Mercurial > hgweb > octave
changeset 34666:e95bf55b7b9c
maint: merge stable to default
author | Rik <rik@octave.org> |
---|---|
date | Thu, 26 Jun 2025 16:32:40 -0700 |
parents | 1e68534278cb 37f861320e89 |
children | bb42c2b0be24 |
files | libinterp/corefcn/dasrt.cc libinterp/corefcn/gcd.cc libinterp/corefcn/ordqz.cc libinterp/corefcn/psi.cc libinterp/corefcn/qz.cc |
diffstat | 26 files changed, 2 insertions(+), 45 deletions(-) [+] |
line wrap: on
line diff
--- a/libinterp/corefcn/dasrt.cc +++ b/libinterp/corefcn/dasrt.cc @@ -262,7 +262,6 @@ of strings, inline functions, or function handles, the first element names the function @math{f} described above, and the second element names a function to compute the modified Jacobian - @tex $$ J = {\partial f \over \partial x}
--- a/libinterp/corefcn/dassl.cc +++ b/libinterp/corefcn/dassl.cc @@ -210,7 +210,6 @@ of strings, inline functions, or function handles, the first element names the function @math{f} described above, and the second element names a function to compute the modified Jacobian - @tex $$ J = {\partial f \over \partial x}
--- a/libinterp/corefcn/gcd.cc +++ b/libinterp/corefcn/gcd.cc @@ -452,7 +452,6 @@ Optional return arguments @var{v1}, @dots{}, contain integer vectors such that, - @tex $g = v_1 a_1 + v_2 a_2 + \cdots$ @end tex
--- a/libinterp/corefcn/givens.cc +++ b/libinterp/corefcn/givens.cc @@ -40,7 +40,6 @@ @deftypefn {} {@var{G} =} givens (@var{x}, @var{y}) @deftypefnx {} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y}) Compute the Givens rotation matrix @var{G}. - @tex The Givens matrix is a $2\times 2$ orthogonal matrix $$
--- a/libinterp/corefcn/gsvd.cc +++ b/libinterp/corefcn/gsvd.cc @@ -115,7 +115,6 @@ The generalized singular value decomposition is defined by the following relations: - @tex $$ A = U C X^\dagger $$ $$ B = V S X^\dagger $$
--- a/libinterp/corefcn/ordqz.cc +++ b/libinterp/corefcn/ordqz.cc @@ -62,7 +62,6 @@ Reorder the QZ@tie{}decomposition of a generalized eigenvalue problem. The generalized eigenvalue problem is defined as - @tex $$A x = \lambda B x$$ @end tex @@ -96,7 +95,6 @@ @var{ZR} such that the order of the eigenvalue on the diagonal of @var{AA} and @var{BB} is changed. The resulting reordered matrices @var{AR} and @var{BR} fulfill: - @tex $$ A_R = Q_R \cdot A \cdot Z_R, B_R = Q_R \cdot B \cdot Z_R $$ @end tex
--- a/libinterp/corefcn/psi.cc +++ b/libinterp/corefcn/psi.cc @@ -49,7 +49,6 @@ and so on. The digamma function is defined: - @tex $$ \Psi (z) = {d (log (\Gamma (z))) \over dx}
--- a/libinterp/corefcn/qz.cc +++ b/libinterp/corefcn/qz.cc @@ -66,7 +66,6 @@ Compute the QZ@tie{}decomposition of a generalized eigenvalue problem. The generalized eigenvalue problem is defined as - @tex $$A x = \lambda B x$$ @end tex
--- a/libinterp/corefcn/schur.cc +++ b/libinterp/corefcn/schur.cc @@ -275,7 +275,6 @@ complex, upper triangular Schur@tie{}form @var{T}. Note that the following relations hold: - @tex $UR \cdot TR \cdot {UR}^T = U T U^{\dagger}$ and $U^{\dagger} U$ is the identity matrix I.
--- a/libinterp/corefcn/svd.cc +++ b/libinterp/corefcn/svd.cc @@ -83,7 +83,6 @@ Compute the singular value decomposition of @var{A}. The singular value decomposition is defined by the relation - @tex $$ A = U S V^{\dagger}
--- a/scripts/general/cart2pol.m +++ b/scripts/general/cart2pol.m @@ -48,7 +48,6 @@ ## @var{z}, if present, is unchanged by the transformation. ## ## The coordinate transformation is computed using: -## ## @tex ## $$ \theta = \arctan \left ( {y \over x} \right ) $$ ## $$ r = \sqrt{x^2 + y^2} $$ @@ -66,9 +65,6 @@ ## ## @end ifnottex ## -## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1). -## Note: For @sc{matlab} compatibility, this function no longer returns a full -## coordinate matrix when called with a single return argument. ## @seealso{pol2cart, cart2sph, sph2cart} ## @end deftypefn
--- a/scripts/general/cart2sph.m +++ b/scripts/general/cart2sph.m @@ -44,7 +44,6 @@ ## @var{r} is the distance to the origin @w{(0, 0, 0)}. ## ## The coordinate transformation is computed using: -## ## @tex ## $$ \theta = \arctan \left ({y \over x} \right ) $$ ## $$ \phi = \arctan \left ( {z \over {\sqrt{x^2+y^2}}} \right ) $$ @@ -62,9 +61,6 @@ ## ## @end ifnottex ## -## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1). -## Note: For @sc{matlab} compatibility, this function no longer returns a full -## coordinate matrix when called with a single return argument. ## @seealso{sph2cart, cart2pol, pol2cart} ## @end deftypefn
--- a/scripts/general/divergence.m +++ b/scripts/general/divergence.m @@ -30,7 +30,6 @@ ## @deftypefnx {} {@var{div} =} divergence (@var{fx}, @var{fy}) ## Calculate divergence of a vector field given by the arrays @var{fx}, ## @var{fy}, and @var{fz} or @var{fx}, @var{fy} respectively. -## ## @tex ## $$ ## div F(x,y,z) = \partial_x{F} + \partial_y{F} + \partial_z{F}
--- a/scripts/general/pol2cart.m +++ b/scripts/general/pol2cart.m @@ -47,7 +47,6 @@ ## @var{z}, if present, is unchanged by the transformation. ## ## The coordinate transformation is computed using: -## ## @tex ## $$ x = r \cos \theta $$ ## $$ y = r \sin \theta $$ @@ -64,9 +63,7 @@ ## @end example ## ## @end ifnottex -## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1). -## Note: For @sc{matlab} compatibility, this function no longer returns a full -## coordinate matrix when called with a single return argument. +## ## @seealso{cart2pol, sph2cart, cart2sph} ## @end deftypefn
--- a/scripts/general/rescale.m +++ b/scripts/general/rescale.m @@ -45,7 +45,6 @@ ## ## Programming Notes: ## The applied formula is -## ## @tex ## $$B = l + {A - inmin \over inmax - inmin} \cdot (u - l)$$ ## @end tex
--- a/scripts/general/sph2cart.m +++ b/scripts/general/sph2cart.m @@ -45,7 +45,6 @@ ## @var{r} is the distance to the origin @w{(0, 0, 0)}. ## ## The coordinate transformation is computed using: -## ## @tex ## $$ x = r \cos \phi \cos \theta $$ ## $$ y = r \cos \phi \sin \theta $$ @@ -62,9 +61,7 @@ ## @end example ## ## @end ifnottex -## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1). -## Note: For @sc{matlab} compatibility, this function no longer returns a full -## coordinate matrix when called with a single return argument. +## ## @seealso{cart2sph, pol2cart, cart2pol} ## @end deftypefn
--- a/scripts/linear-algebra/planerot.m +++ b/scripts/linear-algebra/planerot.m @@ -27,7 +27,6 @@ ## @deftypefn {} {[@var{G}, @var{y}] =} planerot (@var{x}) ## Compute the Givens rotation matrix for the two-element column vector ## @var{x}. -## ## @tex ## The Givens matrix is a $2\times 2$ orthogonal matrix ## $$
--- a/scripts/linear-algebra/vecnorm.m +++ b/scripts/linear-algebra/vecnorm.m @@ -31,7 +31,6 @@ ## @var{dim}. ## ## The p-norm of a vector is defined as -## ## @tex ## $$ {\Vert A \Vert}_p = \left[ \sum_{i=1}^N {| A_i |}^p \right] ^ {1/p} $$ ## @end tex
--- a/scripts/optimization/humps.m +++ b/scripts/optimization/humps.m @@ -29,7 +29,6 @@ ## Evaluate a function with multiple minima, maxima, and zero crossings. ## ## The output @var{y} is the evaluation of the rational function: -## ## @tex ## $$y = -{ {1200x^4 - 2880x^3 + 2036x^2 - 348x - 88} \over {200x^4 - 480x^3 + 406x^2 - 138x + 17} }$$ ## @end tex
--- a/scripts/plot/draw/peaks.m +++ b/scripts/plot/draw/peaks.m @@ -32,7 +32,6 @@ ## Plot a function with lots of local maxima and minima. ## ## The function has the form -## ## @tex ## $$f(x,y) = 3 (1 - x) ^ 2 e ^ {\left(-x^2 - (y+1)^2\right)} - 10 \left({x \over 5} - x^3 - y^5\right) - {1 \over 3} e^{\left(-(x+1)^2 - y^2\right)}$$ ## @end tex
--- a/scripts/polynomial/padecoef.m +++ b/scripts/polynomial/padecoef.m @@ -28,7 +28,6 @@ ## @deftypefnx {} {[@var{num}, @var{den}] =} padecoef (@var{T}, @var{N}) ## Compute the @var{N}th-order Pad@'e approximant of the continuous-time ## delay @var{T} in transfer function form. -## ## @tex ## The Pad\'e approximant of $e^{-sT}$ is defined by the following equation ## $$ e^{-sT} \approx {P_n(s) \over Q_n(s)} $$
--- a/scripts/specfun/ellipke.m +++ b/scripts/specfun/ellipke.m @@ -42,7 +42,6 @@ ## Mathematical Note: ## ## Elliptic integrals of the first kind are defined as -## ## @tex ## $$ ## {\rm K} (m) = \int_0^1 {dt \over \sqrt{(1 - t^2) (1 - m t^2)}} @@ -63,7 +62,6 @@ ## @end ifnottex ## ## Elliptic integrals of the second kind are defined as -## ## @tex ## $$ ## {\rm E} (m) = \int_0^1 {\sqrt{1 - m t^2} \over \sqrt{1 - t^2}} dt
--- a/scripts/specfun/expint.m +++ b/scripts/specfun/expint.m @@ -28,7 +28,6 @@ ## Compute the exponential integral. ## ## The exponential integral is defined as: -## ## @tex ## $$ ## {\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
--- a/scripts/specfun/legendre.m +++ b/scripts/specfun/legendre.m @@ -43,7 +43,6 @@ ## dimension more than @var{x}. ## ## The associated Legendre function of degree @var{n} and order @var{m}: -## ## @tex ## $$ ## P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x) @@ -63,7 +62,6 @@ ## ## @noindent ## with Legendre polynomial of degree @var{n}: -## ## @tex ## $$ ## P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr) @@ -101,7 +99,6 @@ ## Legendre functions by the following: ## ## For Legendre functions of degree @var{n} and order 0: -## ## @tex ## $$ ## SP^0_n (x) = P^0_n (x) @@ -120,7 +117,6 @@ ## @end ifnottex ## ## For Legendre functions of degree n and order m: -## ## @tex ## $$ ## SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5} @@ -144,7 +140,6 @@ ## Legendre functions by the following: ## ## For Legendre functions of degree @var{n} and order @var{m} -## ## @tex ## $$ ## NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5}
--- a/scripts/statistics/kendall.m +++ b/scripts/statistics/kendall.m @@ -45,7 +45,6 @@ ## is the correlation of the signs of all rank differences of ## @var{x} and @var{y}; i.e., if both @var{x} and @var{y} have distinct ## entries, then -## ## @tex ## $$ \tau = {1 \over N(N-1)} \sum_{i,j} {\rm sign}(q_i-q_j) \, {\rm sign}(r_i-r_j) $$ ## @end tex
--- a/scripts/statistics/moment.m +++ b/scripts/statistics/moment.m @@ -32,7 +32,6 @@ ## Compute the @var{p}-th central moment of the vector @var{x}. ## ## The @var{p}-th central moment of @var{x} is defined as: -## ## @tex ## $$ ## {\sum_{i=1}^N (x_i - \bar{x})^p \over N} @@ -87,7 +86,6 @@ ## ## @item @qcode{"r"} ## Raw Moment. The moment about zero defined as -## ## @tex ## $$ ## {\rm moment} (x) = { \sum_{i=1}^N {x_i}^p \over N }