Skip to main content
Account

Table 8 Comparison with advanced models based on the open dataset PCB

From: YOLO-MSD: a robust industrial surface defect detection model via multi-scale feature fusion

Method

mAP(%)

Speed(FPS)

Size(MB)

FLOPs(G)

Param.(M)

\(AP_{50:95}\)

\(AP_{50}\)

\(AP_{75}\)

\(AP_{s}\)

\(AP_{m}\)

\(AP_{l}\)

Faster-RCNN (VGG16)

44.38

42.17

547.16

226.41

119.65

0.121

0.441

0.037

0.006

0.105

0291

YOLOv3

84.29

70.70

246.99

99.30

61.60

0.312

0.803

0.113

0.151

0.314

0.336

YOLOv4

86.38

68.69

256.97

90.58

64.03

0.344

0.855

0.155

0.084

0.341

0.397

YOLOv4-Tiny

75.40

137.16

23.74

10.35

5.89

0.271

0.744

0.094

0.101

0.275

0.256

YOLOv5-X

10.64

69.69

346.35

130.75

86.34

0.039

0.109

0.010

0.000

0.039

0.049

YOLOX-X

91.48

59.56

397.62

180.18

99.10

0.432

0.907

0.305

0.252

0.426

0.455

YOLOX-L

85.06

71.24

217.89

99.41

54.22

0.382

0.837

0.240

0.151

0.383

0.365

YOLOX-M

90.54

68.21

102.15

47.05

25.33

0.419

0.893

0.310

0.202

0.420

0.405

YOLOX-S

87.60

75.24

36.47

17.05

8.96

0.401

0.864

0.281

0.252

0.399

0.418

YOLOX-Tiny

82.50

81.15

20.83

9.69

5.05

0.374

0.820

0.237

0.151

0.379

0.332

YOLOv7-X

90.13

64.77

284.48

120.66

70.91

0.399

0.888

0.275

0.252

0.398

0.451

YOLOv7-L

40.00

68.00

149.82

67.10

37.27

0.143

0.400

0.060

0.000

0.155

0.070

YOLO-MSD-X

95.86

62.61

317.33

135.59

79.18

0.443

0.950

0.299

0.151

0.441

0.391

YOLO-MSD-L

96.67

70.13

192.93

82.85

48.08

0.429

0.954

0.292

0.202

0.425

0.460

YOLO-MSD-M

94.46

74.22

99.43

43.04

17.58

0.443

0.936

0.319

0.202

0.443

0.435

YOLO-MSD-S

94.15

75.72

36.79

16.16

9.05

0.424

0.936

0.282

0.252

0.419

0.401

YOLO-MSD-Tiny

90.64

78.78

18.24

8.32

4.41

0.408

0.900

0.263

0.151

0.411

0.323