfen läßt. Das freigesetzte Gas kann leicht getrocknet werden, indem man es über konzentrierte Schwefelsäure leitet. Salzsäure wird schnell von Methanol absorbiert, deshalb müssen beim Lösen Vorkehrungen getroffen werden, z. B. indem man das Gas umgekehrt durch einen kleinen Trichter leitet, dessen Rand die Obersläche der Flüssigkeit berührt. Größere Mengen an methanolischer Salzsäure lassen sich auf Vorrat herstellen, da die Lösung in dunklen Glasslaschen mit Glasstöpsel haltbar ist.
- Anmerkung 2: Zur Kontrolle des Siedevorgangs sollte man einen Glasstab in das Reaktionsgefäß stellen und die Temperatur des Wasserbades nicht über 90 °C ansteigen lassen.

ANHANG XI

BESTIMMUNG DES GEHALTS AN FLÜCHTIGEN HALOGENIERTEN LÖSUNGSMITTELN IN OLIVENÖL

1. PRINZIP

Gaschromatographische Headspace-Analyse.

- 2. GERÄTE
- 2.1. Gaschromatograph mit Elektroneneinfangdetektor (ECD).
- 2.2. Headspace-Vorrichtung.
- 2.3. Gaschromatographische Glassäule von 2 m Länge und 2 mm Durchmesser.
 Stationäre Phase: 10 % OV 101 oder eine gleichwertige Phase, aufgezogen auf mit Säure gewaschenem und silanisiertem Kieselgur mit einer Korngröße von 80—100 Mesh.
- 2.4. Träger- und Hilfsgas: Stickstoff für die Gaschromatographie, geeignet für Elektroneneinfangdetektoren.
- 2.5. Glasfläschehen 10—15 ml, versehen mit einem Verschluß aus Aluminium und Teflon, der eine Entnahme mit Hilfe einer Spritze ermöglicht.
- 2.6. Klemmen für absolut dichten Verschluß.
- 2.7. Spritzen 0,5 bis 2 ml, zum Einspritzen von Gas.

3. REAGENZIEN

Standard: Flüchtige halogenierte Lösungsmittel mit einem für die Gaschromatographie geeigneten Reinheitsgrad,

Pentan mit einem für die Gaschromatographie geeigneten Reinheitsgrad.

4. ANALYSENVERFAHREN

- 4.1. Etwa 3 g Öl in ein Glasfläschchen (das nicht wieder verwendet werden darf) genau einwiegen und das Fläschchen mit dem Verschluß absolut dicht verschließen. Das Fläschchen bei 70 °C eine Stunde in einen Thermostaten stellen. Mit Hilfe einer Spritze genau ein Volumen von 0,2 bis 0,5 ml aus dem Dampfraum entnehmen und auf die Säule des Gaschromatographen spritzen. Der Gaschromatograph ist wie folgt einzustellen:
 - Verdampfungstemperatur: 150 °C,
 - Säulentemperatur: 70 bis 80 °C,
 - Detektortemperatur: 200 bis 250 °C.

Es können auch andere Temperaturen eingestellt werden, sofern dabei gleichwertige Ergebnisse erziehlt werden.

- 4.2. Referenzlösungen: Standardlösungen mit unterschiedlichen Konzentrationen von flüchtigen halogenierten Lösungsmitteln zwischen 0,05 und 1 mg/kg herstellen unter Verwendung von Olivenöl, das frei von Lösungsmittelspuren ist. Falls erforderlich, werden die halogenierten Lösungsmittel mit Pentan verdünnt.
- 4.3. Quantitative Auswertung. Das Verhältnis bilden zwischen den Peakflächen oder den Peakhöhen der Probe und der Standardlösung, deren Konzentration der erwarteten Konzentration am nächsten liegt. Liegt der relative Unterschied über 10%, so muß die Analyse mit einer neuen Standardlösung wiederholt werden, bis ihre Konzentration innerhalb des obengenannten relativen Unterschieds liegt. Der Gehalt wird auf der Basis des Mittelwerts einzelner Einspritzungen ermittelt.
- 4.4. Abfassung der Ergebnisse. Die Ergebnisse werden in mg/kg (ppm) angegeben. Die Nachweisgrenze des Verfahrens liegt bei 0,01 mg/kg.

ANHANG XII

ORGANOLEPTISCHE PRÜFUNG VON NATIVEM OLIVENÖL

1. UMFANG UND ANWENDUNGSBEREICH

Diese Arbeitsvorschrift bestimmt die Kriterien zur Bewertung des Flavours von nativem Olivenöl und beschreibt die dafür zu verwendende Methodik.

2. KURZBESCHREIBUNG

Das beschriebene Verfahren gilt nur für die organoleptische Bewertung und Einstufung von nativem Olivenöl für den direkten Genuß. Dabei wird das native Olivenöl von einer Gruppe ausgewählter Prüfer mit Hilfe eines Prüfbogens nach einer Bewertungstabelle gemäß den von ihm hervorgerufenen Sinneseindrücken eingestuft.

3. SENSORISCHE PRÜFUNG: GRUNDBEGRIFFE

Siehe Kapitel "Sensorische Prüfung: Grundbegriffe".

4. SPEZIFISCHE BEGRIFFE FÜR OLIVENÖL

Alt: Bezeichnung für das typische Flavour von zu lange in Lagerbehältern aufbewahrtem Olivenöl. Kann auch durch zu langes Aufbewahren in Verpackungsbehältern auftreten.

Apfelartig: Flavour von an Äpfel erinnerndes Olivenöl.

Bitter: Bezeichnung für den typischen Geschmack von Olivenöl grüner oder grünlicher Oliven. Je nach Intensität als mehr oder weniger angenehm empfunden.

Brandig oder erhitzt: Bezeichnung für das typische Flavour von Olivenöl, das durch übermäßige und/oder zu lange Erwärmung bei der Gewinnung verursacht wird, insbesondere durch unsachgemäße warme Behandlung bei der Herstellung der Paste.

Erdig: Bezeichnung für das typische Flavour von Olivenöl, das von anhaftender Erde oder Schlamm ungewaschener Oliven herrührt. Dieses Flavour kann in Einzelfällen von modrigen Anklängen begleitet sein.

Espartograsartig: Bezeichnung für das typische Flavour von Olivenöl aus Oliven, die mit Hilfe neuer Espartograskörbe gepreßt wurden. Dieses Aroma kann in verschiedenen Nuancen auftreten, je nachdem, ob Körbe aus grünem oder trockenem Espartogras verwendet wurden.

Fad oder schal: Flavour von Olivenöl mit schwach ausgeprägten organoleptischen Eigenschaften infolge des Verlusts seiner Aromastoffe.

Fruchtig: In Aroma und Bukett an gesunde, frische und erntereife Früchte erinnernd.

Fruchtwasserartig: Bezeichnung für das typische Flavour von Olivenöl, das von mangelhaftem Dekantieren und zu langem Kontakt mit Fruchtwasser herrührt.

Grasig: Bezeichnung für das typische, an frisch gemähtes Gras erinnernde Aroma mancher Olivenöle.

Gurkenartig: Durch zu langes Lagern in luftdichten Behältnissen, insbesondere in Dosen, hervorgerufenes Flavour von Olivenöl, das von 2,6-Nonadienal herrührt.

Heuartig: Bezeichnung für das typische, an mehr oder weniger trockenes Heu erinnernde Flavour mancher Olivenöle.

Lakig: Bezeichnung für das Flavour von Olivenöl aus in Salzlake aufbewahrten Oliven.

Mandelartig: Dieser Begriff bezeichnet zweierlei: einmal das typische Flavour frischer Mandeln und zum zweiten das Flavour getrockneter, gesunder Mandeln, das mit einem ranzigen Anklang verwechselt werden kann. Im Kontakt mit Zunge und Gaumen als Abgang wahrnehmbar; erinnert an süßliche Olivenöle mit verhaltenem Bukett.

Metallisch: An Metall erinnerndes Flavour. Typisch für Olivenöl, das beim Vermahlen, Schlagen, Pressen oder Lagern unter unsachgerechten Bedingungen zu lange mit Lebensmitteln oder Metalloberflächen in Kontakt stand.

Muffig: Bezeichnung für das typische Flavour von Olivenöl aus Oliven mit erheblichem Schimmel- und Hefepilzbefall infolge mehrtägiger feuchter Lagerung.

Nach Pressmatten: Bezeichnung für das typische Flavour von Olivenöl, das mit Hilfe von Pressmatten gewonnen wurde, die mit vergorenen Rückständen verschmutzt waren.

Adstringierend: Bezeichnung für die Adstringenz mancher Olivenöle.

Ranzig: Bezeichnung für das durch Autoxidation infolge des zu langen Kontakts mit der Luft entstehende typische Flavour von Fetten und Ölen. Dieses Flavour ist unerwünscht und irreversibel.

Nach grünen Blättern (bitter): Bezeichnung für das von zu grünen Oliven oder von mitvermahlenen Blättern und Stengeln herrührende Flavour von Olivenöl.

Süß: Bezeichnung für den Wohlgeschmack von Olivenöl ohne aufdringliche Süße und ohne hervortretende Bitterkeit, Adstringenz und Schärfe.

Schlammig: Bezeichnung für das typische Aroma von Olivenöl, das aus dekantiertem Ölschlamm aus unterirdischen Becken oder Behältern gewonnen wurde.

Schmierölartig: Bezeichnung für den Geruch von Olivenöl aus einer Ölmühle, deren Ausrüstung nicht sachgerecht von Benzin-, Fett- oder Mineralölresten gereinigt wurde.

Seifig: Bezeichnung für ein Flavour, das einen schmierseifenartigen Sinneseindruck vermittelt.

Stichig ("atrojado"): Bezeichnung für das typische Aroma von Öl aus Oliven, die sich bereits in einem fortgeschrittenen Zustand der Zersetzung durch Gärung befanden.

Roh: Bezeichnung für Olivenöl, das im Mund einen dickflüssigen, pastösen Sinneseindruck binterläßt

Tresterartig: Bezeichnung für das typische Flavour von Oliventrestern.

Nach reifen Früchten: Bezeichnung für Olivenöl aus vollreifen Früchten, allgemein mit schwachem Bukett und süßem Aroma.

Wein- oder Essigartig: Bezeichnung für das typische Flavour von an Wein oder Essig erinnerndes Olivenöl, das vor allem durch die anormal starke Bildung von Essigsäure, Ethylacetat und Ethanol verursacht wird.

Wurmstichig: Bezeichnung für das typische Flavour von Olivenöl aus stark von Larven der Olivenfliege (Dacus oleae) befallenen Oliven.

5. PRÜFGLAS FÜR ÖLE

Siehe Kapitel "Prüfglas für Öle".

6. PRÜFRAUM

Siehe Kapitel "Leitlinien für die Einrichtung des Prüfraums".

7. HILFSMITTEL

Jedem Prüfer sind in seiner Kabine die zur Erfüllung seiner Aufgabe notwendigen Hilfsmittel zur Verfügung zu stellen. Diese Hilfsmittel umfassen:

- Gläser (genormt) mit den Proben, die nach einem Zufallsschlüssel mit einem Ziffernpaar oder einem Ziffern-Buchstaben-Paar gekennzeichnet sind. Die Kennzeichnung ist mit einem unverwischbaren und geruchlosen Stift anzubringen;
- Uhrgläser mit identischer Markierung zum Abdecken der Gläser;
- Prüfbogen, vgl. Abbildung 2, mit Ausfüllhinweisen;
- Bleistift oder Kugelschreiber;
- Schälchen mit Apfelstücken;
- Glas Wasser von Raumtemperatur.

8. VERFAHREN

Dieser Abschnitt regelt die Vorkenntnisse für die Durchführung der sensorischen Prüfung von nativem Olivenöl; ferner dient er der Reglementierung des Verhaltens und der Arbeitsweise der an der Prüfung teilnehmenden Prüfer, die sowohl den allgemeinen als auch den besonderen Empfehlungen für das Verkosten von Olivenöl Rechnung zu tragen haben.

8.1. Aufgaben des Prüfungsleiters bzw. des Vorsitzenden der Gruppe (bzw. des Panels)

Der Prüfungsleiter muß ausreichend vorgebildet sein und über die nötige Sach- und Fachkunde für die zur Beurteilung anstehenden Olivenöle verfügen. Er ist die Schlüsselfigur der Prüfergruppe und trägt die Verantwortung für Organisation und Ablauf der Prüfungsarbeit. Er lädt die Prüfer rechtzeitig ein und klärt sie über die Durchführung der Prüfungen auf, enthält sich aber jedweder Meinungsäußerung über die Proben.

Er ist verantwortlich für das Vorhandensein der Hilfsmittel, deren peinliche Sauberkeit, die Vorbereitung und Verschlüsselung der Proben, deren Übergabe an die Prüfer gemäß der geeigneten Prüfungsfolge sowie für das Einsammeln und die statistische Auswertung der Prüfdaten, damit gewährleistet ist, daß mit möglichst geringem Aufwand möglichst zuverlässige Ergebnisse erzielt werden.

Die Arbeit des Prüfungsleiters erfordert sensorisches Feingefühl, Sorgfalt bei der Prüfungsvorbereitung, strengste Ordnung hinsichtlich ihrer Durchführung sowie Geschick und Geduld bei der Planung und Durchführung der Prüfungen. Aufgabe des Prüfungsleiters ist es, die Mitglieder zu motivieren und bei ihnen Interesse, Neugier und Wettbewerbsgeist zu wecken. Er hat sich einer Meinungsäußerung zu enthalten und muß sicherstellen, daß möglicherweise tonangebende Prüfer die anderen nicht beeinflussen. Ihm obliegen ferner Schulung, Auswahl und Überwachung der Prüfer auf ihre gebotene Eignung.

8.2. Prüfbedingungen

8.2.1. Probenumfang

Jedes Glas muß 15 ml Öl enthalten.

8.2.2. Temperatur der Probe

Die zur Prüfung anstehenden Proben sind im Glas auf einer Temperatur von 28 °C ± 2 °C zu halten. Die gewählte Temperatur gestattet am besten die Erfassung der organoleptischen Unterschiede bei Normaltemperatur, wenn Öle als Zutaten verwendet werden. Bei tieferen oder höheren Temperaturen kommen entweder die Aromastoffe kaum zur Entfaltung oder aber es entfalten sich die für erhitzte Öle typischen Aromastoffe.

8.2.3. Prüfungszeiten

Die für das Verkosten von Olivenöl geeignetste Tageszeit ist der Vormittag. Geruchs- und Geschmackssinn sind zu bestimmten Tageszeiten nachweislich besonders empfindlich.

So ist die Empfindlichkeit von Geruchs- und Geschmackssinn vor den Mahlzeiten besonders groß und geht danach zurück.

Übertreibung ist aber auch hier zu vermeiden, da Hungergefühle die Prüfer ablenken, ihr Unterscheidungsvermögen beeinträchtigen und insbesondere ihre Präferenz- und Akzeptanzschwelle herabsetzen.

9. PRÜFER

Die an der organoleptischen Prüfung von Speiseolivenöl als Prüfer teilnehmenden Personen sind zu schulen und entsprechend ihrer Eignung zur Unterscheidung ähnlicher Proben auszuwählen, wobei zu berücksichtigen ist, ob und inwieweit ihre Urteilsfähigkeit im Zuge der Schulung zunimmt (vgl. entsprechenden Absatz).

Zur Prüfung benötigt man 8 bis 12 Prüfer nebst einigen Reserveprüfern zur Deckung von Ausfällen.

9.1. Allgemeine Verhaltensmaßregeln für Kandidaten und Prüfer

Diese Empfehlungen gelten für das Verhalten der Kandidaten und Prüfer bei ihrer Arbeit.

Wer vom Prüfungsleiter zur Teilnahme an einer organoleptischen Prüfung aufgefordert wurde, muß zu der ihm genannten Uhrzeit zur Teilnahme in der Lage sein und hat dazu folgende Vorschriften zu beachten:

- 9.1.1. Er stellt mindestens 30 Minuten vor der festgesetzten Uhrzeit das Rauchen ein.
- 9.1.2. Parfüm, Kosmetika oder Seife, deren Geruch bei der Prüfung noch wahrnehmbar ist, darf nicht verwendet werden. Zum Händewaschen ist unparfümierte oder schwachparfümierte Seife zu verwenden; dabei sind die Hände so lange mit Wasser nachzuspülen und abzutrocknen, bis jedweder Geruch beseitigt ist.
- 9.1.3. Der Prüfer muß bei Prüfungsantritt seit mindestens einer Stunde nüchtern sein.
- 9.1.4. Wer an einer Unpäßlichkeit und insbesondere einer Beeinträchtigung des Geruchs- oder Geschmacksempfindens oder an einer die Konzentrationsfähigkeit beeinflußenden psychischen Belastung leidet, hat
 dies dem Prüfungsleiter mitzuteilen, damit dieser ihn von seiner Aufgabe entbindet oder aber die
 geeigneten Maßnahmen trifft, wobei auch eine mögliche Abweichung von den Durchschnittswerten
 der übrigen Mitglieder der Gruppe zu berücksichtigen ist.
- 9.1.5. Der die vorstehenden Vorschriften erfüllende Prüfer sucht die ihm zugewiesene Kabine auf; dies hat so leise und diskret wie möglich zu geschehen.
- 9.1.6. Nachdem er darin Platz genommen hat, prüft er, ob alle erforderlichen Hilfsmittel vorhanden und ordentlich vorbereitet sind und vergewissert sich, ob die Kennzeichnung des Glases mit der Kennzeichnung des damit abgedeckten Uhrglases übereinstimmt.
- 9.1.7. Er liest die Hinweise auf dem Prüfbogen sorgfältig durch und beginnt erst dann mit der Prüfung der Proben, wenn er sich über seine Aufgabe vollends im klaren ist. Unklarheiten sind mit dem Prüfungsleiter unter vier Augen zu klären.
- 9.1.8. Der Prüfer nimmt das Glas zur Hand, hält es dabei mit dem Uhrglas bedeckt schräg und schwenkt es dabei einmal ganz um, damit die Innenseite möglichst ganz benetzt wird. Er lüftet das Uhrglas und inhaliert das Bukett der Probe in leichten, ruhigen und langen Zügen durch die Nase so lange, bis er sich ein Urteil über die zur Prüfung anstehende Probe gebildet hat. Das eigentliche Riechen darf nicht länger als 30 Sekunden dauern. Gelangt er nach dieser Zeit nicht zu einem Urteil, legt er eine kleine Pause ein und macht einen weiteren Versuch. Nach dem Riechen prüft er das Flavour (Gesamtsinneseindruck aus Geruchs-, Geschmacks und Tastempfindung). Dazu nippt er einen kleinen Schluck Öl von etwa 3 ml. Sehr wichtig ist, daß alle geschmacksempfindlichen Teile des Mundes mit dem Öl benetzt werden, vom vorderen Teil des Mundes und der Zungenspitze über die Ränder des Zungenrückens bis zum Gaumen und zur Zungenwurzel, da die Grundgeschmacke süß, salzig, sauer und bitter an verschiedenen Stellen der Zunge und des Gaumens unterschiedlich stark wahrgenommen werden.

Es ist unbedingt darauf zu achten, daß genügend Olivenöl von der Zungenspitze bis zum Gaumen und zur Kehle langsam verteilt wird, wobei auf die Reihenfolge des Auftretens der Bitterkeit und der Schärfe zu achten ist. Anderenfalls kann es bei manchen Olivenölen vorkommen, daß beide Sinneseindrücke nicht wahrgenommen werden oder die Bitterkeit von der Schärfe verdeckt wird.

Durch kurzes, wiederholtes Einsaugen von Luft durch den Mund wird die Probe in der gesamten Mundhöhle verteilt, so daß die flüchtigen Aromastoffe über den Gaumen in die Nase gelangen.

Auch die Tastempfindungen sind zu erfassen; so müssen die Merkmale Fließfähigkeit, Dickflüssigkeit, Schärfe oder Stechen erfaßt und je nach den Erfordernissen der Probe quantifiziert werden.

9.1.9. Bei der organoleptischen Prüfung von nativem Olivenöl wird in jedem Prüfgang eine einzige Probe bewertet, damit keine Kontrastwirkungen durch das sofortige Verkosten anderer auftreten.

Da es bei aufeinanderfolgenden Prüfgängen zu Ermüdungserscheinungen oder zur Dämpfung der Sinneswahrnehmung durch die vorangehenden Eindrücke kommt, sind die Ölreste des vorherigen Prüfgangs mit einem geeigneten Mittel aus dem Mund zu entfernen.

Dazu empfiehlt sich ein kleines Stück Apfel von etwa 15 g, das nach dem Kauen ausgespuckt werden kann; anschließend ist der Mund mit Wasser von Zimmertemperatur zu spülen. Zwischen dem Ende eines Prüfgangs und dem Beginn des nächsten müssen mindestens 15 Minuten vergehen.

9.2. Vorauswahl der Kandidaten

Der Prüfungsleiter führt eine Vorauswahl der Kandidaten in Einzelgesprächen durch, um ihre Persönlichkeit und ihr Umfeld kennenzulernen. An die physiologischen und psychologischen Voraussetzungen werden keine sehr hohen Anforderungen gestellt, da jeder Gesunde diese Aufgabe wahrnehmen kann. Alter, Geschlecht und bestimmte Gewohnheiten (Rauchen) usw. bleiben in der Bedeutung hinter anderen Gesichtspunkten wie Gesundheit, persönliches Interesse und Abkömmlichkeit für diese Arbeit zurück.

Der Prüfungsleiter klärt den Kandidaten im einzelnen über die von ihm wahrzunehmende Aufgabe auf und unterrichtet ihn über den Zeitaufwand dafür. Anschließend sammelt er Anhaltspunkte zur Prüfung des Interesses und der Motivation des Kandidaten sowie seiner tatsächlichen Abkömmlichkeit. Der folgende Fragebogen kann dabei als Grundlage verwendet werden.

9.3.

sind.

FRAGEBOGEN

Bitte beantworten S	ie fole	zende l	Fragen:
---------------------	---------	---------	---------

		Ja	Nein
1.	Möchten Sie bei dieser Aufgabe mitarbeiten?		
2.	Halten Sie diese Aufgabe für wichtig, um die Lebensmittelqualität in Ihrem Land sowie im internationalen Handel zu verbessern?	ja □	Nein
3.	Weshalb? (1)		
		I a	Nein
4.	Bedenken Sie, daß Sie im Rahmen ihrer Tätigkeit Olivenöl verkosten müßten. Wären Sie dazu bereit?	Ja	
5.	Würden Sie gern Ihren Geruchs- und Geschmackssinn mit dem Ihrer Kollegen messen?	Ja	Nein
6.	Sind Sie abkömmlich? Sind Sie soweit unabhängig, daß Sie ihre Tagesgeschäfte selbst organisieren können?	Ja	Nein
7.	Sofern Sie einen Vorgesetzten haben, meinen Sie, daß er damit einverstanden wäre, daß Sie dadurch an aufeinanderfolgenden Tagen manchmal bis zu einer halben Stunde ihrer täglichen Arbeit fernblieben?	Ja	Nein
8.	Könnten Sie die für die sensorische Prüfung geopferte Zeit nacharbeiten, um ihren täglichen Arbeitsverpflichtungen nachzukommen?	Ja	Nein
		Ja	Nein
9.	Meinen Sie, daß diese Arbeit vergütet werden müsse?		
0.	In welcher Form?		
	Begründen Sie, warum Lebensmittel und insbesondere Olivenöl einer organoleptischen Prüwerden müssen.	fung un	terzogen
us	Prüfungsleiter nimmt anhand dieser Daten eine Vorauswahl vor, wobei er d sondert, die an dieser Arbeit wenig Interesse zeigen, wenig Zeit aufbringen können o e sind, ihre Vorstellungen zu artikulieren.		
Besi	timmung der "Durchschnittsschwelle der Gruppe" für "typische Merkmale"		
	verden vier Öle ausgewählt, welche die Merkmale "stichig" ("atrojado"), "weinartig' ter" jeweils typgerecht und so deutlich wie möglich verkörpern.	*, "ranz	ig" und
lbs Jnt	aliquoten Mengen jedes Typs und einem geeigneten Substrat werden Verdünr tufungen um den Faktor 2 angesetzt, bis bei den zwei oder drei letzten Verdünnu erschied gegenüber dem Glas mit dem reinen Substrat mehr wahrnehmbar ist. Zwei e en Substrat bilden den Abschluß der Reihe.	ngsstuf	en kein
Die	Reihe wird mit Verdünnungen höherer Konzentration bis auf 8 aufgestockt.		
	werden so viele Muster der verschiedenen Konzentrationen angesetzt, daß jedem der l es Merkmal vollständige Verdünnungsreihen bereitgestellt werden können.	Kandid	aten für
	Ermittlung der "Durchschnittsschwelle" der Kandidaten sind jedem von jeder Ver Glas mit 15 ml des reinen Substrats berei		

Die gleiche Prüfung wird mit Verdünnungsreihen der verbleibenden Prüfmerkmale durchgeführt.

Die Zahl der richtigen Antworten aller Kandidaten für die jeweilige Verdünnungsstufe wird aufgezeichnet und als Prozentsatz der Anzahl der durchgeführten Prüfungen angegeben.

In einem Koordinatensystem werden die Prozentsätze der richtigen Antworten für die jeweilige Verdünnungsstufe auf der Ordinate und die geprüften Verdünnungsstufen in ansteigender Reihenfolge auf der Abszisse eingetragen.

Abbildung 1 zeigt ein praktisches Beispiel für diese Darstellung. Als Wahrnehmungsschwelle gilt die Verdünnungsstufe, für die zu 75 % richtige Beurteilungen abgegeben wurden. Sie wird ermittelt durch Extrapolation dieses Punktes von der Kurve auf die Abszisse.

Diese Schwellenkonzentration, die je nach Intensität des Merkmals für jedes geprüfte Olivenöl unterschiedlich ausfallen kann, dürfte für die einzelnen Gruppen von Kandidaten ähnlich sein; sie ist unabhängig von Gebräuchen, Gewohnheiten oder persönlicher Präferenz und infolgedessen ein gemeinsamer Bezugspunkt für jede Gruppe von Durchschnittsmenschen, so daß sie zur Harmonisierung der verschiedenen Prüfergruppen hinsichtlich der Geruchs- und Geschmacksempfindlichkeit verwendet werden kann.

Anhand der ermittelten Schwellenkonzentration der Gruppe ist wie folgt zu verfahren:

Es wird eine Verdünnungsreihe mit zunehmender und abnehmender Konzentration in der Weise angesetzt, daß die Schwellenkonzentration mit dem Platz 10 dieser Reihe zusammenfällt. Daraus ergibt sich folgerichtig, daß die Verdünnungen 11 und 12 stärker verdünnt sind, so daß sehr schwer festzustellen ist, daß sie Öl mit dem entsprechenden Merkmal enthalten.

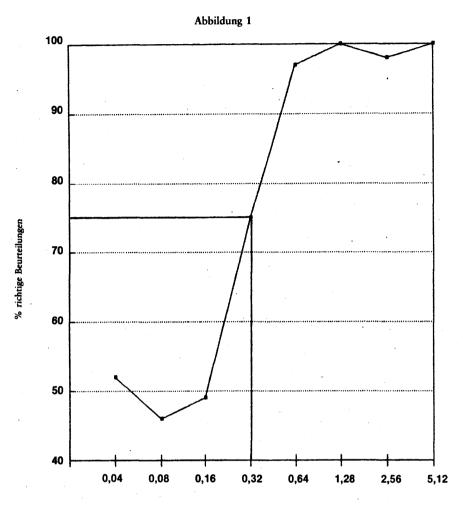
Ausgehend von der Konzentration C₁₀ können die übrigen Verdünnungen nach folgender Formel angesetzt werden:

 $C_{10} \cdot a^n$

Darin bedeuten:

- a = Konstante für den Verdünnungsfaktor 1,5,
- n = Exponent mit einem Wert von 9 bis -2.

Beispiel:


Gegeben sei ein Schwellenwert für ranziges Olivenöl von 0,32. Mit $C_{10} = 0,32$ und a = 1,5 ergeben sich folgende Verdünnungsstufen:

Probe	1	2	3	4	5	6	7	8	9	10	11	12.
Konzentration	12,30	8,20	5,47	3,65	2,43	1,62	1,08	0,72	0,48	0,32	0,21	0,14

Durch Ansetzen von Verdünnungsreihen nach dieser Arbeitsvorschrift anhand der nach diesem Berechnungsverfahren bestimmten Schwellenwerte für die übrigen Merkmale erhält man für alle Laboratorien Skalen mit gleicher Reizabstufung für jedes einzelne Merkmal, selbst wenn die Fehler der verwendeten Olivenöle unterschiedlich stark festzustellen sind.

9.4. Auswahl der Prüfer nach dem Verfahren der "Intensitätseinstufung"

Zur Auswahl sind zwei- bis dreimal so viele Kandidaten heranzuziehen, wie zur Bildung der Prüfergruppe erforderlich sind, damit die mit der höchsten Sinnenschärfe und dem größten Unterscheidungsvermögen ausgewählt werden können. Die Prüfung sollte immer mit dem gleichen Erzeugnis wie das später zu Prüfende durchgeführt werden (daher wird immer Olivenöl verwendet).

Gehalt des Substrats an ranzigem Olivenöl in %

Bei der Auswahl des Verfahrens ist unabhängig von seiner Leistungsfähigkeit auch seine Wirtschaftlichkeit hinsichtlich der Ölmenge, der Anzahl der Proben und des Zeitaufwands zu berücksichtigen. Ein Auswahlverfahren ist umso wirksamer, je besser es gelingt, das optimale Niveau der folgenden drei abhängigen Variablen zu bestimmen: a) "Kosten" in Abhängigkeit von der Anzahl der Prüfungen, b) "Anteil" der möglicherweise geeigneten Kandidaten, die durch Zufall leider ausgesondert werden, und c) "Anzahl" der ungeeigneten Kandidaten, die das Glück hatten, das Auswahlverfahren dennoch zu bestehen.

Für die Auswahl wird das Verfahren der "Intensitätseinstufungsprüfung" (intensity rating test) gemäß den Normen ASTM (American Society for Testing and Materials), STP (Special Technical Publication) Nr. 440, S. 53, verwendet, das in folgenden Punkten abgeändert wurde:

- 1. Verringerung der Zahl der Proben in der Prüfreihe;
- Erweiterung der Reizstoffpalette durch Aufnahme weiterer Geruchs- und Geschmacksnoten für die Auswahl, um den häufigsten wahrnehmbaren Fehlern von Olivenöl Rechnung zu tragen;
- 3. Variation des Konzentrationsverhältnisses in der Prüfreihe und
- 4. statistische Auswertung der Ergebnisse.

Geräte und Hilfsmittel:

- Flaschen oder Kolben, 1 500 ml,
- dunkelfarbige Prüfgläser,
- Reagenzgläser, 10 ml, 15 ml, 1 000 ml und 1 500 ml.

Reagenzien:

- Merck-Paraffin (Nr. 7.160, DAB 6, USP XX) oder geruch- und geschmackloses Ölsubstrat (frisch raffiniertes Oliven- oder anderes Öl)
- Olivenöle: stichig ("atrojado"), weinartig, ranzig und bitter.

9.4.1. Verfahren

Nach dem Ansetzen der Verdünnungen wird, ausgehend von 25 Kandidaten, mit dem Auswahlverfahren begonnen. Die Auswahl wird nach dem nachstehend beschriebenen Verfahren für jede Geschmacksnote durchgeführt.

- Verdünnungsreihen mit 12 verschlüsselt gekennzeichneten Gläsern (eine Reihe pro Kandidat) werden vorbereitet. In jedes Prüfglas werden 15 ml Probe mit der nach der Formel C₁₀ · aⁿ jeweils hergestellten Konzentration gegeben.
- 2. Nach dem Füllen werden die Gläser mit aufliegendem Uhrglasdeckel mindestens eine Stunde vor Beginn der Prüfungen bei einer Temperatur von 20—22 °C im Prüfungsraum stehen gelassen, um sie auf Raumtemperatur zu bringen.
- 3. Die 12 Gläser werden vom Prüfungsleiter in absteigender Reihenfolge der Konzentrationen in einer Reihe aufgestellt.

Anschließend wird jeder Kandidat aufgefordert, die Prüfung einzeln durchzuführen; dazu sind ihm folgende Anweisungen zu erteilen:

9.4.2. Anweisungen für die Kandidaten

Die 12 vor dem Kandidaten aufgestellten Gläser enthalten jeweils Verdünnungen der Reize "stichig" ("atrojado"), "weinartig", "ranzig" und "bitter". Die Gläser unterscheiden sich hinsichtlich der Intensität des Geruchs, wobei das mit dem stärksten Geruch ganz links steht und die Konzentrationen stufenweise nach rechts abnehmen. Das ganz rechts stehende Glas kann so wenig von dem Geruchsstoff enthalten, daß er nicht mehr wahrnehmbar ist.

Gehen Sie bitte wie folgt vor: Machen Sie sich mit den Gerüchen der einzelnen Gläser der Reihe vertraut. Beginnen Sie dabei mit dem Geruch des rechten Glases (Nr. 12) und versuchen Sie, sich die Intensität des Geruchs zu merken. Sinnenermüdung ist zu vermeiden.

Sobald Sie sich die Reihenfolge der Verdünnungsstufen gemerkt haben, verlassen Sie den Prüfraum.

Anschließend nimmt der Prüfungsleiter ein Glas aus der Reihe heraus, stellt es gleichauf mit dem ganz rechts stehenden und schließt die Lücke durch Verschieben der übrigen Gläser. Sie betreten darauf wieder den Prüfstand und setzen die Prüfung fort.

Die Prüfung besteht aus folgender Aufgabe:

Das herausgenommene Glas ist an seinen ursprünglichen Platz in der Reihe zurückzustellen. Dazu kann beliebig oft ein Geruchsvergleich der Gläser durchgeführt werden. Zu beachten ist, daß das Glas bei korrekter Plazierung stärker als das unmittelbar rechts daneben stehende und schwächer als das unmittelbar links daneben stehende riechen muß. Diese Prüfung wird mit drei weiteren Gläsern wiederholt.

Zur Erleichterung der Prüfung und der Abgabe der Antworten erhalten die Kandidaten zusammen mit den vorstehenden Anweisungen folgendes Formblatt.

KANDIDATENAUSWAHL

Probe Nr.:		Merkmal:		• • • • • • •
Das herausgenommene Gla	ıs gehört auf Plat	tz Nr.:	• • • • • • • • • • • • • • • • • • • •	
Datum:		Name:		••••
Ergebnisse				
Der Übersichtlichkeit halbe Angaben wie folgt:	er notiert der Prü	fungsleiter die von	den einzelnen Kand	lidaten gem
Name des Kandidaten	Merkmal	gewählter Platz (K')	richtiger Platz (K)	Bewertur (K'—K)
Name des Kandidaten	Merkmal			Bewertu

9.4.4. Statistische Auswertung der Antworten

Im vorliegenden Fall sind die an ihren ursprünglichen Platz zurückzustellenden Gläser für alle Kandidaten gleich; nach den statistischen Berechnungen für diesen Fall muß es sich dabei um die folgenden Gläser mit den für das jeweilige Merkmal aufgeführten Seriennummern handeln:

Stichig ("atrojado") (St)	Weinartig (W)	Ranzig (R)	Bitter (B)
Glas Nr.	Glas Nr.	Glas Nr.	Glas Nr.
(10, 5, 7, 2)	(11, 3, 8, 6)	(7, 4, 10, 2)	(6, 3, 11, 9)

Die der entsprechenden Position des Glases in der Reihe entsprechende Nummer darf nicht variieren, da die statistischen Berechnungen für diesen Fall auf der Wahrscheinlichkeit beruhen, mit der die Gläser durch Zufall an ihren rechten Platz zurückgestellt werden.

Damit die Kandidaten keine Informationen untereinander austauschen können, hat der Prüfungsleiter folgende Regeln zu beachten:

- Es muß ausgeschlossen sein, daß die Kandidaten Informationen austauschen können. Für jeden Kandidaten müssen unterschiedliche Aufschriften verwendet werden.
- 2. Es muß ausgeschlossen sein, daß die Kandidaten in Erfahrung bringen können, welche Gläser herausgenommen wurden.
- 3. Jedem Kandidaten sind die Gläser mit den vorstehenden Nummern in einem anderen Prüfungsgang zu präsentieren.

Die Ergebnisse jedes Kandidaten werden wie folgt benotet:

Die 12 Gläser mit den entsprechenden Verdünnungsstufen des Merkmals i seien in abnehmender Reihenfolge ihrer Konzentration mit e^{i}_{1} , e^{i}_{2} , ... e^{i}_{12} bezeichnet (i = ein beliebiges der Merkmale stichig ("atrojado"), weinartig, ranzig und bitter).

Es seien eik ein beliebiges Glas und K´der von dem Kandidaten gewählte Platz des betreffenden Glases in der Reihe. Die Werte für K und K´sind demnach ganze Zahlen zwischen 1 und 12 einschließlich und bezeichnen den tatsächlichen und den vom Kandidaten gewählten Platz des betreffenden Glases in der Reihe

T (maximal zulässige Abweichung) sei ein vorab auf einen bestimmten Betrag, in unserem Fall auf den Betrag 3, festgesetztes Kriterium, das bei K'—K > T den automatischen Ausschluß des Kandidaten zur Folge hat (1).

Ist dagegen K'—K ≤ T, so wird der Kandidat allgemein nicht ausgeschlossen, sondern kann weiter an der Prüfung teilnehmen, da er in der Lage ist, das herausgenommene Glas an den richtigen Platz zurückzustellen, zumindest aber an zwei unmittelbar benachbarte Platze.

In diesem Fall ist die Note, die ein Kandidat erhält, der ein bestimmtes Geschmacksmerkmal (Konzentration) beurteilt hat (z. B. stichig ("atrojado"), gleich dem Quadrat aus der Differenz zwischen der richtigen Stelle in der Reihenfolge der Gläser und der Stelle, an die der Kandidat das Glas gestellt hat

$$P^{St}_{h} = (K'-K)^{2}$$

Da ein Kandidat anhand von vier Intensitätsstufen (Verdünnungsstufen) jedes einzelnen Merkmals geprüft wird, bestimmt sich die Einzelbewertung für das folgende Merkmal (z.B. "stichig" ("atrojado")) wie folgt:

$$Z^{St} = P^{St}_h + P^{St}_i + P^{St}_l + P^{St}_m$$

Zum besseren Verständnis nachstehend einige Beispiele:

Beispiel 1:

Nehmen wir an, der Kandidat A habe die Fragen nach den vier Intensitätsstufen der Versuchsreihe des Merkmals (i) wie folgt beantwortet:

Richtiger Platz des Glases in der Reihe (K)	Gewählter Platz (K')	Differenz zu dem richtigen Platz (K'—K)
7	7	7-7 = 0
4	5	4-5 = -1
10	· 6	10-6 = 4(1)
2	4	2—4 = —2

⁽¹⁾ Dieser Kandidat scheidet aus, da er bei der Prüfung nur einen Wert von T > 3 erreicht hat.

⁽¹⁾ Der Prüfungsleiter muß den Kandidaten unbedingt veranlassen, die Prüfung mit Bedacht zu absolvieren, damit sein Geruchssinn nicht abstumpft.

Beispiel 2: Nehmen wir an, der Kandidat ordnet die Verdünnungsstufen eines Merkmals wie folgt zu:

Richtiger Platz des Glases in der Reihe (K)	Gewählter Platz (K')	Differenz zu dem richtigen Platz (K'—K)
7	. 7	7-7 = 0
4	4	4-4 = 0
10	7	10-7 = 3
2	3	2-3 = -1

Dieser Kandidat scheidet nicht aus. Er hat für dieses Auswahlmerkmal folgende Benotung erreicht:

$$Z^{i} = 0^{2} + 0_{2} + 3^{2} + (-1)^{2} = 10$$

Die Gesamtbewertung für die Auswahl oder das Ausscheiden des Kandidaten aufgrund seiner Antworten zu den vier Auswahlmerkmalen geschieht wie folgt:

$$\begin{array}{lll} {P^{St}}_{h} & + & {P^{St}}_{j} & + & {P^{St}}_{i} & + & {P^{St}}_{m} & = & Z^{St} \\ {P^{W}}_{h} & + & {P^{W}}_{j} & + & {P^{W}}_{i} & + & P^{W}_{m} & = & Z^{W} \\ {P^{R}}_{h} & + & {P^{R}}_{j} & + & {P^{R}}_{i} & + & P^{R}_{m} & = & Z^{R} \\ {P^{B}}_{h} & + & {P^{B}}_{j} & + & {P^{B}}_{i} & + & P^{B}_{m} & = & Z^{B} \\ \hline & Z & Gesamt & = & Z^{St} & \dots & + & Z^{B} \end{array}$$

Darin bedeutet: St = stichig ("atrojado"),

W = weinartig, R = ranzig, B = bitter.

Es stellt sich nun die Frage, bis zu welchem Betrag von Z davon auszugehen ist, daß der Kandidat über Sinnenschärfe, Geruchsgedächtnis und Zuordnungsvermögen in dem Maße verfügt, wie es zur richtigen Beantwortung im Hinblick auf die vier Merkmale erforderlich ist. Z ist definitionsgemäß nie negativ, und ein Betrag Z = 0 bedeutet, daß der Kandidat alle 16 ihm präsentierten Verdünnungsstufen (vier für jedes Merkmal) erkannt und richtig zugeordnet hat. Ist der Betrag von Z von Null verschieden, so bedeutet dies, daß der Kandidat die Bereiche, zu denen die ausgewählten Verdünnungen gehören, zwar erkannt hat, den genauen Platz jedoch nicht feststellen konnte, da er über kein gutes Unterscheidungsvermögen hinsichtlich der Verdünnungsreihe, die ihm für ein oder mehrere Merkmale präsentiert wurden, verfügt.

Es empfiehlt sich daher, einen kritischen Wert Z_c festzulegen, für den bei ausschließlich zufälliger Platzbewertung durch den Kandidaten innerhalb der von ihm zuvor erkannten Bereiche die Wahrscheinlichkeit eines Gesamtwerts $Z < Z_c$ ein hinreichend kleiner Wert α ist, der vorher festgelegt werden kann. Mit anderen Worten, die Wahrscheinlichkeit, daß mit diesem Verfahren ein Prüfer ausgewählt wird, dessen Unterscheidungsvermögen für die bei der Auswahl herangezogenenen Merkmale unzureichend ist, ist kleiner als α .

Bei gegebenem α , das in unserem Fall auf 0,05 festgelegt wurde, ergibt sich Z_c aus der Wahrscheinlichkeitsverteilung der Variablen Z, die sich ihrerseits aus den Wahrscheinlichkeitsverteilungen der Variablen P ergibt (K').

Aus der statistischen Berechnung ergibt sich für Z_c ein Betrag von 34.

Nachdem der von jedem Kandidaten erreichte Wert Z feststeht, scheiden all jene Kandidaten aus, die einen Wert von über 34 erreicht haben.

So erhalten die Kandidaten A und B folgende Bewertungen:

Merkmal	Kandidat A	Kandidat B
Stichig ("atrojado") (St)	$Z^{St} = 10$	$\mathbf{Z^{St}} = 12$
Weinartig (W)	$Z^{W} = 10$	$Z^{W} = 11$
Ranzig (R)	$Z^{R} = 10$	$Z^{R} = 15$
Bitter (B)	$Z^{B} = 4$	$Z^B = 0$
	$\Sigma = 34$	Σ = 38

Die Kandidaten A und B kommen auf jeweils 34 bzw. 38 Punkte; demnach hat der Kandidat A die Prüfung bestanden, B dagegen nicht und scheidet aus. Nachdem die Kandidaten mit über 34 Punkten ausgeschieden sind, werden die übrigen in der Reihenfolge der von ihnen erzielten Punkte in einer Eignungsliste aufgelistet und die zwölf besten ausgewählt.

9.5. Schulung

Die Schulung verfolgt hauptsächlich folgende Ziele:

- a) Die Prüfer sollen mit den zahlreichen Geruchs- und Geschmacksnoten von nativem Olivenöl vertraut gemacht werden.
- b) Die Prüfer sollen mit den spezifischen sensorischen Methoden vertraut gemacht werden.
- c) Die Fähigkeit jedes einzelnen, die sensorischen Merkmale wahrzunehmen, zu identifizieren und quantitativ zu bestimmen, soll geschult werden.
- d) Sinnenschärfe und Gedächtnis für die verschiedenen Merkmale sollen verbessert werden, damit eine zuverlässige Beurteilung gewährleistet ist.

Entsprechend den Möglichkeiten der Teilnehmer sowie der Untersuchung umfaßt die Schulung gewöhnlich eine Reihe von Prüfungsgängen, bei denen die Prüfer die Öle einzeln prüfen und anschließend die dabei angetroffenen Schwierigkeiten gemeinsam mit dem Leiter diskutieren und die Bewertungen erläutern, um Kriterien und Meinungsbildung zu vereinheitlichen.

Der nach einer bestimmten Zahl von Prüfungsgängen erreichte Stand der Schulung wird anhand der Zunahme des Prozentsatzes richtiger Bewertungen bei Unterscheidungsprüfungen oder anhand der Analyse der Varianz der durchschnittlichen Einzelbewertungen der Gruppe bei Skalenprüfungen ermittelt.

Der praktische Nutzen dieser Schulung wurde eingehend erörtert; heute gilt sie als sehr effizient und sogar als unverzichtbar zur Erzielung zuverlässiger, richtiger sensorischer Daten.

9.6. Leistungskontrolle

Erfahrene Prüfer nehmen gewöhnlich regelmäßig an sensorischen Prüfungen teil, die ihnen sehr viel abverlangen. Ihre Bewertungen sind in technischer und gewerblicher Hinsicht oft von großer Tragweite; daher müssen sie sich nach ihrer Auswahl und Schulung Leistungskontrollen unterziehen, damit die Verläßlichkeit der Ergebnisse gewährleistet ist.

Daher müssen die an Routineprüfungen teilnehmenden Prüfer regelmäßig in bestimmten Abständen ihre Leistungsfähigkeit nachweisen.

10. VERFAHREN FÜR DIE BEWERTUNG DER ORGANOLEPTISCHEN EIGENSCHAFTEN VON NATIVEM OLIVENÖL

Nach Erfüllung der Bedingungen und Bereitstellung der erforderlichen Mittel entsprechend den vorstehenden Normen sowie nach Auswahl der Prüfergruppe unterzieht jeder Prüfer das ihm zur Prüfung bereitgestellte Glas mit dem Prüfmuster einer Geruchs- und Geschmacksprüfung (¹); dabei prüft er die olfaktorischen, gustatorischen, taktilen und kinästhetischen Merkmale anhand des in Abbildung 2 abgebildeten Prüfbogens, in den er das Vorhandensein und die Intensität der Merkmale einträgt. Alsdann bewertet er die Qualität des Öls.

10.1. Verwendung des Prüfbogens in Abbildung 2 (Flavourbeschreibung und Qualitätsbewertung)

In der linken Hälfte des Bogens sind einige der typischsten sensorischen Merkmale aufgeführt, die bei Olivenöl am häufigsten auftreten und für sein Flavour kennzeichnend sind. Werden außer den aufgeführten Merkmalen weitere Merkmale wahrgenommen, so sind diese mit dem oder den treffendsten Begriff(en) dafür in der Rubrik "Andere" zu vermerken.

Die wahrgenommenen Merkmale sind entsprechend ihrer Intensität durch Ankreuzen (+) des dafür vorgesehenen Kästchens entsprechend der nachstehenden Bewertungstabelle zu bewerten:

- 1 = kaum wahrnehmbar,
- 2 = schwach,
- 3 = mittel,
- 4 = stark,
- 5 = extrem

Die rechte Hälfte des Bogens enthält eine Neun-Punkte-Bewertungstabelle (9 = außergewöhnliche Qualität, 1 = ungenügend), anhand derer der Prüfer eine einheitliche Gesamtbewertung der Ölmerkmale vornimmt. Bei dieser Bewertung ist den guten Eigenschaften und den Fehlern, die bereits in der linken Hälfte im einzelnen vermerkt wurden, Rechnung zu tragen.

⁽¹⁾ Sofern er bei der Geruchsprobe ein extrem oder stark unangenehm vorschmeckendes Merkmal feststellt, kann er ausnahmsweise darauf verzichten und dies auf dem Prüfbogen vermerken.

Die erste Spalte (Fehler) der Bewertungstabelle umfaßt fünf Rubriken, wonach Olivenöle hauptsächlich aufgrund des völligen Fehlens oder des mehr oder weniger ausgeprägten Auftretens von Flavourfehlern beurteilt werden; da die Bewertungstabelle jedoch neun Punkte umfaßt, sind die in der zweiten Spalte (Merkmale) aufgeführten Nuancen und Aspekte zu berücksichtigen, die zu der Gesamtbewertung der Qualität entscheidend beitragen.

10.2. Endgültige Bewertung

Der Prüfungsleiter sammelt die von den einzelnen Prüfern abgegebenen Bewertungen ein und überprüft, ob die wahrgenommenen und die in der "Profilbeschreibung" vermerkten Merkmale und Intensitäten mit der in der "Bewertungstabelle" erteilten Bewertung in Einklang stehen.

Bei deutlichen Abweichungen muß der Prüfungsleiter den Prüfer auffordern, seinen Bewertungsbogen zu überprüfen.

Erforderlichenfalls muß der Prüfer die Untersuchung wiederholen.

Schließlich stellt der Prüfungsleiter die Bewertungen durch die Gesamtgruppe in einer Tabelle zusammen und berechnet das arithmetische Mittel und die Art des Fehlers (des Mittelwerts).

Wenn die Art des Fehlers größer ist als der Fehler der Methode, so muß er die Untersuchung durch die gesamte Gruppe wiederholen lassen.

Nur im Fall von Revisionsanalysen müssen die Untersuchungen so oft wiederholt werden, bis drei Bewertungen je Probe vorliegen. Die endgültige Bewertung ist der Mittelwert von drei Bewertungen, wobei das Ergebnis auf eine Dezimalstelle angegeben wird.

Wenn der Mittelwert für die Intensität von bitter und/oder pikant über 2,5 liegt, so wird dem Öl die entsprechende Bewertung gegeben, wobei zusätzlich angegeben wird, daß es besonders bitter und/oder pikant ist.

Abfassung der Ergebnisse: Der Prüfungsleiter bestimmt auf der Basis des Mittelwerts die Kategorie, in die die Probe entsprechend den in Anhang I vorgesehenen Grenzwerten eingeordnet wird. Der Untersuchungsbericht gibt nur diese Kategorie an.

Anmerkung: Die Proben sind bis zu ihrer Untersuchung verschlossen im Kühlschrank aufzubewahren und sind jedesmal wieder dort hinzubringen, bis die dritte Untersuchung abgeschlossen ist.

Abbildung 2

Natives Olivenöl

Profilbeschreibung Olfaktorische, gustatorische und taktile Merkmale

Wahrnehmung (2) Eigenschaften 1 2 3 4 Fruchtigkeit (reif oder grün) (1) Äpfel Andere reife Früchte Grün (Blätter, Gras) Bitter Scharf Süß Andere zulässige Merkmale (spezifizieren) Sauer/Weinartig/Essigartig/Säuerlich (1) Metallisch Moderig Schlammig Stichig ("Atrojado") Ranzig Andere unannehmbare Eigenschaften (spezifizieren)

(1) Unzutreffendes bitte streichen. (2) Wahrnehmung:

Wahrnehmung:

warnenmung:

1 = kaum wahrnehmbar,

2 = schwach,

3 = mittel,

4 = stark,

5 = extrem.

Bewertungstabelle

Fehler	Merkmale	Gesamtnote Punkte
	Fruchtigkeit von Oli-	9
Keine	ven, Fruchtigkeit von Oliven und anderen fri-	8
	schen Früchten	. 7
Gering, kaum wahrnehmbar	Schwache Fruchtigkeit beliebiger Art	6
Wahrnehmbar	Fruchtigkeit unzuläng- lich, Geruch und Ge- schmack anormal	5
Erheblich, noch gerade annehmbar	Deutliche Fehler, Ge- ruch und Geschmack unangenehm	4
Groß und/oder schwer-	Geruch und Geschmack	3
wiegend, deutlich wahr-	für den Genuß völlig	2
nehmbar	unzumutbar	1
Bemerkungen:		

SENSORISCHE PRÜFUNG: GRUNDBEGRIFFE

1. UMFANG UND ANWENDUNGSBEREICH

Diese Norm enthält eine Zusammenstellung der bei der sensorischen Prüfung zu verwendenden Begriffe und ihrer Definitionen.

2. BEGRIFFE

2.1. Allgemeine Begriffe

Sensorische Prüfung (Substantiv):

Sinnenprüfung der organoleptischen Eigenschaften.

Wahrnehmung (Substantiv):

Sinnliches Erfassen äußerer Gegenstände und Vorkommnisse.

Organoleptisch (Adjektiv) (Merkmal oder Eigenschaft):

Bezeichnet Eigenschaften eines Erzeugnisses, die mit Hilfe der Sinnesorgane wahrgenommen werden können.

Sachverständiger (Substantiv) (auf dem Gebiet der Prüfung der organoleptischen Eigenschaften):

Auf die sensorische Prüfung eines bestimmten Erzeugnisses spezialisierter Prüfer, der über Grundkenntnisse über dessen Herstellung und die Marktpräferenzen verfügt.

Prüfer (Substantiv):

Ausgewählte und geschulte Person mit Unterscheidungsvermögen und Sinnesschärfe zur sensorischen Prüfung der organoleptischen Eigenschaften eines Lebensmittels.

Prüfergruppe (Substantiv):

Gruppe von eigens ausgewählten und geschulten Prüfern, die zur sensorischen Prüfung des Erzeugnisses unter kontrollierten Bedingungen zusammentritt.

Empfindung (Substantiv):

Durch einen Sinnesreiz verursachtes subjektives Phänomen. Dieses Phänomen ist hinsichtlich seiner Art, seiner Bewertung sowie seiner Intensität subjektiv unterscheidbar und objektiv über das betreffende Sinnesorgan beschreibbar.

Sinnenschärfe (Substantiv):

Fähigkeit der Sinnesorgane zur qualitativen und quantitativen Wahrnehmung eines schwach ausgeprägten Sinnesreizes oder von geringen Unterschieden zwischen Sinnesreizen.

Verkostung (Substantiv):

Vorgang des Wahrnehmens, Prüfens und Beurteilens organoleptischer Eigenschaften, insbesondere der olfaktorischen, gustatorischen, taktilen und kinästhetischen Eigenschaften eines Lebensmittels.

Akzeptanz (Substantiv):

Positive Reaktion eines einzelnen oder einer Gruppe, die ein Erzeugnis aufgrund seiner organoleptischen Eigenschaften auslöst.

Harmonie (Substantiv):

Eigenschaft eines Erzeugnisses, die eine angenehme Gesamtempfindung verursacht. Diese Empfindung wird verursacht durch die Wahrnehmung ihrer Einzelbestandteile in Form von olfaktorischen, gustatorischen, taktilen und kinästhetischen Reizen, da die Einzelbestandteile in jeweils geeigneten Konzentrationsverhältnissen vorliegen.

Anklang (Substantiv):

Tatbestand der bereitwilligen Aufnahme eines Erzeugnisses aufgrund seiner organoleptischen Eigenschaften durch den einzelnen oder eine Gruppe.

Unterscheidung (Substantiv):

Qualitative und/oder quantitative Unterscheidung zweier oder mehrerer Reize.

Kompensation (Substantiv):

Ergebnis des Zusammenwirkens mehrerer Sinnesreize derart, daß ein jeder davon schwächer wahrnehmbar ist, als wenn er allein vorläge.

Aussehen (Substantiv):

Mit den Augen wahrgenommenes Gesamtbild der organoleptischen Eigenschaften: Größe, Form, Farbe, Erscheinungsbild, Trübheit, Klarheit, Fließvermögen, Schaum und Efferveszenz. Dieser Begriff ist dem Begriff Erscheinungsbild vorzuziehen.

Eigenschaft (Substantiv):

Wahrnehmbares Merkmal.

2.2. Physiologische Begriffe

Reizstoff (Substantiv):

Physikalisch oder chemisch beschreibbarer Stoff, der eine spezifische Reaktion der externen oder internen Sinnesrezeptoren hervorruft.

Geschmack (Substantiv) (Geschmackssinn):

Einer der Sinne, dessen Rezeptoren sich im Mund und insbesondere auf der Zunge befinden und auf verschiedene gelöste Verbindungen reagieren.

Gustatorisch (Adjektiv):

Bezeichnet die Eigenschaft eines Erzeugnisses zur Reizung des Geschmackssinns und Hervorrufung einer oder mehrerer der vier Grundgeschmacke: süß, salzig, sauer und bitter.

Rezeptor (Substantiv):

Auf die Aufnahme von Reizen spezialisierter Teil eines Sinnesorgans, der in der Lage ist, Reize zu empfangen und an die Nervenzellen weiterzuleiten.

Anmerkung: Die Rezeptoren werden nach der Art der Energie, die den entsprechenden Sinnesreiz auslösen, unterschieden (Licht, Wärme, Schall usw.).

Geruch (Substantiv):

Funktion der Geruchsorgane hinsichtlich der Wahrnehmung und Unterscheidung von Molekülen, die in der Gasphase von außen mittelbar oder unmittelbar durch die Nase mit ihm in Berührung kommen.

Intensität (Substantiv):

Stärke der Energie einer Eigenschaft, die oberhalb der Schwelle mit Hilfe einer quantitativen Werteskala bestimmt werden kann.

Anpassung (Substantiv):

Vorübergehende Änderung der Sinnesschärfe bei der Wahrnehmung von sensorischen Reizstoffen als Ergebnis einer ständigen, wiederholten Einwirkung eines bestimmten oder eines diesem ähnlichen Reizstoffs.

Hemmung (Substantiv):

Ausbleiben der Reaktion eines Sinnesorgans oder eines seiner Teile unter der Einwirkung eines geeigneten Reizstoffs, dessen Intensität oberhalb der Schwelle liegt.

Reaktion (Substantiv):

Wirkung, mit der die Sinneszellen auf einen oder mehrere Reize eines bestimmten Sinns reagieren.

Körper (Substantiv):

In der Mundhöhle wahrgenommene taktile Empfindung, die ein Gefühl für die Dichte, Viskosität, Konsistenz oder Kompaktheit eines Erzeugnisses liefert.

Duftigkeit (Substantiv):

Frischer, weicher und milder Geruch.

Riechen (Verb) (Fähigkeit des Geruchssinns):

Fähigkeit der Geruchswahrnehmung.

Objektiv (Adjektiv):

- a) Bezeichnung für die Vermittlung einer wirklichkeitsgetreuen und überprüfbaren Darstellung eines Sachverhalts unter Vernachlässigung menschlicher Faktoren (z. B. Vorlieben, Gewohnheiten, Affekte):
- b) Bezeichnung für eine Technik, die es trotz der Verwendung sensorischer oder instrumentaler Verfahren erlaubt, selbstverursachte Fehler zu vermeiden.

Anmerkung: Von der Verwendung des Begriffs instrumentell als Synonym wird abgeraten.

Subjektiv (Adjektiv):

Bezeichnung für die Vermittlung einer Wahrnehmung, die nicht allein durch den Reizstoff hervorgerufen wird, sondern auch durch unser Denken und Fühlen.

Kinästhetik:

Gesamtheit der Empfindungen, die sich beim Pressen der Probe bei der Bewegung in der Mundhöhle oder beim Pressen zwischen den Fingern ergeben (Beispiel: Zerdrücken von Käse zwischen den Fingern).

Schwelle (Substantiv):

absolute Schwelle

Mindestmenge eines Reizstoffes,

- die eine Empfindung hervorruft (Wahrnehmungsschwelle) oder
- bei der diese Empfindung identifiziert wird (Identifizierungsschwelle);
- Unterscheidungsschwelle

Mindestmenge eines Reizstoffs, bei der ein merklicher Unterschied in der Intensität der Empfindungen feststellbar ist;

Oberschwelle

Höchststärke eines Reizstoffs, oberhalb derer eine Zunahme der Stärke nicht mehr wahrgenommen wird:

- Präferenzschwelle

Mindestmenge eines Reizstoffs oder kritische supraliminare Konzentration dieses Reizstoffs, die im Vergleich zu einem neutralen Reizstoff angenehme bzw. unangenehme Empfindungen hervorruft, z. B. bei der Wahl zwischen einer Zuckerlösung und Wasser.

Anmerkung: Es ist zu unterscheiden zwischen absoluter Präferenzschwelle und Unterscheidungspräferenzschwelle.

Subliminar (Adjektiv):

Unterhalb der absoluten Schwelle.

Supraliminar (Adjektiv):

Oberhalb der absoluten Schwelle.

Sinnenermüdung:

Besonderer Fall der Sinnengewöhnung, bei dem ein Rückgang der Sinnesschärfe zu verzeichnen ist.

Kompensation (Substantiv):

Ergebnis des Zusammenwirkens mehrerer Reizstoffe derart, daß jeder schwächer wahrgenommen wird, als wenn er alleine vorkäme.

Synergistisch (Adjektiv):

Ergebnis des Zusammenwirkens bestimmter Stoffe in der Weise, daß die Intensität der durch ihre Mischung hervorgerufenen organoleptischen Eigenschaften stärker ist als die Summe der einzeln wirkenden Komponenten.

Kontrastwirkung (Substantiv):

Steigerung der Reaktion auf die Unterschiede zweier gleichzeitig oder nacheinander wirkender Reizstoffe. Gegenteil von Konvergenzwirkung.

Konvergenzwirkung (Substantiv):

Abschwächung der Reaktion auf die Unterschiede gleichzeitig oder nacheinander wirkender Reizstoffe. Gegenteil von Kontrastwirkung.

2.3. Begriffe für organoleptische Eigenschaften

Sauer (Adjektiv):

- a) Bezeichnung für den vorherrschenden Geschmack verdünnter wässriger Lösungen der meisten Säuren (z. B. Zitronensäure, Milchsäure, Traubensäure);
- Bezeichnung für die Eigenschaft von Stoffen, im Reinzustand oder als Gemisch diesen Grundgeschmack hervorzurufen.

Das zugehörige Substantiv lautet: Azidität.

Säuerlich (Adjektiv):

Bezeichnung für die Geruchs- und Geschmackswirkung von vor allem bei der Fermentierung freiwerdenden Säuren sowie von Lebensmitteln, die diese Empfindungen hervorrufen.

Einige Faktoren, die zu dieser Empfindung beitragen, stehen in Beziehung zur Fermentierung, zum Beispiel die Milchsäure- oder Essigsäurebildung eines Lebensmittels.

Bitter (Adjektiv):

- a) Bezeichnung für den vorherrschenden Geschmack verdünnter wäßriger Lösungen von verschiedenen Stoffen wie Chinin, Koffein sowie bestimmter Alkaloide;
- b) Bezeichnung für die Eigenschaft von Stoffen, im Reinzustand oder als Gemisch diesen Grundgeschmack hervorzurufen.

Das zugehörige Substantiv lautet: Bitterkeit.

Salzig (Adjektiv):

- a) Charakteristische Geschmacksempfindung, wie sie in typischer Weise von einer Natriumchloridlösung hervorgerufen wird;
- b) Bezeichnung für die Eigenschaft von Stoffen, im Reinzustand oder als Gemisch diesen Grundgeschmack hervorzurufen.

Das zugehörige Substantiv lautet: Salzigkeit.

Süß (Adjektiv):

- a) Bezeichnung für den vorherrschenden Geschmack wäßriger Lösungen verschiedener Stoffe,
 z. B. Saccharose;
- Bezeichnung für die Eigenschaft von Stoffen, im Reinzustand oder als Gemisch diesen Grundgeschmack hervorzurufen.

Das zugehörige Substantiv lautet: Süße.

Adstringierend (Adjektiv):

- a) Bezeichnung für eine komplexe Empfindung, wie sie von einer verdünnten wäßrigen Lösung mancher Stoffe, z. B. von bestimmten Tanninen (Kaki- oder Schlehentannin), hervorgerufen wird;
- b) Bezeichnung für die Eigenschaft von Stoffen, im Reinzustand oder als Gemisch diese Empfindung hervorzurufen.

Das zugehörige Substantiv lautet: Adstringenz.

Flavour (Substantiv):

Als Flavour bezeichnet man den durch das Zusammenwirken von olfaktorischen, gustatorischen, taktilen und kinästhetischen Empfindungen hervorgerufenen Gesamtsinneseindruck, der für ein Lebensmittel kennzeichnend ist und als mehr oder weniger angenehm oder unangenehm empfunden wird.

Geschmack (Substantiv):

- a) Empfindung, die durch die von bestimmten löslichen Substanzen hervorgerufene Reizung der Geschmackspapillen hervorgerufen wird;
- b) Bezeichnung für die von solchen Stoffen hervorgerufene besondere Empfindung.

Grundgeschmack (Substantiv):

- a) Beim Einatmen bestimmter flüchtiger Stoffe über das Riechorgan wahrgenommener Gesamtsinneseindruck;
- b) Bezeichnung für die von solchen Stoffen hervorgerufene besondere Empfindung.

Geruch (Substantiv):

- a) Kombination von Empfindungen, die durch das Geruchsorgan wahrgenommen werden beim Einziehen bestimmter flüchtiger Substanzen durch die Nase;
- b) Eigenschaft einer spezifischen Empfindung, die von den obengenannten Substanzen herrührt.

Aroma (Substantiv):

- a) Beim Verkosten eines Lebensmittels indirekt über das Riechorgan wahrgenommene angenehme Empfindungen;
- b) in der Parfümerie sowie in der Umgangssprache wird der Begriff auch für dieselben direkt über die Nase wahrgenommenen Empfindungen verwendet.

Nachgeschmack (Substantiv):

Von den zuerst wahrgenommenen Empfindungen abweichender Gesamtsinneseindruck, der sich einstellt, nachdem der Reizstoff den Mund verlassen hat.

Aromatisch (Adjektiv):

- a) Bezeichnung für den von manchen Stoffen im Reinzustand oder als Gemisch beim Verkosten hervorgerufene, als Aroma bezeichnete Empfindung;
- b) Bezeichnung für Stoffe, die bei der Geruchsprüfung durch die Nase eine duftige, frische Empfindung hervorrufen.

Textur (Substantiv):

Eigenschaften eines Erzeugnisses im festen oder rheologischen Zustand, welche die mechanischen Rezeptoren insbesondere der Mundregion beim Verkosten anregen können.

Hinweis: Mit diesem Begriff werden ausschließlich objektiv vorhandene Eigenschaften bezeichnet, nicht aber hervorgerufene Empfindungen, die mit allgemeinen Begriffen wie Konsistenz, Faserigkeit, Geschmeidigkeit usw. bezeichnet werden.

Kauen:

Vorgang, bei dem das Lebensmittel mit allen geschmacksempfindlichen Teilen des Mundes in Berührung gebracht wird, damit die von ihm hervorgerufenen Empfindungen im Mund wahrgenommen werden können.

Hinweis: Dieses Glossar kann ergänzt werden unter Heranziehung der Normen ISO 5492/I-V und anderer Veröffentlichungen, wie beispielsweise die von J. L. Magnen unter dem Titel "Les Cahiers techniques du Centre National de Coordination des Etudes et Recherches sur la Nutrition et l'Alimentation" usw.

PRÜFGLAS FÜR ÖLE

1. UMFANG UND ANWENDUNGSBEREICH

Diese Vorschrift beschreibt die Eigenschaften des Glases zur organoleptischen Prüfung von Speiseölen (Geruch, Geschmack, Flavour).

Sie beschreibt ferner die Vorrichtung zum Anwärmen und Temperieren auf die für diese Prüfung geeignete Temperatur.

2. BESCHREIBUNG

In Abbildung 1 ist ein Prüfglas mit den am besten für diesen Zweck geeigneten Merkmalen dargestellt; diese lassen sich wie folgt zusammenfassen:

- a) höchstmögliche Standfestigkeit, um ein Umstoßen und Vergießen des Inhalts zu verhindern;
- b) Standfläche paßt in die Öffnungen des Anwärmblocks hinein, was eine gleichmäßige Erwärmung des Glasbodens ermöglicht;
- eine Form, die am Boden am weitesten ist, so daß die flüchtigen Bestandteile der Öle vollständig freigesetzt werden. Sie verengt sich im Mundbereich, so daß die gleichen Verbindungen konzentriert werden, wodurch sichergestellt wird, daß sie durch die Nase besser wahrgenommen und identifiziert werden können;
- d) dunkles Glas. Es verhindert, daß der Prüfer die Farbe des Öles erkennt, dadurch voreingenommen wird und sich möglicherweise von einer objektiven Bestimmung ablenken läßt.

2.1. Maße

Das in Abbildung 1 dargestellte Glas hat folgende Maße:

— Gesamtvolumen	130	ml ±	10	ml,
— Gesamthöhe	60	mm ±	1	mm,
— Durchmesser der Kelchöffnung	50	mm ±	1	mm,
— größter Kelchdurchmesser	70	mm ±	1	mm,
— Durchmesser des Kelchbodens	35	mm ±	1	mm,
— Wandstärke	1,5	mm ±	0,2	mm,
— Stärke des Glasbodens	5	mm +	1	mm.

Zu jedem Glas gehört ein Uhrglas mit einem um 10 mm größeren Durchmesser als der der Kelchöffnung. Dieses Glas dient als Deckel, damit nichts von dem Aroma verloren geht und kein Staub eindringen kann.

2.2. Fertigungsdaten

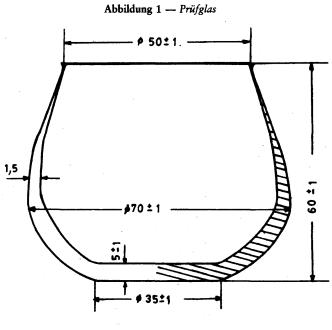
Das Glas muß aus resistentem, dunklem, blasen- und kratzerfreiem Glas gefertigt sein, so daß die Farbe des Inhalts nicht erkennbar ist.

Der Glasrand muß gleichmäßig, glatt und leicht umgebogen sein.

Das Glas muß getempert sein, damit es den bei den Prüfungen auftretenden Temperaturschwankungen standhält.

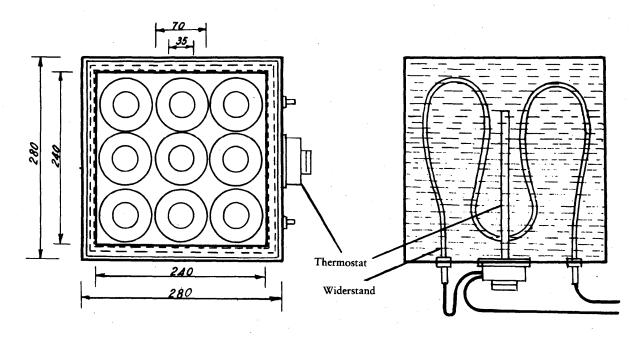
2.3. Vorschriften für den Gebrauch

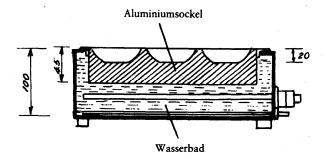
Zur Reinigung der Gläser ist geruchsfreie Seife bzw. Spülmittel zu verwenden und anschließend ausreichend mit Wasser nachzuspülen, um jedwede Rückstände von Reinigungsmittel zu entfernen. Schließlich werden sie mit destilliertem Wasser nachgespült, man läßt abtropfen und trocknet sie in einem Trockenschrank.

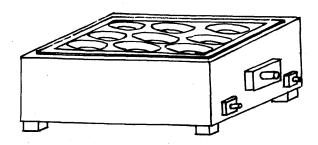

Konzentrierte Säuren oder gar Chromsäuregemische dürfen nicht verwendet werden.

Die Gläser sind bis zum Gebrauch im Trockenschrank oder in einem Schrank zum Schutz gegen Fremdgeruch aufzubewahren.

Vor jeder Verwendung ist jedes Glas durch Riechen auf Fremdgeruch zu prüfen. Bei der Versuchsvorbereitung sind die Kennzeichen eines jeden Glases sowie das enthaltene Ölmuster sorgfältig aufzuzeichnen. Nur der Prüfungsleiter darf wissen, welches Kennzeichen welcher Ölprobe entspricht.


3. VORRICHTUNG ZUM ANWÄRMEN DER PROBEN


Die organoleptische Prüfung der Proben muß bei einer bestimmten Temperatur geschehen, die bei Speiseölen 28 ± 2 °C betragen muß. Damit dies gewährleistet ist, muß sich in jeder Kabine in Reichweite des Prüfers eine Anwärmvorrichtung gemäß Abbildung 2 befinden. Sie besteht aus einem Aluminiumblock in einem thermostatisch gesteuerten Wasserbad und gewährleistet eine gleichmäßige Temperatur. Dieser Block weist eine Reihe von paßgenauen Vertiefungen für den Boden auf. Der Unterschied zwischen der Temperatur der Anwärmvorrichtung und dem Öl in den Gläsern in den Vertiefungen der einzelnen Blöcke darf höchstens ± 2 °C betragen.



Maße (in mm)

Abbildung 2 — Vorrichtung zum Anwärmen der Proben (Maße in mm)

LEITLINIEN FÜR DIE EINRICHTUNG EINES PRÜFRAUMS

1. EINLEITUNG

Der Prüfraum soll den an der sensorischen Prüfung teilnehmenden Prüfern zweckmäßige, bequeme und genormte Arbeitsbedingungen bieten, um ihnen die Arbeit zu erleichtern und die Wiederholbarkeit und Vergleichbarkeit der Ergebnisse zu gewährleisten.

2. UMFANG UND ANWENDUNGSBEREICH

Diese Vorschriften regeln die Grundvoraussetzungen für die Einrichtung eines Prüfraums.

3. ALLGEMEINE SPEZIFIKATION DER EINRICHTUNG

Der Raum muß ungeachtet seiner Fläche (3.1) folgenden Anforderungen genügen:

Der Raum muß angenehm und gut ausgeleuchtet (3.2), aber neutral gehalten sein. Daher empfiehlt sich ein beruhigender, glatter und heller Wandanstrich zur Schaffung einer entspannten Atmosphäre (1).

Der Raum muß leicht zu reinigen und darf keinen Geräuschquellen ausgesetzt sein; daher ist er nach Möglichkeit mit einer Schallisolierung zu versehen. Ferner darf er keinerlei Fremdgeruch ausgesetzt sein und ist nach Möglichkeit mit einer geeigneten Lüftungsanlage auszurüsten. Sofern die Umgebungstemperaturen es verlangen, ist der Prüfraum mit einer Klimaanlage auszustatten, die eine konstante Temperatur von 20 bis 22 °C gewährleistet.

3.1. Maße

Die Maße hängen stark von den Möglichkeiten der Laboratorien bzw. Unternehmen ab. Allgemein muß der Raum zur Aufnahme von etwa 10 Kabinen und einem Bereich zur Vorbereitung der Proben ausreichen.

Je größer der Raum ist, desto besser ist es natürlich, da in diesem Fall Nebenräume beispielsweise für die Reinigung des Materials, die Herrichtung von Speisen und das Zusammentreten "offener Prüfgruppen" eingerichtet werden können.

3.2. Beleuchtung

Die allgemeine natürliche oder künstliche Beleuchtung (z. B. mit Tageslicht-Röhrenleuchten) muß gleichmäßig, regelbar und diffus sein.

3.3. Lufttemperatur und -feuchtigkeit

Der Raum muß ständig angenehme Lufttemperatur und -feuchtigkeit aufweisen. Es empfiehlt sich eine Temperatur von 20—22 °C und eine relative Luftfeuchtigkeit von 60 bis 70 %, sofern keine besonderen Bedingungen gelten.

4. BESCHREIBUNG DER KABINEN

4.1. Allgemeine Merkmale

Die Kabinen sind nebeneinander angeordnet, gleich ausgestattet und durch Trennwände so voneinander getrennt, daß die Prüfer beim Sitzen keinen Kontakt zueinander haben. Sie können aus jedwedem geeigneten, reinigungsfreundlichen und haltbaren Material gefertigt werden (z. B. Holz, glasierte Sperrholzplatten, Walzplatten usw.). Bei Verwendung von Anstrichen müssen diese nach dem Trocknen völlig geruchlos sein.

Die in jeder Kabine aufgestellten Stühle müssen bequem und höhenverstellbar sein.

Außerdem muß jede Kabine über eine richtungs- und helligkeitsverstellbare Einzelbeleuchtung verfügen.

Jede Kabine sollte ferner über einen Schalter mit einer außerhalb der Kabine gelegenen Lichtquelle verbunden sein, mit der der Prüfer dem Betreuer diskret melden kann, daß er mit der Prüfung fertig ist, weitere Proben wünscht, ein Hilfsmittel benötigt, eine Unregelmäßigkeit festgestellt hat oder eine Information benötigt usw.

⁽¹⁾ Farbe und Beleuchtung können die Ergebnisse der sensorischen Prüfung beeinflussen.

4.2. Maße

Die Kabinen müssen genügend Platz bieten und bequem sein.

Allgemein sind folgende Maße vorzusehen:

Länge:

0,75 m (ohne Spülbecken), 0,85 m (mit Spülbecken);

Tiefe.

0,50 m (Tisch),

0,20 m (Trennwandaufmaß);

Trennwandhöhe:

mindestens 0,60 m ab Tischhöhe;

Tischhöhe:

0,75 m.

4.3. Anordnung

Die Tischplatte muß leicht zu reinigen sein.

Ein Teil dieser Tischplatte ist für ein Spülbecken mit fließendem Wasser vorgesehen. Sofern dies nicht möglich sein sollte, ist dieser Bereich für eine Schüssel, einen Spucknapf oder ähnliches vorzusehen.

Falls die Proben während der Prüfung auf einer konstanten Temperatur über oder unter der Raumtemperatur gehalten werden müssen, ist eine geeignete Einrichtung dafür vorzusehen (Wasserbad, Heizplatte usw.).

In einer Höhe von etwa 1,10 Metern kann auch ein Regal angebracht werden, um verschiedene Hilfsmittel (Gläser, kleine Geräte usw.) abstellen zu können.

Sofern die Anordnung der Kabinen in dem Raum es erlaubt, sollte eine Einrichtung für die Bereitstellung der Proben vorgesehen werden. Diese könnte als Schiebefenster (Abbildung 1), Drehfenster mit vertikaler Achse für Standgläser (hohe Gläser) (Abbildung 2) oder mit horizontaler Achse für Probengefäße geringer Höhe (Abbildung 3) vorgesehen werden. Es kommt lediglich darauf an, daß die Öffnung groß genug ist, daß die Tabletts mit den Probengefäßen hindurchpassen.

5. NEBENRÄUME

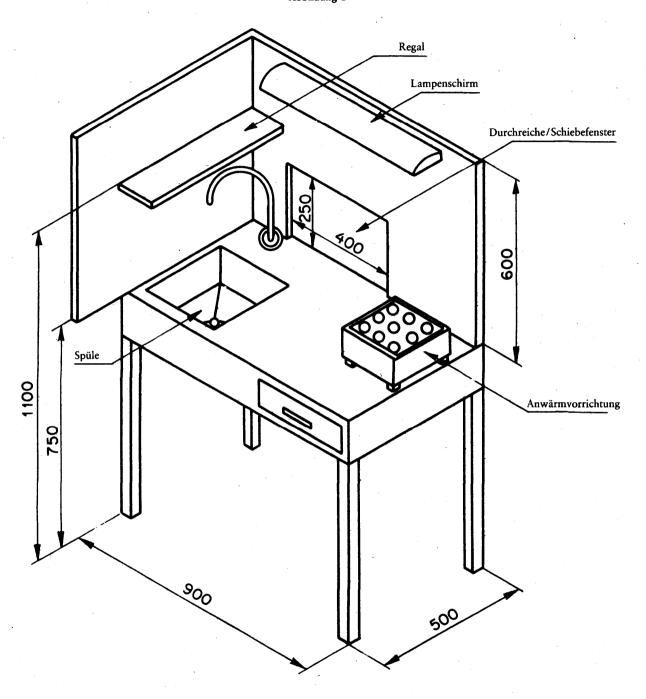

Sofern genügend Platz vorhanden ist, sind getrennte Räumlichkeiten für die Vorbereitung der Proben (Versuchsküche für den Fall der Durchführung von Prüfungen mit Speisen o. a.), Regale für das Abstellen der Gläser oder Hilfsmittel sowie für Besprechungen vor oder nach den Prüfungen vorzusehen. Diese Räumlichkeiten sind sauber zu halten und dürfen keinesfalls so gelegen oder beschaffen sein, daß die Arbeit der Prüfer im Prüfraum durch Gerüche, Geräusche oder Gespräche beeinträchtigt werden kann.

Abbildung 4 zeigt ein Beispiel eines Prüfraums mit Nebenräumen.

Hinweis: Bei den beschriebenen Verhältnissen handelt es sich um Idealbedingungen; sollte es nicht möglich sein, eine vergleichbare Einrichtung ausschließlich für die sensorische Prüfung bereitzustellen, könnten die Prüfungen in einem Raum durchgeführt werden, der die beschriebenen Mindestbedingungen (Licht, Temperatur, Schall-Isolierung, Gerüche) erfüllt und in dem transportable Kabinen aus Faltelementen so aufgestellt werden, daß zumindest die Prüfer voneinander getrennt sind.

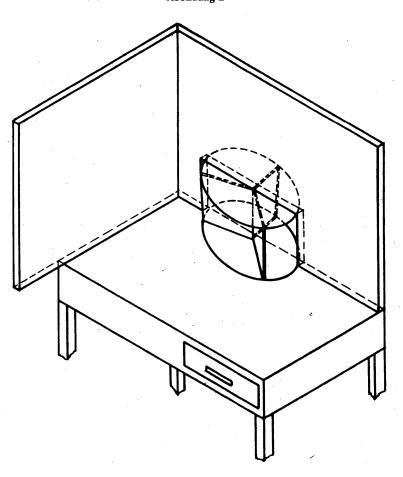

EINRICHTUNG DER KABINE

Abbildung 1

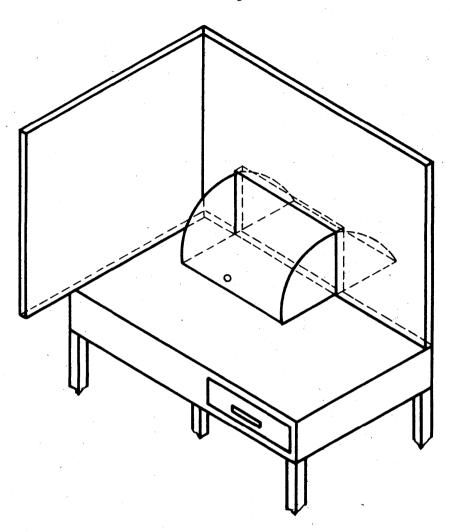
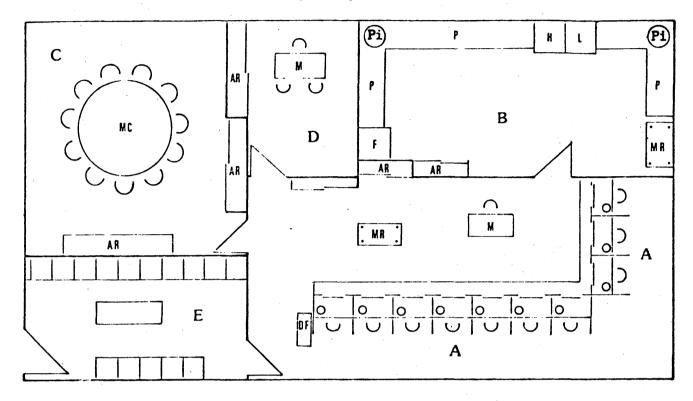

DREHFENSTER MIT VERTIKALER ACHSE

Abbildung 2

DREHFENSTER MIT HORIZONTALER ACHSE


Abbildung 3

LABOR FÜR DIE SENSORISCHE PRÜFUNG

A = Prüferkabinen,

Abbildung 4 — Beispiel eines Prüfraums

Raum für die Reinigung der Hilfsmittel und Vorbereitung der Proben,
Raum für offene Prüfungen,
Büro,
Wartezimmer,
Kühlschrank,
Trockenschrank,
Spülmaschine,
Spüle,
Schrank,
Tisch mit Rädern,
Formularausgabe,
runder Tisch,
Tisch,

ANHANG XIII

RAFFINATIONSNACHWEIS

1. NEUTRALISIEREN UND BLEICHEN DES OLIVENÖLS IM LABORATORIUM

1.1. Neutralisieren des Öls

1.1.1. Geräte

- hohes 300-ml-Becherglas,
- Laborzentrifuge mit 100-ml-Gläsern,
- 250-ml-Becherglas,
- 100-ml-Rundkolben,
- 1-Liter-Scheidetrichter.

1.1.2. Reagenzien

- 12%ige wäßrige Natriumhydroxidlösung,
- 1%ige Lösung von Phenolphthalein in Äthylalkohol,
- Hexan, analysenrein,
- Isopropylalkohol, analysenrein.

1.1.3. Verfahren

a) Öle mit einem Gehalt an freien Fettsäuren, berechnet als Ölsäure, von weniger als 30 %

Man gibt 50 g rohes Öl in ein hohes 300-ml-Becherglas und erwärmt im Wasserbad auf 65 °C. Unter langsamem Rühren gibt man — mit einem Überschuß von 5% — so viel 12%ige Natriumhydroxidlösung hinzu, wie dem Gehalt des Öls an freien Fettsäuren entspricht. Unter Aufrechterhaltung der Temperatur von 65 °C wird 5 Minuten weitergerührt.

Das Ganze wird in 100-ml-Zentrifugengläser überführt und die Seifenmasse durch Zentrifugieren abgetrennt. Das dekantierte Öl wird in ein 250-ml-Becherglas gegeben und mit 50 bis 60 ml kochendem destilliertem Wasser gewaschen. Die wäßrige Phase wird mit Hilfe eines Saughebers entfernt. Die Waschungen werden wiederholt, bis auch Spuren von Seifenresten entfernt sind (Verschwinden der Rosafärbung des Phenolphthaleins).

Zur Entfernung der geringen Restwassermengen wird das Öl zentrifugiert.

b) Öle mit einem Gehalt an freien Fettsäuren, berechnet als Ölsäure, von mehr als 30 %

In einen 1-Liter-Scheidetrichter gibt man 50 g rohes Öl, 200 ml Hexan, 100 ml Isopropylalkohol und — mit einem Überschuß von 0,3 % — so viel 12%ige Natriumhydroxidlösung, wie dem Gehalt des Öls an freien Fettsäuren entspricht.

Eine Minute lang kräftig rühren. 100 ml destilliertes Wasser hinzugeben, erneut rühren und stehen lassen. Nach der Phasentrennung wird die untere seifenhaltige Schicht abgelassen. In vielen Fällen bildet sich zwischen den beiden Phasen (ölhaltige obere und wäßrige untere Schicht) eine Zwischenschicht, die Schleimstoffe und unlösliche Substanzen enthält und die ebenfalls entfernt werden muß.

Anschließend wird die Hexanlösung des neutralen Öls mit Portionen von jeweils 50 bis 60 ml einer Lösung aus Isopropylalkohol und destilliertem Wasser im Verhältnis 1:1 (Volumenteile) bis zum Verschwinden der Rosafärbung des Phenolphthaleins gewaschen. Darauf wird das Hexan durch Abdestillieren im Vakuum (z. B. mit Hilfe eines Rotationsverdampfers) vollständig entfernt.

1.2. Bleichen des neutralisierten Öls

1.2.1. Geräte

- 250-ml-Dreihalskolben mit Schliffansätzen für:
 - a) Thermometer mit Unterteilung in 1 °C für Messungen bis 90 °C,
 - b mechanisches Rührwerk, 250 bis 300 Umdrehungen/min, geeignet zum Betrieb im Vakuum.
 - c) Anschluß für die Vakuumpumpe;
- Vakuumpumpe für 15 bis 30 Millibar Endvakuum, mit Manometer.

1.2.2. Verfahren

In den Dreihalskolben werden etwa 100 g neutralisiertes Öl eingewogen. Thermometer und Rührwerk einführen, Vakuumpumpe anschließen und auf 90 °C unter Umrühren erwärmen; die Temperatur wird unter ständigem Rühren so lange aufrechterhalten, bis das zu untersuchende Öl vollständig vom Wasser befreit ist (etwa 30 Minuten).

Danach wird das Vakuum unterbrochen und 2 bis 3 g aktivierte Bleicherde zugegeben.

Dann wird wieder ein Vakuum mit einem Druck von 15 bis 30 Millibar hergestellt, wobei über eine Zeit von 30 Minuten die Temperatur auf 90 °C und die Drehzahl des Rührwerks bei etwa 250 Umdrehungen/min gehalten werden. Danach wird in einem thermostatisch regulierten Trockenschrank warm filtriert (50—60 °C).

ANHANG XIV

ZUSÄTZLICHE ANMERKUNGEN 2, 3 UND 4 ZU KAPITEL 15 DER KOMBINIERTEN NOMENKLATUR

1. "Anmerkung 2.A.: Als Olivenöl im Sinne der Positionen 1509 und 1510 gilt nur das ausschließlich aus der Verarbeitung von Oliven gewonnene Öl, nicht jedoch wiederverestertes Olivenöl und Mischungen von Olivenöl mit anderen Ölen.

Die Anwesenheit von wiederverestertem Olivenöl oder von anderen Ölen wird mit den in den Anhängen V, VII, IX, X und XII angegebenen Verfahren bestimmt. Die Sterin- und Fettsäurezusammensetzungen aller Olivenöle der Positionen 1509 und 1510 sind in den nachstehenden Tabellen aufgeführt.

Tabelle I — Gehalt an Fettsäuren in GHT der Gesamtfettsäuren		Tabelle II — Gehalt an Sterinen in GHT der Gesamtstearine	
Myristinsäure	M 0,1	Cholesterin	M 0,5
Linolensäure	м 0,9	Brassicasterin	M 0,2
Arachinsäure	M 0,7	Campesterin	M 4,0
Eicosensäure	M 0,5	Stigmasterin	≤ Campesterin
Behensäure	М 0,3	Beta-Sitosterin (1)	m 93,0
Lignocerinsäure	M 0,5	Delta-7-Stigmasterin	M 0,5

M = maximaler Gehalt.

- Anmerkung 2.B: Als "native Olivenöle" gelten Öle, die aus Oliven ausschließlich durch mechanische oder andere physikalische Verfahren unter Bedingungen, insbesondere Temperaturbedingungen, gewonnen werden, die nicht zur Verschlechterung der Öle führen und die keine andere Behandlung erfahren haben als Reinigen, Dekantieren, Zentrifugieren und Filtrieren. Sie sind nachstehend in den Ziffern I und II definiert. Ausgeschlossen sind Öle, die mit Hilfe von Lösungsmitteln gewonnen wurden (Position 1510).
 - I. Als "Lampantöl" im Sinne der Unterposition 1509 10 10 gilt natives Olivenöl, das unabhängig von seinem Gehalt an frejen Fettsäuren folgende Merkmale aufweist:
 - a) Gehalt an aliphatischen Alkoholen höchstens 400 mg/kg;
 - b) Gehalt an Erythrodiol + Uvaol höchstens 4,5 GHT;
 - c) Gehalt an gesättigten Fettsäuren in 2-Stellung der Triglyceride höchstens 1,3 GHT und/oder
 - d) eines der folgenden Merkmale:
 - 1) Peroxidzahl mehr als 20 meg aktiver Sauerstoff je kg;
 - Gesamtgehalt an flüchtigen halogenierten Lösungsmitteln mehr als 0,2 mg/kg oder Gehalt an einem bestimmten flüchtigen halogenierten Lösungsmittel mehr als 0,1 mg/kg;
 - 3) Extinktionskoeffizient K₂₇₀ größer als 0,25, nach Behandlung der Ölprobe mit aktiviertem Aluminiumoxid 0,11 oder weniger. Öle mit einem als Ölsäure berechneten Gehalt an freien Fettsäuren von mehr als 3,3 g je 100 g können nach Behandeln mit aktiviertem Aluminiumoxid gemäß dem Verfahren in Anhang XV einen Extinktionskoeffizienten K₂₇₀ größer als 0,11 aufweisen. In diesem Fall muß die Ölprobe nach Neutralisieren und Bleichen im Laboratorium folgende Merkmale aufweisen:

m = minimaler Gehalt.

⁽¹⁾ Summe aus Delta-5,23-Stigmastadienol + Cholesterin + Beta-Sitosterin + Sitostanol + Delta-5-Avenasterin + Delta-5,24-Stigmastadienol.

- Extinktionskoeffizient K₂₇₀ kleiner oder gleich 1,20;
- Schwankung des Extinktionskoeffizienten (ΔK) (1) bei 270 nm zwischen 0,01 und höchstens 0,16;
- 4) sensorische Merkmale mit wahrnehmbaren unannehmbaren Geschmacksfehlern, mit einem Bewertungsergebnis von unter 3,5.
- II. Als "natives Olivenöl" im Sinne der Unterposition 1509 10 90 gilt Olivenöl, das folgende Merkmale aufweist:
 - a) Gehalt an freien Fettsäuren, berechnet als Ölsäure, höchstens 3,3 g je 100 g;
 - b) Peroxidzahl höchstens 20 meq aktiver Sauerstoff je kg;
 - c) Gehalt an aliphatischen Alkoholen höchstens 300 mg/kg;
 - d) Gesamtgehalt an flüchtigen halogenierten Lösungsmitteln höchstens 0,2 mg/kg, oder Gehalt an einem bestimmten flüchtigen halogenierten Lösungsmittel höchstens 0,1 mg/kg;
 - e) Extinktionskoeffizient K₂₇₀ höchstens 0,250, nach Behandlung der Ölprobe mit aktiviertem Aluminiumoxid höchstens 0,10 (²);
 - f) Schwankung des Extinktionskoeffizienten (ΔK)(1) im Bereich von 270 nm höchstens 0,010;
 - g) sensorische Merkmale mit einem Bewertungsergebnis über 3,5, auch mit wahrnehmbaren, jedoch noch annehmbaren Geschmacksfehlern;
 - h) Gehalt an Erythrodiol + Uvaol höchstens 4,5 GHT;
 - Gehalt an gesättigten Fettsäuren in 2-Stellung der Triglyceride höchstens 1,3 GHT.
- Anmerkung 2.C: Als Olivenöl im Sinne der Unterposition 1509 90 00 gilt Olivenöl, das durch Behandeln von Olivenölen der Unterpositionen 1509 10 10 und/oder 1509 10 90 gewonnen wurde, auch vermischt mit nativen Olivenölen, das folgende Merkmale aufweist:
 - a) Gehalt an freien Fettsäuren, berechnet als Ölsäure, höchstens 3,3 g je 100 g;
 - b) Gehalt an aliphatischen Alkoholen höchstens 350 mg/kg;
 - c) Extinktionskoeffizient K₂₇₀ größer als 0,250, jedoch nicht größer als 1,20 und nach Behandlung der Ölprobe mit aktiviertem Aluminiumoxid größer als 0,10;
 - d) Schwankung des Extinktionskoeffizienten (ΔK) (¹) im Bereich von 270 nm zwischen mehr als 0,01 und nicht mehr als 0,16;
 - e) Gehalt an Erythrodiol + Uvaol höchstens 4,5 GHT;
 - f) Gehalt an gesättigten Fettsäuren in 2-Stellung der Triglyceride höchstens 1,5 GHT.
- Anmerkung 2.D: Als "rohe Öle" im Sinne der Unterposition 1510 00 10 gelten Öle, insbesondere Tresteröle, die folgende Merkmale aufweisen:
 - a) Gehalt an freien Fettsäuren, berechnet als Ölsäure, mehr als 2 g je 100 g;
 - b) Gehalt an Erythrodiol + Uvaol mehr als 12 GHT;
 - c) Gehalt an gesättigten Fettsäuren in 2-Stellung der Triglyceride höchstens 1,8 GHT.
- Anmerkung 2.E: Als Öle der Unterposition 1510 00 90 gelten Öle, die durch Behandeln von Ölen der Unterposition 1510 00 10 gewonnen wurden, auch vermischt mit nativen Olivenölen, und die nicht die Merkmale der Öle der Ziffern I und II aufweisen, sofern sie einen Gehalt an gesättigten Fettsäuren in 2-Stellung der Triglyceride von höchstens 2 GHT aufweisen.

⁽¹⁾ Diese Schwankung ist wie folgt definiert:

 $[\]Delta K = K_m - 0.5 (K_{m-4} + K_{m+4})$

K_m bezeichnet den Extinktionskoeffizienten für die im Bereich von 270 nm liegende Wellenlänge, die im Maximum der Absorptionskurve liegt,

K_{m-4} und K_{m+4} bezeichnen die Extinktionskoeffizienten für eine um 4 nm niedriger bzw. höher liegende Wellenlänge als K_m.

⁽²⁾ Wenn der Extinktionskoeffizient K₂₇₀ größer als 0,25 ist, muß die Bestimmung nach Behandeln mit aktiviertem Aluminiumoxid wiederholt werden. K₂₇₀ darf jetzt 0,10 nicht übersteigen.

- 2. "Anmerkung 3: Zu den Unterpositionen 1522 00 31 und 1522 00 39 gehören nicht:
 - Rückstände aus der Verarbeitung von Fettstoffen, die Öl enthalten, dessen Iodzahl nach der Bestimmung mit dem Verfahren des Anhangs XVI weniger als 70 oder mehr als 100 beträgt:
 - b) Rückstände aus der Verarbeitung von Fettstoffen, die Öl enthalten, dessen Iodzahl zwischen 70 und 100 liegt, bei dem jedoch die Fläche des Peaks, der dem Retentionsvolumen des Beta-Sitosterins entspricht und der gemäß Anhang V der in der nachstehenden zusätzlichen Anmerkung 4 genannten Verordnung bestimmt worden ist, weniger als 93 % der Gesamtfläche der Sterinpeaks ausmacht."
- 3. "Anmerkung 4: Für die Bestimmung der Merkmale der obengenannten Erzeugnisse sind die in den Anhängen der Verordnung (EWG) Nr. 2568/91 beschriebenen Analysenverfahren anzuwenden."

ANHANG XV

1. ÖLGEHALT DER OLIVENTRESTER

1.1. Geräte

- Geeigneter Extraktionsapparat mit 200- bis 250-ml-Kolben,
- elektrisch beheiztes Bad (Sandbad, Wasserbad usw.) oder Heizplatte,
- Analysenwaage.
- Trockenschrank, eingestellt auf höchstens 80 °C,
- elektrischer Trockenschrank mit Thermostat, eingestellt auf 103 °C ± 2 °C, der unter Einblasen von Luft oder unter vermindertem Druck betrieben werden kann,
- mechanische Mühle, leicht zu reinigen, mit der die Trester ohne Erwärmung und ohne merkliche Verringerung ihres Gehalts an Wasser und Öl zerkleinert werden können,
- Extraktionshülse und Watte oder Filterpapier, frei von mit Hexan extrahierbaren Stoffen,
- Exsikkator,
- Sieb, Maschendurchmesser 1 mm,
- Siedesteinchen, zuvor getrocknet.

1.2. Reagenzien

- technisches n-Hexan; Rückstand bei vollständiger Verdampfung unter 0,002 g/100 ml.

2. ARBEITSVORSCHRIFT

2.1. Vorbereitung der Probe

Die Probe wird, wenn nötig, in der zuvor gut gereinigten mechanischen Mühle so weit gemahlen, daß die Teilchen vollständig das Sieb passieren können.

Etwa ein Zwanzigstel der Probe ist zur Reinigung der Mühle zu benutzen; dieses Mahlgut ist zu verwerfen. Der Rest ist fein zu mahlen, das Mahlgut aufzufangen, sorgfältig zu mischen und unverzüglich zu analysieren.

2.2. Untersuchungsprobe

Etwa 10 g der Probe werden nach dem Mahlen auf 0,01 g genau für die Untersuchung abgewogen.

2.3. Vorbereitung der Extraktionshülse

Die Probe wird in die Hülse gegeben und diese mit einem Wattebausch verschlossen. Bei Verwendung von Filterpapier wird das Mahlgut darin eingeschlagen.

2.4. Vertrocknung

Wenn die Trester sehr feucht sind (Gehalt an Wasser und flüchtigen Stoffen größer als 10%), ist vorzutrocknen, wobei die gefüllte Hülse (bzw. das Filterpapier) so lange wie nötig in den auf höchstens 80 °C geheizten Trockenschrank gestellt wird, um den Gehalt an Wasser und flüchtigen Stoffen auf unter 10% zu senken.

2.5. Vorbereitung des Kolbens

Der Kolben, der 1 bis 2 Siedesteinchen enthält und zuvor im Trockenschrank bei $103~{\rm C}~\pm~2~{\rm C}$ getrocknet und danach mindestens 1 Stunde lang im Exsikkator abgekühlt wurde, wird auf 1 mg genau gewogen.

2.6. Erste Extraktion

Die Hülse (bzw. das Filterpapier) mit der Probe wird in den Extraktionsapparat gestellt, die benötigte Menge Hexan in den Kolben gegeben, der Kolben an den Extraktionsapparat angeschlossen und das Ganze auf das elektrische Heizbad gestellt. Die Heizung ist so einzustellen, daß der Rückfluß mindestens 3 Tropfen in der Sekunde beträgt (mäßiges, nicht heftiges Sieden).

Nach 4stündiger Extraktion läßt man abkühlen. Die Hülse wird aus dem Extraktionsapparat genommen und in einen Luftstrom gestellt, um den größten Teil des Lösungsmittels, mit dem sie durchtränkt ist, zu entfernen.

2.7. Zweite Extraktion

Die Hülse wird in die Mikrokugelmühle entleert, und es wird so fein wie möglich gemahlen. Das Mahlgut wird quantitativ in die Hülse zurückgegeben und diese wieder in den Extraktionsapparat gestellt.

Es wird nochmals 2 Stunden extrahiert, wobei der die erste Extraktion enthaltene Kolben verwendet wird.

Die im Extraktionskolben enthaltene Lösung muß klar sein. Wenn nicht, ist sie über Filterpapier zu filtrieren, wobei der erste Kolben und das Filterpapier mehrmals mit Hexan gewaschen werden. Das Filtrat und die Waschflüssigkeit werden in einem zweiten, zuvor getrockneten und auf 1 mg abgewogenen Kolben aufgefangen.

2.8. Entfernung des Lösungsmittels und Wiegen des Extrakts

Durch Destillieren auf dem elektrischen Heizbad wird der größte Teil des Lösungsmittels entfernt. Die letzten Lösungsmittelspuren werden durch 20minütiges Erhitzen des Kolbens im Trockenschrank bei $103~^{\circ}\text{C}~\pm~2~^{\circ}\text{C}$ beseitigt. Die Beseitigung der Lösungsmittelreste wird durch zeitweiliges Einführen eines Luftstroms oder besser eines Inertgasstroms oder durch Arbeiten unter vermindertem Druck erleichtert.

Den Kolben läßt man wenigstens 1 Stunde im Exsikkator abkühlen und wiegt ihn dann auf 1 mg genau.

Danach wird der Kolben erneut 10 Minuten unter den gleichen Bedingungen erhitzt, im Exsikkator abgekühlt und gewogen.

Der Unterschied zwischen den Ergebnissen der zwei Wägungen darf höchstens 10 mg betragen. Wenn nicht, ist erneut 10 Minuten zu erhitzen, dann wieder abkühlen zu lassen und zu wiegen, bis der Gewichtsunterschied höchstens 10 mg beträgt. Das letzte Gewicht des Kolbens wird notiert.

Für jede Untersuchung werden mit der gleichen Probe zwei Bestimmungen durchgeführt.

3. ERGEBNISSE

3.1. Berechnung und Formel

a) Der Extrakt des Rohprodukts läßt sich in Gewichtsprozenten durch nachstehende Formel berechnen:

$$S = m_1 \times \frac{100}{m_0}$$

Dabei sind: S = Gewichtsprozente des Extrakts des Rohprodukts,

 m_0 = Gewicht der Untersuchungsprobe in g,

m₁ = Gewicht des Extrakts nach der Trocknung in g.

Als Ergebnis ist das arithmetische Mittel aus den beiden Bestimmungen zu nehmen, falls die Bedingungen der Wiederholbarkeit erfüllt sind.

Das Ergebnis wird auf eine Dezimalstelle angegeben.

b) Der Extrakt, bezogen auf den Trockenstoff, läßt sich berechnen durch die Formel:

S ×
$$\frac{100}{100 - \text{U}}$$
 = Extrakt in % Fett, bezogen auf den Trockenstoff.

Dabei sind: S = Gewichtsprozente des Extrakts des Rohprodukts (vgl. a)),

U = sein Gehalt an Wasser unf flüchtigen Stoffen.

3.2. Wiederholbarkeit

Die Differenz zwischen den Ergebnissen von zwei gleichzeitig oder schnell nacheinander von ein und demselben Analytiker vorgenommenen Bestimmungen darf nicht mehr als 0,2 g Hexan-Extrakt je 100 g Probe betragen.

Andernfalls ist die Analyse mit zwei weiteren Untersuchungsproben zu wiederholen. Liegt die Differenz wieder über 0,2 g, so ist als Ergebnis das arithmetische Mittel aus allen vier Bestimmungen zu nehmen.

ANHANG XVI

BESTIMMUNG DER IODZAHL

ANWENDUNGSBEREICH

Diese Internationale Norm beschreibt ein Verfahren zur Bestimmung der Iodzahl von tierischen und pflanzlichen Fetten und Ölen, nachfolgend als "Fette" bezeichnet.

2. DEFINITION

In dieser Internationalen Norm gilt folgende Definition:

2.1. Iodzahl: Iodmenge, die unter den in dieser Internationalen Norm beschriebenen Versuchsbedingungen von der Probe aufgenommen wird.

Die Iodzahl wird in Gramm Iod pro 100 g Probe angegeben.

3. PRINZIP

Die zu untersuchende Probe wird in dem Lösungsmittel gelöst und mit dem Wijs-Reagens versetzt. Nach einer bestimmten Zeit werden Kaliumiodidlösung und Wasser zugegeben und das freigesetzte Iod mit einer Natriumthiosulfatlösung titriert.

4. REAGENZIEN

Alle Reagenzien müssen von anerkannter analysenreiner Qualität sein.

- 4.1. Kaliumiodidlösung, 100 g/l, die kein Iodat oder freies Iod enthält.
- 4.2. Stärkelösung

5 g lösliche Stärke mit 30 ml Wasser mischen und in 1 000 ml kochendes Wasser geben; 3 Minuten kochen und abkühlen lassen.

- 4.3. Natriumthiosulfat, eingestellte Standardlösung c (Na₂S₂O₃ · 5H₂O) = 0,1 mol/l, höchstens 7 Tage vor der Verwendung eingestellt.
- 4.4. Lösungsmittel, hergestellt durch Mischen gleicher Volumenteile Cyclohexan und Essigsäure.
- 4.5. Wijs-Reagens, das Iodmonochlorid in Essigsäure enthält. Es soll das im Handel erhältliche Wijs-Reagens verwendet werden.

Anmerkung: Das Reagens enthält 9 g ICl₃ + 9 g I in Essigsäure.

5. GERÄTE

Übliche Laboreinrichtung und insbesondere nachstehende Geräte:

- 5.1. Mikrobechergläschen, die sich für die zu untersuchende Probe und zum Einführen in die Kolben (5.2) eignen.
- 5.2. 500-ml-Erlenmeyerkolben mit Schliffstopfen, vollständig trocken.

6. VORBEREITUNG DER ANALYSEPROBE

Die homogenisierte Probe wird über Natriumsulfat getrocknet und filtriert.

7. VERFAHREN

7.1. Probemenge

Die Menge der zu untersuchenden Probe hängt von der erwarteten Iodzahl ab (Tabelle 1).

Tabelle 1

	Erwartete Iodzahl	Masse der zu untersuchenden Probe
	weniger als 5	3,00 g
	5— 20	1,00 g
	21— 50	0,40 g
	51—100	0,20 g
,	101—150	0,13 g
	151—200	0,10 g

Die zu untersuchende Probe wird in einem Mikrobechergläschen (5.1) auf 0,1 mg genau eingewogen.

7.2. Bestimmung

Die Probe wird in einen 500-ml-Kolben (5.2) gegeben und mit 20 ml Lösungsmittel (4.5) versetzt, um das Fett zu lösen, Genau 25 ml Wijs-Reagens (4.6) zugeben, den Kolben mit dem Stopfen verschließen, schwenken und dunkel stellen. Für das Wijs-Reagens sollen keine Pipetten verwendet werden, die mit dem Mund aufgezogen werden müssen.

Dann wird in ähnlicher Weise eine Blindprobe vorbereitet, die das Lösemittel und das Reagens, nicht aber die Probe enthält.

Bei Proben mit Iodzahlen unter 150 muß der Kolben 1 Stunde dunkel gestellt werden; bei Iodzahlen über 150 sowie bei polymerisierten oder stark oxidierten Erzeugnissen sind es 2 Stunden.

Nach Ablauf dieser Zeit wird in jeden Kolben 20 ml Kaliumiodidlösung (4.1) und 150 ml Wasser gegeben.

Nun mit der eingestellten Natriumthiosulfat-Standardlösung (4.3) titrieren, bis die durch Iod bedingte Gelbfärbung kaum noch sichtbar ist. Einige Tropfen Stärkelösung (4.2) zugeben und weiter titrieren, bis die Blaufärbung unter starkem Schütteln verschwindet.

Anmerkung: Eine potentiometrische Bestimmung des Endpunkts ist zulässig.

7.3. Zahl der Bestimmungen

Es werden zwei Bestimmungen mit der gleichen Probe durchgeführt.

8. DARSTELLUNG DER ERGEBNISSE

Die Iodzahl wird nach folgender Gleichung berechnet:

$$\frac{12,69 \text{ c} (V_1 - V_2)}{m}$$

Hierin bedeuten:

- c = die genaue zahlenmäßige Angabe der Konzentration der verwendeten Natriumthiosulfat-Standardlösung (4.3) in mol pro Liter;
- V₁ = Volumen der für den Blindversuch verwendeten Natriumthiosulfat-Standardlösung (4.3) in Millilitern;
- V₂ = Volumen der zur Bestimmung verwendeten Natriumthiosulfat-Standardlösung (4.3) in Millilitern;
- m = Masse der untersuchten Probe (7.1) in Gramm.

Als Ergebnis ist das arithmetische Mittel der beiden Bestimmungen anzugeben.