Table 7 Comparison of the MSCNet with other advanced backbone models on the PCB dataset
From: YOLO-MSD: a robust industrial surface defect detection model via multi-scale feature fusion
Method | mAP(%) | Speed(FPS) | Size(MB) | FLOPs(G) | Param.(M) | \(AP_{50:95}\) | \(AP_{50}\) | \(AP_{75}\) | \(AP_{s}\) | \(AP_{m}\) | \(AP_{l}\) |
|---|---|---|---|---|---|---|---|---|---|---|---|
ResNet50+SFPN | 75.59 | 81.88 | 119.72 | 50.98 | 29.78 | 0.342 | 0.750 | 0.209 | 0.202 | 0.342 | 0.275 |
EfficientNet+SFPN | 76.86 | 78.56 | 33.62 | 11.60 | 8.23 | 0.326 | 0.757 | 0.208 | 0.050 | 0.328 | 0.280 |
GhostNet+SFPN | 77.57 | 82.38 | 20.88 | 7.98 | 5.00 | 0.333 | 0.771 | 0.211 | 0.151 | 0.341 | 0.267 |
MobileNetV2+SFPN | 81.33 | 86.44 | 18.71 | 9.68 | 4.54 | 0.366 | 0.805 | 0.246 | 0.505 | 0.368 | 0.310 |
InceptionV3+SFPN | 84.93 | 67.48 | 111.66 | 49.30 | 27.69 | 0.386 | 0.836 | 0.265 | 0.050 | 0.392 | 0.323 |
Xception+SFPN | 86.05 | 82.17 | 107.33 | 57.39 | 26.71 | 0.373 | 0.854 | 0.230 | 0.151 | 0.373 | 0.304 |
Densent121+SFPN | 86.11 | 65.35 | 45.94 | 38.25 | 11.20 | 0.385 | 0.856 | 0.263 | 0.050 | 0.395 | 0.337 |
DarkNet+SFPN | 93.64 | 84.66 | 179.72 | 82.89 | 44.78 | 0.431 | 0.930 | 0.232 | 0.176 | 0.433 | 0.400 |
CSPDarknet53+SFPN | 94.58 | 97.18 | 124.00 | 60.85 | 30.82 | 0.435 | 0.931 | 0.316 | 0.184 | 0.426 | 0.417 |
VGG16+SFPN | 94.90 | 100.18 | 72.58 | 168.42 | 18.09 | 0.439 | 0.945 | 0.327 | 0.252 | 0.432 | 0.431 |
MSCNet+SFPN(YOLO-MSD-L) | 96.67 | 70.13 | 192.93 | 82.85 | 48.08 | 0.429 | 0.954 | 0.292 | 0.202 | 0.425 | 0.460 |