Skip to main content
Account

Table 7 Comparison of the MSCNet with other advanced backbone models on the PCB dataset

From: YOLO-MSD: a robust industrial surface defect detection model via multi-scale feature fusion

Method

mAP(%)

Speed(FPS)

Size(MB)

FLOPs(G)

Param.(M)

\(AP_{50:95}\)

\(AP_{50}\)

\(AP_{75}\)

\(AP_{s}\)

\(AP_{m}\)

\(AP_{l}\)

ResNet50+SFPN

75.59

81.88

119.72

50.98

29.78

0.342

0.750

0.209

0.202

0.342

0.275

EfficientNet+SFPN

76.86

78.56

33.62

11.60

8.23

0.326

0.757

0.208

0.050

0.328

0.280

GhostNet+SFPN

77.57

82.38

20.88

7.98

5.00

0.333

0.771

0.211

0.151

0.341

0.267

MobileNetV2+SFPN

81.33

86.44

18.71

9.68

4.54

0.366

0.805

0.246

0.505

0.368

0.310

InceptionV3+SFPN

84.93

67.48

111.66

49.30

27.69

0.386

0.836

0.265

0.050

0.392

0.323

Xception+SFPN

86.05

82.17

107.33

57.39

26.71

0.373

0.854

0.230

0.151

0.373

0.304

Densent121+SFPN

86.11

65.35

45.94

38.25

11.20

0.385

0.856

0.263

0.050

0.395

0.337

DarkNet+SFPN

93.64

84.66

179.72

82.89

44.78

0.431

0.930

0.232

0.176

0.433

0.400

CSPDarknet53+SFPN

94.58

97.18

124.00

60.85

30.82

0.435

0.931

0.316

0.184

0.426

0.417

VGG16+SFPN

94.90

100.18

72.58

168.42

18.09

0.439

0.945

0.327

0.252

0.432

0.431

MSCNet+SFPN(YOLO-MSD-L)

96.67

70.13

192.93

82.85

48.08

0.429

0.954

0.292

0.202

0.425

0.460